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ABSTRACT
Evolving understanding of head and neck squamous cell carcinoma (HNSCC) is 

leading to more specific diagnostic disease classifications. Among HNSCC caused by 
the human papilloma virus (HPV), tumors harboring defects in TRAF3 or CYLD are 
associated with improved clinical outcomes and maintenance of episomal HPV. TRAF3 
and CYLD are negative regulators of NF-κB and inactivating mutations of either leads 
to NF-κB overactivity. Here, we developed and validated a gene expression classifier 
separating HPV+ HNSCCs based on NF-κB activity. As expected, the novel classifier is 
strongly enriched in NF-κB targets leading us to name it the NF-κB Activity Classifier 
(NAC). High NF-κB activity correlated with improved survival in two independent 
cohorts. Using NAC, tumors with high NF-κB activity but lacking defects in TRAF3 or 
CYLD were identified; thus, while TRAF3 or CYLD gene defects identify the majority 
of tumors with NF-κB activation, unknown mechanisms leading to NF-kB activity 
also exist. The NAC correctly classified the functional consequences of two novel 
CYLD missense mutations. Using a reporter assay, we tested these CYLD mutations 
revealing that their activity to inhibit NF-kB was equivalent to the wild-type protein. 
Future applications of the NF-κB Activity Classifier may be to identify HPV+ HNSCC 
patients with better or worse survival with implications for treatment strategies.

INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) 
is a devastating disease that impairs fundamental tissues 
involved in respiration, phonation, and digestion. It is 
categorized into two discrete diseases based on etiology: 

human papillomavirus (HPV) negative HNSCC, which 
is primarily caused by exposure to ethanol and tobacco, 
and HPV-associated (HPV+) HNSCC [1]. These forms of 
HNSCC have contrasting clinical, epidemiological, and 
histological features [2–4] with HPV+ HNSCC occurring 
in a younger population with less or no smoking history [5, 
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6]. HPV-mediated cancer arises primarily in the reticulated 
epithelia of the oropharynx (e.g., tonsils, base of tongue), 
whereas HPV-negative HNSCC is found at all subsites 
(e.g., oral cavity, larynx) [2]. Unfortunately, the global 
incidence of HPV+ HNSCC is increasing, and for at least 
a decade, HPV has caused more head and neck cancers 
than uterine cervical cancers annually in the United States 
[7, 8].

Since HPV+ HNSCC has only recently been 
recognized as a distinct clinicopathological entity 
[9], management of HNSCC has been driven by 
escalating therapies to improve cancer control in the 
more treatment-resistant HPV-negative HNSCC [2, 
6]. While oncologic outcomes for HPV+ HNSCC are 
generally favorable, treatment paradigms developed 
for HPV-negative disease burden many survivors of 
HPV+ HNSCC with lifelong debilitating treatment-
associated side effects [10]. On the other hand, ~30% 
of HPV+ HNSCC patients exhibit a more aggressive 
disease course and suffer recurrence [11, 12]. Therefore, 
there is a growing clinical demand to develop robust 
stratification tools to accurately identify patients with 
good or poor prognosis and that could be used to 
personalize treatment.

TRAF3 belongs to the TRAF family of proteins 
that are known as intracellular adaptors and E3 ubiquitin 
ligases mediating receptor-based signaling [13]. TRAF3 
polyubiquitinates and degrades NF-κB-inducing kinase 
(NIK) restraining non-canonical NF-κB signaling. The 
deubiquitinating enzyme Cylindromatosis (CYLD) is 
a tumor suppressor that was found to be mutated in 
familiar cylindromatosis, a condition associated with 
benign skin tumors. CYLD mediates deubiquitination of 
the NF-κB essential modulator (NEMO) thus inhibiting 
canonical NF-κB signaling [14, 15]. A cross talk 
between canonical and non-canonical NF-κB signaling 
suggests that TRAF3 and CYLD affect both NF-κB 
pathways.

Somatic defects in the NF-κB inhibitors TRAF3 and 
CYLD are found in ~30% of HPV+ HNSCC tumors [1, 16, 
17]. These gene defects are uncommon in uterine cervical 
cancer and HPV-negative HNSCC. While frequent TRAF3 
or CYLD inactivating mutations are found in B cell 
lymphomas, where constitutive NF-κB activity is known 
to play a key survival role [18–20], these mutations are 
rarely found in solid tumors [16]. Exceptions with more 
frequent TRAF3 and CYLD mutations include two virally-
associated cancers, HPV+ HNSCC and Epstein-Barr 
virus-associated nasopharyngeal carcinoma (NPC) [21–
23]. Although initial studies focused on NF-κB activity 
as a defense against viral infections, further investigation 
revealed more nuances with some viruses, like EBV 
and HIV, depending on NF-κB activity to support viral 
replication and viral gene expression [24–27]. The 
correlation between TRAF3 and CYLD alterations and the 
lack of classic oncogenic HPV integration events, suggests 

that HPV may similarly exploit NF-κB activity in HNSCC 
to be able to maintain extrachromosomal HPV genomic 
material.

The power of multi-variable models and/or multi-
omic approaches can be harnessed to improve tumor 
subtyping [28–31]. For example, an RNA expression-
based PARP inhibitor outcome prediction model in 
ovarian cancer outperformed BRCA1/2 mutational status 
in predicting treatment response [30]. In the present 
study, transcriptional differences between tumors with 
and without TRAF3 and CYLD defects formed the basis 
for a novel classification of HPV+ HNSCC. Based on 
established roles of TRAF3 and CYLD as inhibitors of 
NF-κB, it was expected that the resultant classifier would 
segregate tumors on the basis of NF-κB activity. Gene set 
enrichment analysis confirmed that the classifier identified 
tumors with high or low NF-κB activity and, relative to 
TRAF3 and CYLD defects, this NF-κB Activity Classifier 
(NAC) improved identification of tumors with good 
and poor survival. Among TCGA specimens, two novel 
missense mutations in CYLD were identified: N300S 
and D618A [16]. To understand the implications of these 
point mutations, we used the NAC and correlated results 
with a cell-based assay to evaluate their effect on NF-κB 
transcriptional activity.

To improve on genomic classification, we designed 
this study to provide a foundation for development of 
NF-κB related, RNA based classification strategies to 
better identify HPV+ HNSCC patients with good or 
poor prognosis that could potentially aid in future efforts 
towards treatment personalization.

RESULTS

Development of the NF-κB activity classifier 
(NAC)

We previously reported that TRAF3 and CYLD 
alterations in a subset of HPV+ oropharyngeal squamous 
cell carcinoma (OPSCC) tumors correlated with NF-κB 
activation and improved survival [16]. NF-κB is a family 
of inducible transcription factors that play a role in innate 
and adaptive immune response; constitutively active NF-
κB is a well-known oncogene in various cancer types 
that increases cell proliferation, migration, invasion and 
metastasis while inhibiting apoptosis [32–34]. NF-κB 
activation, induced by carcinogens or oncogenic viruses, 
was found in head and neck tumors and cells [35]. Given 
the variable role that NF-κB plays in HPV+ OPSCC 
tumorigenesis, we hypothesized that tumor groups based 
on NF-κB related gene expression may correlate with 
treatment outcome, considering that tumors lacking 
defects in TRAF3 and CYLD may have unrecognized 
mechanisms driving constitutive NF-κB activation. 
TCGA expression data were first grouped by the presence 
of a known TRAF3 or CYLD defect and the top 100 
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differentially expressed genes identified (Figure 1A). As 
anticipated, gene set enrichment analyses demonstrated 
a high enrichment score (>0.3) for NF-κB target genes 
(Figure 1B, Grey) and several notable NF-κB target genes 
were differentially expressed – TRAF2, NF‑kB2, BIRC3, 
and MAP3K14. 

Machine learning techniques were used to refine the 
signature resulting in a set of 50 key genes dubbed the 
NF-κB Activity Classifier Gene Signature (Supplementary 
Table 1). Using the NF-κB Activity Classifier (nearest 
centroid), all tumors were then given a final classification 
to identify tumors with high NF-κB activity (Figure 1, 
track 1, green). As may be expected based on unknown 
mechanisms of NF-kB activation, some additional samples 

without inactivating alterations (deep deletion, nonsense/
frameshift mutation) in either TRAF3 or CYLD (Figure 
1A, track 3 – burnt orange) were included in the NF-κB 
active group. 

In order to identify a set of tumors with 
equivalently high activation of NF-κB, as observed with 
destructive nonsense or frameshift mutations in TRAF3 
or CYLD, we also defined a more stringent threshold 
of NF-κB activation, based on the lowest classifier 
score observed for the highest confidence destructive 
alterations (nonsense or frameshift) of TRAF3 or CYLD 
(see Figure 1, track 2 – green brown). Notably, 6 tumors 
included in this “highly active” NF-κB group also were 
found to be without deep deletion, frameshift/nonsense 

Figure 1: Development of an NF-κB activity related RNA expression classifier. (A) Heatmap of RNA Expression Changes 
Associated with TRAF3/CYLD Alterations and Deletions. Normalized log2(read counts per million), color scaled by row. Columns– Tumor 
Samples, organized by unguided clustering. Rows – Top 100 genes by p-value differentially expressed between high-confidence NF-κB 
active vs. inactive tumors (see methods for details). Row annotation – Known NF-κB target genes curated from literature review. Column 
Annotation Details: Track 1 (green) - RNA classifier (“NF-κB active”) based on nearest centroid. Track 2 (green brown) - RNA classifier 
(“NF-κB highly active”) based on minimal classifier score identified for TRAF3/CYLD nonsense or frameshift mutation bearing tumors. 
Track 3 (orange) – Tumor contains a frameshift, nonsense, or deep deletion in TRAF3 or CYLD. Track 4 (purple) - Tumor contains a 
frameshift or nonsense mutation in TRAF3. Track 5 (lavender) - Tumor contains a deep deletion in TRAF3. Track 6 (pink) - Tumor contains 
a shallow deletion in TRAF3. Track 7 (army green) - Tumor contains a frameshift or nonsense mutation in CYLD. Track 8 (lime green) - 
Tumor contains a missense mutation in CYLD. Track 9 (yellow) - Tumor contains a deep deletion in CYLD. Track 10 (mustard) - Tumor 
contains a shallow deletion in CYLD. Track 11 (dark brown) – Tumor contains any alteration in both TRAF3 and CYLD. Shallow Deletion 
– Gistic copy-number score = −1, Deep Deletion – Gistic copy-number score = −2, Stop Gained – frameshift or nonsense mutation. 
Missense – missense or in frame indel. Stop/Deep Del. – Any one of nonsense, frameshift, or deep deletion. (B) Gene Set Enrichment 
Analysis for NF-κB Target Genes. All available genes after data filtering (see methods) were ranked according to signal-to-noise ratio 
when comparing the two groups of tumors. The MiSigDB Hallmark TNFA/NFkB gene set was tested for enrichment. NF-κB highly active 
– tumors were defined according to RNA based classifications (see methods); these were compared to all other tumors in the study cohort. 
NF-κB Pathway Alteration – Any missense, nonsense, frameshift, deep deletion in TRAF3 and/or CYLD; these were compared to all other 
tumors in the study cohort. Lines – enrichment score values. Dashed Line – maximum achieved enrichment score (NFkB high activity 
only). Vertical Hashes – rank positions of the test gene set (Hallmark NF-κB). (C) Auto-correlation of RNA Gene Set before and after the 
machine learning (ML) procedure. (D) Classifier Performance of Gene Sets before and after ML improvement, with increasing (simulated) 
error of measurement. Performance determined by area under the receiver operating characteristic curve. ***P value < 5 × 10−4, **P value < 
5 × 10−3.



Oncotarget710www.oncotarget.com

mutation of TRAF3 or CYLD, bolstering the utility of an 
RNA based approach to identify NF-κB activated HPV+ 
HNSCC tumors. 

All tumors harboring concurrent alterations 
(including shallow deletions) in both TRAF3 and CYLD 
were found to be in the NF-κB active group (Figure 
1A, track 11 - brown), and two of these tumors were 
included in the “highly active” NF-κB group. These 
data suggest an intriguing hypothesis that combinations 
of more subtle changes simultaneously effecting both 
TRAF3 and CYLD might also contribute to NF-κB 
activation.

RNA-based classification strengthens the 
association with NF-κB target gene expression

To determine if the NF-κB Activity Classifier 
enhanced correlation with NF-κB target genes relative 
to groupings based on TRAF3/CYLD alterations, we 
performed gene set enrichment analysis using TRAF3/
CYLD (missense, nonsense, frame shift) and the highly 
active NF-κB classification as determined by the NAC. 
This analysis demonstrated significant enrichment for the 
Hallmark NF-κB target gene set for both TRAF3/CYLD 
and highly active NF-κB classifiers (p-value < 0.01); 
however, stratification using the NF-κB Activity Classifier 
demonstrated stronger enrichment (Figure 1B).

Machine learning (ML) improves NF-κB gene 
set properties and classifier robustness

Auto-correlation, or compactness, is a desirable 
feature of RNA expression signatures since loss of 
compactness when applied to new datasets can limit 
their diagnostic utility [36]. To begin determining 
compactness of the NF-κB signature auto-correlation 
was examined. Pearson correlation coefficients were 
improved after the machine learning procedure, both 
in the HNSCC tumors used for deriving the gene 
set; as well as across all tumor types included in the 
TCGA pan-cancer atlas (Figure 1C). Since clinical 
expression datasets might be expected to have more error 
compared to TCGA, we also considered how robust our 
classifications were to increasing noise of measurement. 
To examine this, we calculated the area under the 
receiver-operator characteristic curve (AUC) for the 
original and ML improved classifier with increasing 
levels of (random) simulated error applied to the RNA 
expression data. The ML-improved classifier had higher 
AUC values at higher levels of noise, and maintained a 
median AUC of >0.95 even with a five-fold increase in 
error as compared to the original RNA data from TCGA 
(Figure 1D). Taken together these analyses illustrate the 
favorable properties of our NF-κB signature, as well 
as a high-degree of robustness of the nearest centroid 
classifications based on these genes.

Weighted gene correlation network analysis 
identifies an NF-κB associated gene expression 
module in HPV+ HNSCC

As TRAF3 and CYLD have other molecular 
functions in addition to inhibiting NF-κB, and to 
determine the relationship of the NAC to other biological 
aspects, we performed weighted gene correlation network 
analysis (WGCNA). To render required processor times 
tractable, only the 13,000 most highly expressed genes 
were included in the WGCNA analysis, excluding 2 of 
the 50 classifier genes. This unguided discovery approach 
identified 7 sets (or modules) of highly autocorrelated 
genes; the relative size and correlative dissimilarity 
between the modules are displayed in Figure 2A. These 
modules were then screened for (hypergeometric) 
enrichment of the established hallmark gene sets from the 
MiSig database (Figure 2C). Interestingly, one module 
(“yellow”) was found to be most associated with NF-
κB target gene expression by both p-value and fraction 
of module genes in the test signature (Figure 2C). Of 
note, no other modules were enhanced for NF-κB targets. 
Furthermore, 47 of 48 signature genes included in the 
WGCNA analysis were found to be in the “yellow” 
module (Figure 2B, Supplementary Table 2 for WGCNA 
modules, and Supplementary Table 3 for hypergeometric 
enrichment analysis). The “yellow” module was also 
associated with early estrogen receptor signaling (Figure 
2C). 

Expression-based classification improves 
correlation with survival

Clinical outcomes for the TCGA HPV+ HNSCC 
cohort were assessed with PFI, available for all TCGA 
samples [37]. Kaplan-Meier survival curves were created 
for samples stratified by the presence of a TRAF3 or 
CYLD genomic alteration (Figure 3A) and using the 
NF-κB Activity Classifier (Figure 3B). In both cases, a 
survival advantage was apparent for this distinct disease 
phenotype. However, the NF-κB Activity Classifier was 
associated with a larger hazard ratio (HR = 6.8) and 
statistically significant difference in PFI (p = 0.01) (Figure 
3A, 3B). Although fewer tumors (n = 57) were annotated 
for recurrence-free survival (RFS), classification of 
NF-κB active tumors using the NAC also correlated with 
improved RFS (Supplementary Figure 1, p-value = 0.006). 

NF-κB activity correlates with HPV viral 
integration status

We previously reported that somatic alterations 
in TRAF3 and CYLD were associated with lack of viral 
integration in HPV+ HNSCC. To examine if our RNA-
based estimates of NF-κB activity also correlated with 
viral integration, we first determined integration based 
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on discordant read pair mapping - sequences that mapped 
to both the human and HPV viral genomes. Tumors were 
only considered integrated if multiple discordant read pairs 
mapped to similar areas of the human and viral genomes 
[38]. The ratio of expression of viral genes E6 and E7 to E1 
and E2 has been used as a surrogate marker for integration 
[39], however, in our hands the ratio of E6/E7 to E2/E5 
was more correlated to integration identified by discordant 
read pairs (Figure 3C). Comparison of RNA-based NF-κB 
activity (classifier scores) demonstrated a strong relationship 
to viral integration status, with episomal tumors having much 
higher median NF-κB activity (Figure 3D, p-value < 0.001).

NF-κB activity correlates with patient outcome 
in an independent validation dataset

To validate the prognostic value of the NAC, 
we queried the literature for suitable datasets, finding 
one study with RNAseq data and clinical annotation 
(Supplementary Table 4, [40]). Since somatic mutational 
data was not available in this RNA expression dataset, 
we applied single-sample gene set enrichment analysis 
(ssGSEA) to score each tumor for NF-κB activity using 
the NAC (Figure 4A). Interestingly, NAC gene signature 
ssGSEA scores were distributed in a bimodal pattern, 

enabling empiric classification of tumors based on a simple 
threshold roughly dividing the two distributions (Figure 
4A). Recurrence-free survival (RFS) analysis demonstrated 
improved survival for the NF-κB active group (Figure 4B). 

NF-κB activity classifier RNA signature 
maintains favorable properties in an 
independent validation dataset

To investigate the relationship to of the NF-κB 
activity gene signature to global variability in (human) 
gene expression, we performed principal component (PC) 
analysis (Figure 4C–4D). NF-κB activity groups were 
not strongly correlated with the principal component 
associated with the greatest degree of variability in the 
dataset (PC1). Among the 10 top principal components, 
only PC3 (and to a lesser degree PC2), were associated 
with the NF-κB activity groups (Figure 4C, 4D). Taken 
together, these results suggest that variability in the 
expression of the NF-κB activity gene signature is specific, 
and not simply a reflection of gross data variability. 
Principal component (PC3) and NAC gene signature 
ssGSEA scores were strongly correlated (Figure 4D 
inset, Pearson’s Rho = −0.63, p-value = 5 × 10−12), which 
suggests that expression of NF-κB activity signature genes 

Figure 2: Characterization of the NF-κB activity classifier genes with weighted gene correlation network analysis 
(WGCNA). Only modules with more than 250 and less than 5000 genes were analyzed. (A) Expression Dissimilarity matrix with 
clustering dendrogram. For clarity, a subset of 1500 genes are displayed. Warmer colors (red) represent higher degrees of dissimilarity. Row 
and Column Annotations – WGCNA gene expression modules, colors correspond to module name, as in panel C. (B) Proportion of Genes 
by WGCNA module. NF-κB Classifier Gene Set – Gene set (50 genes) used in the NF-κB activity classifier. All genes – Genes analyzed 
by WGCNA but not included in the NF-κB activity classifier. P-value represent chi-squared test. ***p-value < 0.0001. (C) Hypergeometric 
Enrichment Plot. Identified WGCNA modules were screened for enrichment in Hallmark Gene Sets from MiSigDB. Red-black color scale 
indicates adjusted p-value (-Log10[q-value]). Only results with q < 0.05 were displayed. Percent of module genes in Hallmark gene set is 
represented by point size. Q-values represent hypergeometric enrichment as reported by the EnrichR R package.
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can be reliably identified independent of scoring metric, 
which is a key feature of high-quality gene signatures [36]. 

CYLD missense mutants are not associated with 
loss of function

Stratification of tumors by the NF-κB Activity 
Classifier found that only one of the two identified CYLD 

missense mutations was associated with increased NF-κB 
activity (Figure 1, track 8 – lime green). Considering the 
missense mutation in the “highly active” NF-κB group 
had concurrent shallow deletions in both TRAF3 and 
CYLD, we evaluated the functional consequences of 
the CYLD missense mutations. To test CYLD activity, 
we developed CYLD knockout cells and confirmed loss 
of CYLD expression and activation of NF-κB (Figure 

Figure 3: NF-κB activity classifier correlates with patient outcomes and viral integration status. (A–B) Kaplan-Meier 
Analysis of Progression Free Interval of HPV+ HNSCC. P-values represent log-rank test. HR – Hazard Ratio. NF-κB Active – Highly 
NF-κB active tumors by RNA expression as defined according to the RNA based classifier (see methods), these were compared to all other 
tumors (NF-κB Inactive) in the study cohort. TRAF3/CYLD Alt – Any missense, nonsense, frameshift, deep deletion in TRAF3 and/or 
CYLD, these were compared to all other tumors (TRAF3/CYLD WT) in the study cohort. See Supplementary Figure 1 for grossly similar 
recurrence-free survival results. (C) Heatmap of HPV16 Viral Gene Expression for 61 HPV16+ OPSCC tumors included in the TCGA. 
Columns – tumors. Rows – HPV16 viral genes. Column Annotations: NF-κB activity RNA - nearest classifier score, higher values are 
more proximal to the NF-κB active centroid. E6E7/E2E5 Ratio – [E6 expression(raw counts) + E7 expression (raw counts)]/[E2 expression 
(raw counts) + E5 expression (raw counts)]. The columns are organized by this metric which is reported to strongly correlated with viral 
genomic integration. Integration Status – HPV viral integration status as determined by the ViFi pipeline. (D) Box Plot comparing NF-κB 
activity in integrated and episomal tumor groups. Integration as assigned by ViFi. NF-κB activity – Raw NF-κB classifier scores as in panel 
C. **p < 0.001.
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5A, 5B). Site-directed mutagenesis was used to recreate 
observed mutations (Figure 5C) and activity of mutant 
proteins to inhibit an NF-κB reporter was compared to 
wild-type CYLD in CYLD knockout cells. As expected, 
CYLD knockout cells showed significantly elevated 
NF-κB activity compared to parental cells (Figure 
5D). Interestingly, both N300S and D618A mutant 
CYLD proteins were as efficient in inhibiting NF-κB 
transcriptional activity as wild-type CYLD (Figure 
5D). These data suggest that N300S and D618A CYLD 
missense mutations are not inactivating mutations and are 
not responsible for NF-κB activation. 

DISCUSSION

HNSCC is increasing global incidence due to 
human papillomavirus and continued consumption of 
carcinogens [2, 7, 10]. In contrast to HPV-negative 
HNSCC, HPV-mediated tumors are more susceptible to 
contemporary treatment paradigms, which also leads to 

improved patient survival [41]. However, HPV+ HNSCC 
survivors are frequently burdened with significant side 
effects including pain; neck muscle stiffness; dry mouth; 
and difficulty with speech, eating/drinking, and breathing. 
Efforts to reduce these significant quality-of-life effects 
have triggered multiple trials of treatment de-escalation. 
In these trials, patients are selected for deintensified 
treatment based on patient factors like smoking status, 
histological characteristics following an ablative 
procedure, or response to induction chemotherapy [42]. 
Given that methods to identify patients for deintensified 
therapy are imperfect, our improved classifiers may serve 
as prognostic biomarker to help clinicians with therapeutic 
decisions.

Recent work examined genomic characteristics 
of the tumor that could be used prior to treatment to 
prognostically stratify patients. Somatic mutations or 
deletions in TRAF3 or CYLD identified a subset of HPV+ 
HNSCC associated with improved outcome [1, 16, 17]. 
Increasing evidence demonstrates these somatic mutant 

Figure 4: NF-κB activity classifier gene expression is cohesive and correlates with patient outcomes in an independent 
validation cohort. (A) Histogram of single- sample (ss)GSEA Scores for NF-κB activity classifier genes for each tumor in the validation 
cohort. Class Boundary – an empiric threshold based on the bimodal distribution of scores to assign (binary) NF-κB activity status. (B) 
Kaplan-Meier Analysis of Recurrence Free Survival of HPV+ HNSCC. P-values represent log-rank test. HR – Hazard Ratio. NF-κB 
Active/Inactive – NF-κB active tumors by RNA expression as defined according to the ssGSEA scores for NF-κB activity classifier genes 
determined for each tumor as in panel A. (C) Scatter plot of tumors based on gross RNA expression in principle component space, the 
top two principal components are displayed. Colors - NF-κB activity groups as in panel A. (D) Box Plot of principle component values 
comparing NF-κB activity groups. P-values represent Wilcoxon Rank-sum test. **p-value < 0.001, ***p-value < 5 × 10−9. % Var. – Percentage 
of total variance explained by the individual principal component. Inset – Scatter plot of NFkB ssGSEA scores vs. PC3.
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tumors identify a distinct clinical entity given notable 
molecular, histopathologic, and outcome differences [3, 
16, 43]. Regarding function, TRAF3 is a ubiquitin ligase 
that regulates numerous receptor pathways, ultimately 
functioning to negatively regulate both canonical and 
non-canonical NF-κB pathways [44]. Similarly, CYLD 
inhibits the NF-κB pathway in its role as a deubiquitinase 
[45]. Inactivation of TRAF3 or CYLD results in activation 
of NF-κB producing robust downstream effects as 
demonstrated by significant RNA expression changes 
amongst mutant TRAF3/CYLD tumors (Figure 1) [46]. 

NF-κB was thought to protect cells from viruses 
through induction of immune response genes; however, 
it is now apparent that many viruses rely on or even 
induce aberrant NF-κB activity to promote host cell 
survival and proliferation, supporting viral lifecycle and 
gene expression. Previous work revealed that NF-κB 
overactivation favors carcinogenesis with EBV and HIV-
mediated disease with a fundamental role of constitutive 
NF-κB signaling in EBV tumorigenesis [22, 24–27]. When 
aberrantly activated, NF-κB stabilizes the EBV episome, 
while suppressing the lytic cycle [22, 24, 47]. We found 
that in HPV+ HNSCC TCGA cohort increased NF-κB 
activity significantly correlated with the absence of HPV 
integrations (Figure 3C and 3D). Whether constitutively 
active NF-κB supports the presence of HPV episomes or 
inhibits HPV integrations in human genome remains to 
be investigated and currently is studied in our laboratory.

Current knowledge of HPV-induced carcinogenesis 
is largely derived from study of uterine cervical cancer 
with the classical model showing persistent infection 
followed by HPV genome integration leading to increased 
expression of HPV oncoproteins [48]. The absence of 

HPV integration in a substantial portion of HNSCC 
coupled with constitutive NF-κB activation, as we show 
here (Figure 3), suggests that HPV carcinogenesis in the 
upper aerodigestive tract may be driven by maintenance 
of episomal HPV. Interestingly, HPV genome integration 
has consistently associated with worse survival in these 
tumors [39, 49, 50].

Recent finding revealed that ER expression 
correlated with improved survival in HPV+ HNSCC [51]. 
Initial studies found that ER expression and signaling 
inhibited NF-κB through estrogen stabilization of IκBα 
[52]. Later investigations unveiled that ER signaling 
enhanced NF-κB activity in macrophages and T cells, 
suggesting that the interaction between ER and NF-κB 
may depend on cellular context [53, 54]. Given that both 
ER expression and loss of TRAF3 portend improved 
prognosis in HPV+ HNSCC, description that ER-alpha 
stimulation depletes cells of TRAF3 via ubiquitination 
provides a potential mechanistic connection of these 
findings [55]. As far as we are aware, the crosstalk 
between NF-κB and ER is not described in the presence of 
HPV and in HNSCC. Although our work cannot determine 
causality, the WGCNA analysis suggests a positive 
correlation between ER signaling and NF-κB activity in 
HPV+ HNSCC, with the “yellow” module being enriched 
for both NF-κB and early estrogen response genes. Also, 
the nearest neighbor (relative to “yellow”) “magenta” 
module was enriched for estrogen response genes (Figure 
2A and 2C).

Use of multi-variable predictor models is gaining 
recent clinical traction since these tools provide a 
more comprehensive assessment of the intratumoral 
environment [28–30]. In our case, we hypothesized that 

Figure 5: Expression of CYLD (A), pp65 (B) and GPDH in U2OS parental and CYLD CRISPR clones as determined by immunoblotting. 
(C) Schematic representations of CYLD protein and schema of CYLD N300S and D618A mutant constructions. (D) NF-κB reporter 
activity in U2OS parental, U2OS CYLD CRISPR (control) cells, or U2OS CYLD CRISPR cells transiently transfected with wild-type 
or mutant CYLD constructs. t-test was used to compare U2OS to other conditions. ** -- adjusted p-value (Bonferroni correction) < 0.05.
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undefined alterations in addition to TRAF3 or CYLD gene 
defects are in play to activate NF-κB in HPV+ HNSCC. 
Querying only TRAF3 or CYLD defects would be blind 
to these alternative NF-κB activating strategies leading to 
imperfect tumor classification. Indeed, the NF-κB Activity 
Classifier identified several NF-κB active tumors excluded 
by genomic analysis of TRAF3/CYLD (Figure 1A). 
Tumors with deep deletions in either TRAF3 or CYLD, or 
a truncating mutation proximal to the proteins’ functional 
domain, were consistently included in the “active” NF-
κB category. Conversely, tumors with isolated shallow 
deletions tended to be in the NF-κB “inactive” category. 
However, the NF-κB Activity Classifier identified many 
samples in the NF-κB “active” category that do not 
follow this clear-cut pattern, in particular identifying that 
simultaneous shallow deletion of TRAF3 and CYLD in a 
tumor correlated with NF-κB activity. The finding that all 
tumors with shallow co-occurring deletions in both TRAF3 
and CYLD were included in the NF-κB “active” group 
suggests a functional interaction of TRAF3 and CYLD in 
these tumors. We interrogated tumors without inactivating 
alterations in TRAF3/CYLD in the NF-κB active group 
for mutations of genes known to influence the NF-κB 
pathway; indeed, one tumor contained missense mutation 
in the MAP3K14 (NIK), and there was a nonsense 
mutation in the NFκBIA, as well as a nonsense mutation in 
TRAF2 in two additional tumors (Supplementary Table 5). 
However, we were unable to detect additional mutations in 
well known NF-κB regulators in the rest of tumors most 
likely due to the complex nature of the NF-κB pathway. 
On the other hand, our direct testing revealed that 
missense mutations of CYLD found in HPV+ HNSCC do 
not lose ability to regulate NF-κB (Figure 5). One tumor 
with the D618A CYLD mutation was classified as NF-κB 
highly active, but this tumor also harbored simultaneous 
shallow TRAF3 and CYLD deletions. Accuracy of the NF-
κB Activity Classifier to identify NF-κB activity in HPV+ 
HNSCC was suggested through its improved correlation 
with patient outcome compared to segregating tumors 
based on TRAF3 or CYLD defects. From the biological 
perspective, this finding also supports the notion that NF-
κB activation and related changes in gene expression may 
be the key factor determining the biological differences 
previously reported for TRAF3/CYLD mutant HPV+ 
HNSCC.

Our previous work identified the potential value 
of TRAF3 and CYLD gene defects to predict outcomes 
in HPV+ HNSCC [16]. Herein, we demonstrate that 
an RNA-based classifier trained on tumors harboring 
these mutations may improve prognostic classification 
(Figure 3A, 3B, Figure 4B and Supplementary Figure 
1). As clinical algorithms for treatment de-escalation are 
not presently informed by prognostic biomarkers, the 
possibility of an RNA-based approach for determining 
NF-κB related prognostic groups is quite relevant. 
Furthermore, RNA-based gene expression profiling has 

the potential to synthesize disparate observations related 
to prognosis in HPV+ OPSCC. Specifically, other groups 
have found that ER-alpha expression is prognostic [56] 
and we find that ER signaling is correlated with NF-
κB activity (Figure 2C). Similarly, we find that NF-κB 
activity assessed by RNA expression is highly related to 
viral integration status which has also been put forward 
as a prognostic marker in HPV+ OPSCC [39]. Future 
work will be needed to optimize RNA-based biomarkers 
which represent the full prognostic potential of all relevant 
pathways, including NF-κB signaling, ER signaling, and 
viral oncogene expression, but such a synthetic approach 
is likely possible based on the correlations between these 
transcriptional pathways we have identified. 

Although application of gene expression sets from 
translational and experimental studies has only limited 
success to date, our analyses support the biological and 
clinical utility of the gene set we have developed. The 
NF-κB related gene signature and classifier developed 
in this work demonstrate desirable properties suggesting 
that they are translatable across multiple cohorts and RNA 
quantification technologies. Using TCGA data set, we 
confirmed the robustness of RNA-based classifications 
in the presence of high levels of noise (Figure 1D). The 
NF-κB RNA gene set was highly auto-correlated and 
distinct from other transcriptional programs in HPV+ 
HNSCC (Figure 1C, Figure 2). Using a second cohort, 
we validated the utility of our gene set outside of the 
original training data (Figure 4). In the validation cohort, 
a bimodal expression of the NF-κB gene signature (Figure 
4A) suggests that indeed two biological groups (NF-κB 
high and low) are a feature of HPV+ HNSCC, and these 
groups also correlated with RFS in second data set (Figure 
4B). Furthermore, the NF-κB gene signature expression 
was not correlated to 8/10 top principal components 
demonstrating that the gene set does not simply report 
gross (transcriptome wide) changes in gene expression. 
Conversely, the very strong correlation to PC3 suggests 
that gene set remains compact when applied to new data 
sets and can likely be quantified by many metrics (Figure 
4C, 4D).

This report validates and expands on our findings 
that significant expression changes related to NF-κB 
activity occur in the subset of HPV+ HNSCC tumors 
marked by TRAF3 or CYLD mutations. We are planning 
future studies investigating the importance of “long-tail” 
mutations in the NF-κB pathway which might further 
illuminate the origins of NF-κB dysregulation in HPV+ 
HNSCC.

A major discovery in the recent past is that HPV 
associated HNSCC have improved survival compared to 
tobacco associated tumors. This finding, coupled with 
advancements in tumor genomic analysis, definitively 
established HPV+ and HPV-negative HNSCC as distinct 
tumors. Similarly, we noted genomic differences amongst 
subclasses of HPV+ HNSCC and found that defects 
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in TRAF3 and CYLD correlated with survival. Here we 
present data that these subclasses may also be identified 
by direct assessment of NF-κB activity; as demonstrated 
by gene expression differences highlighted by the NF-
κB Activity Classifier. Since clinicians are exploring 
therapeutic deintensification for HPV+ HNSCC, 
identifying patients with good or poor prognosis using 
the NF-κB Activity Classifier may be useful to guide 
therapeutic decisions. 

MATERIALS AND METHODS

Data acquisition

Only de-identified, publicly available clinical 
and genomic data were utilized for this study. Per-gene 
quantified mRNA read count data, as well as per-gene 
discretized Gistic2 copy-number analysis data for the 
Cancer Genome Atlas [57] HNSCC, were downloaded 
from the Broad Firehose Portal [58]. In this work, we 
consider a Gistic score of −2 synonymous with deep 
deletion, and Gistic score of −1 synonymous with a 
shallow deletion. Gistic uses a dynamic segmentation 
algorithm to define chromosomal arm level (−1) 
and deeper focal deletions (−2) based on per tumor 
thresholds [59]. Clinical data for the TCGA HNSCC 
cohort were acquired from Liu et al., [37]. Variant 
calls were downloaded using the R TCGAbiolinks [60] 
package; calls performed with VarScan [61] were used 
for all analyses. TCGA RNA sequencing BAM files were 
downloaded from dbGaP, with NIH request #99293-1 for 
project #27853: “Prognostic signature in head and neck 
cancer” (PI – N.I.).

Cohort selection and inclusion criteria

RNA assigned HPV status from the Firehose clinical 
annotations were used to assign HPV status, only HPV 
positive tumors were included [62]. Tumors with TP53 
mutations or deep deletions were excluded from the 
analysis. Anatomic subsites from the oropharynx, tonsil, 
and base of tongue were included, and nearby subsites of 
the hypopharynx and oral tongue considering HPV+ TP53 
wild-type tumors were likely an oropharyngeal primary. 
Tumors from more distal sites (e.g., larynx, alveolar ridge, 
maxilla) were excluded. A total of 61 patients met these 
criteria. 

Bioinformatics

RNA read count data was preprocessed by filtering 
low expression genes to obtain an approximately 
Gaussian distribution of Log2CPM values. Filtered read 
count data were then normalized using the trimmed 
means of M values methods provided in the R edgeR 
package [63]. The Limma-voom pipeline was used for 

all subsequent differential expression analysis [64]. 
Classifiers used the nearest centroid method, and were 
defined and cross validated using the R cancerclass 
package [65].

To construct a high-performance RNA-based 
classifier for NF-κB activity in HPV+ HNSCC, 
we employed a centroid classifier, trained on high 
confidence class members. Preliminary groups of NF-κB 
active and inactive tumors were assigned by mutational 
status. Specifically, all tumors with deep deletions 
(Gistic value = −2) or mutations (missense, nonsense, 
frame shift) in the NF-κB regulator genes TRAF3 and 
CYLD were considered NF-κB active, and other tumors 
inactive. An initial differential expression was performed 
between these preliminary groups, and a classifier 
defined, based on the top 100 genes ranked by p-value. 
High confidence class members were defined as having 
correct initial assignment and having RNA expression 
values very similar to the class-defining average of 
expression (less than 0.25% of the inter-centroid 
distance). The gene set and classifications were then 
improved with a machine learning (filtering) procedure, 
in which tumors initially misclassified or were more 
than 0.25% away from a centroid were temporarily 
removed (filtered). Then the filtered data were then used 
for differential expression and construction of a final 
classifier. The top 50 genes (by p-value) were selected 
for this final classifier based on lack of improvement 
in the receiver operator characteristic with the addition 
of more genes. Adjusted p-values (multiple comparison 
correction per the LIMMA package) were calculated and 
reported. This final classifier had perfect performance on 
leave-one-out-cross validation. All tumors in the HPV+ 
HNSCC cohort were then classified according to this 
final classifier (nearest centroid method) for correlation 
with clinical and genomic data. Sample classifications 
were further tuned by setting an empiric threshold for 
NF-κB activity at the distance of the frameshift or 
nonsense TRAF3/CYLD mutation farthest from the 
NF-κB active centroid.

To identify potentially biologically relevant 
autocorrelated gene sets or gene expression modules 
[36], the WGCNA algorithm was applied to the above-
described RNA expression data, filtered to the top ~13,000 
genes to limit computational intensity. (WGCNA: an R 
package for weighted correlation network analysis [66]. 
Default parameters according to recommendations from 
the WGCNA package authors were used unless otherwise 
noted. The soft threshold network was constructed 
calculating a scale-free topology fit index for powers 
ranging from 4–20. The final scale-free network was 
constructed with soft power set to 6.

Raw RNAseq reads were analyzed for evidence of 
viral integration using the ViFi package [38]. Viral genes 
expression was also quantified using Salmon [67] and the 
HPV16 A1 genotype, RefSeq NC_001526.4.
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Survival analysis

Clinical data, specifically progression-free interval 
(PFI), were extracted from Liu et. al. across the full cohort 
(n = 61) [37]. We note that the values for PFI from Liu et 
al., were very similar or identical (but included four more 
cases) when compared to recurrence-free survival (RFS) 
data available from Broad Firehose Portal [58]. Survival 
statistics were generated with the R survival package 
(v3.2-7) and visualized with the R survminer package 
(0.4.8). p-values represent log-rank test. 

Gene set enrichment analysis

Ranked gene lists were created using the signal 
to noise ratio for the change in expression between 
two groups of interest as defined in the popular GSEA 
software package distributed by the Broad Institute 
[68, 69]. Hallmark signatures from the MiSigDB were 
used as gene sets of interest [70]. GSEA testing and 
related multiple comparison testing were performed 
with the R fgsea package [71]. Hypergeometric (gene 
ontology) enrichment analysis was performed for the 
derived WGCNA modules using the EnrichR package 
with default parameters [72]. All results were corrected 
for multiple comparisons by the EnrichR pipeline, and 
adjusted p-values were considered significant if adjusted 
p < 0.05.

Evaluating the TCGA mutational landscape

The TRAF3/CYLD mutational loci and type were 
assessed across HPV+ HNSCC tumors. TRAF3 genetic 
alterations were predominantly deep deletions as well as 
two truncations; these alterations preclude translation of 
the TRAF3 ubiquitin ligase enzymatic domain resulting 
in this NF-κB overactive phenotype. Similarly, CYLD 
alterations included deep deletions and truncations 
occurring prior to its de-ubiquitinase functional domain 
[1]. In both cases, protein loss of function is evident, 
leading to unchecked NF-κB activation. However, two 
novel CYLD missense mutations (N300S and D618A) 
with unknown functional significance were discovered, 
demanding further functional appraisal. 

Modeling the novel CYLD missense mutations

Employing the QuikChange II-E Site-
Directed Mutagenesis Kit (Agilent #200523) per 
the manufacture’s protocol, a wild-type Flag-HA-
CYLD expression vector [73]. (Addgene #22544) 
was mutated to reflect the two novel CYLD missense 
mutations, N300S and D618A. Synthetic forward and 
reverse oligonucleotide primers (Sigma-Aldrich) were 
designed to harbor the desired point mutation with 
high CYLD binding affinity in the region of interest. 

To create the N300S CYLD mutation, forward primer 
ACATCAGTGATATCATCCCAGCTTTAT and reverse 
primer GCAATAGAATTGTACTTTCAACACACG 
were used. To develop the D618A CYLD mutation, 
gggtctaagtaacacagtggccagaacagaactaaaagc and 
gcttttagttctgttctggccactgtgttacttagaccc were used for 
the forward and reverse primers, respectively. Sanger 
sequencing performed by Eton Bioscience (San Diego, 
CA, USA) confirmed targeted mutation success. 

Creation of CYLD knockout mammalian cells

Co-transfection of CYLD CRISPR/Cas KO 
(Santa Cruz #sc-400882-KO-2) and CYLD HDR (Santa 
Cruz #sc-400882-HDR-2) plasmids were used per 
manufacture’s protocol to develop CYLD knockout 
U2OS cells. U2OS was chosen as the parental cell 
based on known wild-type TP53 and Rb expression, 
characteristic of HPV+ HNSCC disease [74]. Cells 
were grown in 5% CO2 at 37°C in DMEM (Genesee 
#25-501N) supplemented with 10% FBS (Genesee #25-
514H) and 1% each of penicillin-streptomycin (Genesee 
#25-512), non-essential amino acids (Genesee #25-536), 
and glutamine (Genesee #25-509). KO CYLD cell media 
was further supplemented with 1 μg/ml puromycin 
(InvivoGen ant-pr-1) used to select for CRISPR-
Cas9 clones. Confirmation of CYLD knockdown was 
performed with Western blot and a luciferase NF-κB 
functional assay.

Western blot

Cells were collected by trypsinization and lysed 
in radioimmunoprecipitation assay (RIPA lysis buffer 
(Sigma) with the addition of protease inhibitors (Roche) 
and phosphatase inhibitors (Sigma) for 15 minutes 
on ice. Lysates were then mechanically homogenized 
with an 18-gauge syringe and insoluble material was 
removed by centrifugation at 14,000 rpm for 15 minutes 
at 4°C. Protein concentration was determined using 
Qubit assay (Invitrogen). Twenty micrograms of total 
protein were mixed with 2X loading Laemmli buffer 
(Biorad) supplemented with DTT (Sigma) and incubated 
for 10 minutes at 95°C. Proteins were separated in 
4% to 20% Tris-glycine polyacrylamide gels (Mini-
PROTEAN; Bio-Rad) and electrophoretically transferred 
onto polyvinylidene fluoride membranes. Membranes 
were blocked with 3% BSA in PBS and incubated with 
primary antibodies against CYLD (Santa Cruz) and 
phospho-p65 (Cell Signaling) as well as control primary 
antibodies against GAPDH (Santa Cruz). Secondary 
antibodies were conjugated with horseradish peroxidase 
(Cell Signaling). After sequential washes in TBST buffer, 
a chemiluminescent HRP substrate was applied to the 
membrane and signals were immediately visualized using 
a ChemiDoc Bio-Rad imager.
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 In vitro NF-κB functional evaluation

U2OS and U2OS CYLD KO cells were plated in a 
96 well plate at 5 × 104 cells/100 μl/well. After 24 hours, 
cells were co-transfected with a 3κB-conA-luciferase 
expression vector (a generous gift from Dr. Neil Perkins 
of the University of Dundee, Dundee, UK) and either 
a CYLD wild-type, CYLD N300S, CYLD D618A, or 
an empty expression vector using a lipofectamine 2000 
(Thermo Fisher #11668030) system per manufacturer’s 
protocol. Forty-eight hours following transfection, cells 
were lysed and luciferin was applied per manufacturer’s 
protocol (Promega #E1501). Luciferase activity was 
measured using Promega GloMax Explorer. 
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