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ABSTRACT
Largely, cancer development is driven by acquisition and positive selection of 

somatic mutations that increase proliferation and survival of tumor cells. As a result, 
genes related to cancer development tend to have an excess of somatic mutations 
in them. An excess of missense and/or nonsense mutations in a gene is an indicator 
of its cancer relevance. To identify genes with an excess of potentially functional 
missense or nonsense mutations one needs to compare the observed and expected 
numbers of mutations in the gene. We estimated the expected numbers of missense 
and nonsense mutations in individual human genes using (i) the number of potential 
sites for missense and nonsense mutations in individual transcripts and (ii) histology-
specific nucleotide context-dependent mutation rates. To estimate mutation rates 
defined as the number of mutations per site per tumor we used silent mutations 
reported in the Catalog Of Somatic Mutations In Cancer (COSMIC). The estimates 
were nucleotide context dependent. We have identified 26 genes with an excess of 
missense and/or nonsense mutations for lung adenocarcinoma, 18 genes for small 
cell lung cancer, and 26 genes for squamous cell carcinoma of the lung. These genes 
include known genes and novel lung cancer gene candidates.

INTRODUCTION

The most common type of somatic mutations 
detected in tumor samples is single nucleotide 
substitutions (SNSs). SNSs in the coding regions lead to 
missense, silent, or nonsense mutations depending on the 
type of the substitution and the reading frame position. 
Size is a strong predictor of the number of SNSs in a 
gene [1, 2]. The number of mutations also depends on 
the nucleotide composition of the gene [3]. Mutation 
rates are context dependent, as they depend on adjacent 
nucleotides for the same type of nucleotide substitution 
[4–7]. Mutation rates also depend on the strand (sense/
antisense) on which the initial mutational event takes 
place [8]. Gene features like gene expression level [9] 
or relative replication time influence its propensity to 

mutate [10]. It is possible to computationally mutate all 
nucleotide positions and, therefore, estimate the number of 
potential sites for missense, nonsense or silent mutations 
in individual transcripts. This can be done by taking into 
account the nucleotide context, i.e. the preceding and the 
subsequent nucleotides relative to a given site. 

After missense mutations, silent mutations are the 
second most common type of somatic mutations produced 
by SNSs detected in tumor samples. The majority of 
silent mutations are expected to be neutral since they do 
not change the amino acid sequence, despite anecdotal 
examples of functionality (Bali & Bebok, 2015; Pagani, 
Raponi, & Baralle, 2005). Their selective neutrality 
makes silent mutations ideal for an unbiased assessment 
of mutation rate free of effects of selection. In this 
study, we used silent mutations to estimate nucleotide 
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context-dependent mutation rates for different SNSs. We 
focused on lung cancer (LC) because it is the top cancer 
killer worldwide and because LC has one of the highest 
frequencies of somatic mutations [11–13].

Here we used silent mutations to estimate nucleotide 
context-dependent mutation rates that were defined as 
the number of somatic mutations per site per tumor. The 
expected numbers of missense and nonsense mutations 
in individual human transcripts were estimated based on 
the observed numbers of silent mutations and the number 
of potential sites weighted by the corresponding mutation 
rates. In other words, the expected numbers of missense and 
nonsense mutations were estimated under the assumption 
that they behave like silent (selectively neutral) mutations. 
A comparison of the observed and expected number of 
mutations identified genes with an excess of potentially 
functional missense and/or nonsense mutations. This was 
done separately for lung adenocarcinoma, squamous cell 
carcinoma and small cell lung cancer. We identified known 
as well as novel candidate cancer genes for lung cancer. 

RESULTS

The number of missense and nonsense mutations 
per site per sample

For the 162 possible nucleotide context-dependent 
single nucleotide substitutions (NCD-SNSs) with available 
silent and missense mutations there was a strong positive 
correlation between the number of silent mutations per 
site per sample and the number of missense mutations 
per site per sample in all cell types (Figure 1). Pearson’s 
ρ was similar for adenocarcinoma (0.974, N = 162, 
p < 10−16) (Figure 1A) and squamous cell carcinoma 
(0.972, N = 162, p < 10−16) (Figure 1B). For small cell 
lung cancer, Pearson’s ρ was 0.921. We also observed a 
significant positive correlation between the number of 
silent mutations per site per sample and the number of 
nonsense mutations per site per sample (for small cell 
lung cancer, 0.818, N = 64, p = 10−9, and even higher for 
adenocarcinoma and squamous cell carcinoma).

The other important observation was that the 
number of missense and nonsense mutations per site per 
sample tended to be higher compared to the number of 
silent mutations per site per sample. The latter is evident 
from the slope of the linear regression lines for missense 
and nonsense mutations, placing them above the diagonal. 
This is further confirmed by the comparison of the mean 
differences between missense and silent and nonsense and 
silent mutations. For missense minus silent mutations, 
the corresponding t-tests for adenocarcinoma, squamous 
cell carcinoma and small cell carcinomas were: t = 7.7, 
n = 162, p = 1.5 × 10−11, t = 4.4, n = 162, p = 1.7 × 10−5, 
t  = 11.5, n = 162, p = 1.5 × 10−21. The corresponding 
numbers for differences between the number of nonsense 
mutations per site and the number of silent mutations per 

site were: t = 2.8, n = 64, p = 0.008 for adenocarcinoma, 
t = 2.0, n = 64, p = 0.04 for squamous cell carcinoma, and 
t = 5.8, n = 64, p = 9.9 × 10−8 for small cell lung cancer.

Mutation rates for 192 NCD-SNSs in 
adenocarcinoma, squamous cell carcinoma and 
small cell lung cancer

Supplementary Figure 1 shows mutation rates for 192 
NCD-SNSs in adenocarcinoma, squamos cell carcinoma 
and small cell lung cancer estimated using silent mutations 
only. There is more than 100× differences in mutation rates 
for different NCD-SNSs. When different histologies are 
compared, squamous and small cell lung cancer tend to 
have higher mutation rates than adenocarcinoma (Figure 2). 
The estimated mutation rates for 192 NCD-SNSs can be 
found in Supplementary Table 1.

Figure 2 shows a comparison of mutation rates 
across all the 192 NCD-SNS for the three lung cancer 
cell types. Lung adenocarcinoma has the lowest mutation 
rate while mutation rates for squamous and small cell 
lung cancer are higher (Figure 2A). The mutation rates 
for squamous cell lung cancer deviates from the mutation 
rates for adenocarcinoma stronger than does the mutation 
rate for small cell lung cancer, which is evident from the 
mean paired differences in mutation rates across the 192 
NCD-SNS (Figure 2B).

Accounting for mutation rates predicts the 
observed number of missense and nonsense 
mutations better than does the number of 
potential sites 

For each transcript we computed (1) the Pearson’s ρ 
between the observed number of missense and nonsense 
mutations and the number of corresponding potential 
sites across the 192 NCD-SNSs; and (2) the Pearson’s ρ 
between the observed number of missense and nonsense 
mutations and the number of potential sites weighted by 
the corresponding mutation rate as described in Materials 
and Methods section. Figure 3 shows the distributions 
of correlation coefficients for missense (left panels) 
and nonsense (right panels) mutations for the three LC 
histologies. We observed that the correlation coefficients 
were higher between the observed number of mutations 
and the number of potential sites weighted by the mutation 
rates of the corresponding NCD-SNS compared to the 
correlations between the observed number of mutations 
and the number of potential sites only.

Genes with the higher than expected number of 
missense and/or nonsense mutations

Supplementary Figure 2 shows the distributions 
of the difference LOG(OBS/EXP)mis or non - LOG(OBS/
EXP)silent. As a threshold for identification of the genes 
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Figure 1: The number of missense and nonsense mutations per site per sample (Y-axis) compared to the number 
of silent mutations per site per sample (X-axis). Each dot represents one of 192 possible nucleotide context-dependent single 
nucleotide substitutions (NCD-SNS). Black line represents the expected number of mutations based on the number of silent mutations (per 
site per sample). (A) Adenocarcinoma, (B) Squamous cell carcinoma, (C) Small cell lung cancer.
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associated with lung tumorigenesis we used LOG(OBS/
EXP)mis or non - LOG(OBS/EXP)silent = 3. The threshold was 
selected because only a fraction of transcripts, less than 
1%, exceeds it and because the majority of known lung 
cancer related genes exceed this threshold. 

Using the threshold of 3 for the difference, 26 
candidate genes for lung adenocarcinoma, 26 genes for 
squamous cell carcinoma and 18 for small cell carcinoma 
were identified. Table 1 shows the list of genes with 
the corresponding observed and expected numbers of 
missense and nonsense mutations and the silent mutation-
corrected LOG ratio. Detailed information about candidate 
genes, additionally including those with the threshold of 
2.5, can be found in Supplementary Table 2.

Three candidate genes, ARID1A, BICRA and TP53, 
were shared by adenocarcinoma and squamous cell 
carcinoma. Small cell lung cancer shared only TP53 with 
adenocarcinoma and squamous cell carcinoma (Figure 4, 
left panel). When the threshold for candidate genes was 
lowered to 2.5, the number of shared genes increased to 
7 for adenocarcinoma and squamous cell carcinoma, and 
to 4 between adenocarcinoma and small cell lung cancer 
and between squamous cell carcinoma and small cell lung 
cancer (Figure 4, right panel).

DISCUSSION

There are two major novel elements in approach 
we have used in this study: (1) Using the exact number 
of potential sites for missense, silent and nonsense 
mutations in individual human transcripts determined by 
the in silico approach, instead of the size of transcript, 
a predictor typically used as a proxy for the number of 
mutation sites. (2) Using only silent mutations rather than 

all mutations together to estimate nucleotide context-
dependent mutability to avoid biases related to selection 
of functional somatic mutations. These two elements 
improve the assessment of the expected number of somatic 
mutations which is critical for the identification of genes 
with an excess of potentially functional missense and 
nonsense mutations in them.

We found a two orders of magnitude variation in 
mutation rates across NCD-SNSs (see Supplementary 
Figure 1 and Supplementary Table 1). NCD-SNSs with 
highest mutation rates were G>T_CGG, G>T_CGT, 
G>T_GGG for adenocarcinoma, C>T_TCG, G>T_CGG, 
G>A_CGA for squamous cell carcinoma, and G>T_CGG, 
G>T_CGT, and G>T_CGC for small cell lung cancer. The 
results are consistent with reported mutation signatures for 
all histologies analyzed together [14–16].

Squamous cell carcinoma had the highest 
mutation rate followed by small cell lung cancer and 
adenocarcinoma. The pattern supports epidemiological 
conclusions that squamous and small cell lung cancers 
are more strongly associated with smoking, a well-known 
mutagenic factor, than adenocarcinoma [17, 18]. This 
indicates that differences in tobacco smoke exposure 
contribute to the differences in overall mutation rates 
among the three major LC cell types. 

The observed number of missense and nonsense 
mutations per site per sample compared to that of silent 
mutations may be used as a global estimate of selection, 
a higher mutation density suggesting a positive selection 
and a lower one – a negative selection. The results of 
the analysis indicate that both missense and nonsense 
mutations are positively selected for at an overall similar 
level [19]. Positive selection for missense and nonsense 
mutations appears to be stronger in small cell lung 

Figure 2: (A) Mutation rates across three major lung cancer cell types. (B) The mean difference between mutation rates for squamous cell 
lung cancer and adenocarcinoma (left) and between small cell lung cancer and adenocarcinoma (right) across 192 NCD-SNS.
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Figure 3: The distribution of Pearson’s correlation coefficient, ρ, between the observed number of mutations and the 
number of potential sites (red bars) and between the observed number of mutations and the number of potential sites 
weighted (multiplied) by the corresponding mutation rate (blue bars), for missense (left panel) and nonsense (right 
panel) mutations across 192 NCD-SNSs.
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Table 1: List of candidate genes for adenocarcinoma, squamous cell carcinoma and small cell 
carcinoma identified by excess of missense or nonsense mutations

Histology Gene OBS 
missense

EXP 
missense

LOG(OBS/
EXP)*

OBS 
nonsense

EXP 
nonsense

LOG(OBS/
EXP)*

Adeno TP53 145 1.88 5.62 24 0.16 5.14

Adeno KRAS 165 1.34 5.14 0 0.14

Adeno ARID1A 14 19.2 2.46 13 1.43 4.56

Adeno RBM10 12 7.89 1.35 17 0.71 3.71

Adeno RB1 12 6.61 2.15 12 0.74 3.61

Adeno STK11 28 4.12 1.43 26 0.30 3.60

Adeno ENHO 1 0.7 0.27 1 0.03 3.42

Adeno KRTAP19-2 1 0.43 0.68 2 0.06 3.36

Adeno KRTAP19-4 2 0.67 0.96 3 0.09 3.32

Adeno KRTAP6-2 10 0.57 3.25 0 0.07

Adeno BRAF 24 6.03 3.23 2 0.62 1.40

Adeno CD109 25 10.2 3.22 2 1.02 1.39

Adeno DEFB119 7 0.67 3.20 0 0.06

Adeno BICRA 8 15.6 0.77 4 0.70 3.18

Adeno FXYD7 1 0.68 0.43 1 0.03 3.16

Adeno ARID1B 23 21.41 3.16 3 1.63 2.55

Adeno GNG13 6 0.55 3.14 0 0.06

Adeno RPS29 1 0.58 0.64 1 0.03 3.14

Adeno HSPA12A 16 5.91 3.12 1 0.47 1.21

Adeno URGCP-MRPS24 2 1.08 0.67 3 0.11 3.10

Adeno DMXL1 27 21.7 3.09 4 2.19 2.08

Adeno DACT1 19 7.71 3.08 0 0.60

Adeno ATP5F1E 0 0.35 1 0.04 3.04

Adeno ADGRB1 18 15.8 3.04 1 1.05 1.52

Adeno CHST9 5 0.52 3.03 0 0.06

Adeno SATB2 19 6.25 3.01 3 0.55 2.35

Squamous CDKN2A 34 2.05 3.13 27 0.09 5.79

Squamous TP53 233 1.97 5.13 33 0.16 4.59

Squamous RASA1 12 10.05 2.20 9 0.87 3.67

Squamous SPANXN1 9 0.65 3.60 1 0.08 2.07

Squamous HLA-A 7 4.26 1.86 5 0.30 3.55

Squamous DEFB110 4 0.56 2.72 2 0.06 3.46

Squamous DEFB106A 1 0.55 0.90 1 0.03 3.43

Squamous KCNN2 24 5.85 3.39 1 0.41 1.26

Squamous SLC35G3 4 3.41 1.21 3 0.18 3.37

Squamous NEFM 24 9.55 3.37 2 1.12 1.46
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cancer compared to adenocarcinoma and squamous cell 
carcinoma (Figure 1C). 

Based on the observed large variation in mutation 
rates among NCD-SNSs we expected that accounting 
for the mutation rate might improve the prediction of the 
number of mutations based on the number of potential 

sites in the transcript. We found that indeed accounting 
for the mutation rates improves the estimates of the 
expected number of missense and nonsense mutations 
across the three major lung cancer cell types. The excess 
of potentially functional mutations in a gene indicates that 
they are positively selected for and that the gene is cancer-

Squamous LCE3D 4 1.05 1.89 2 0.06 3.35

Squamous BICRA 3 18.11 1.11 2 0.77 3.31

Squamous PASK 20 13.91 3.25 0 1.08

Squamous SEC61G 2 0.61 1.69 1 0.03 3.23

Squamous KRTAP21-1 8 0.78 3.20 1 0.05 2.68

Squamous TSHZ2 21 10.31 3.17 3 0.86 2.45

Squamous CPAMD8 17 21.31 3.16 2 1.40 2.46

Squamous ARID1A 14 22.9 1.72 8 1.60 3.09

Squamous KLB 19 10.41 3.06 0 0.86

Squamous FOXI2 2 3.93 0.41 2 0.19 3.06

Squamous CFH 29 11.51 3.06 6 1.33 2.41

Squamous H3F3A 1 1.51 -0.40 2 0.08 3.05

Squamous TMPRSS9 15 11.91 3.04 2 0.76 2.56

Squamous ITGB4 16 20.62 3.02 0 1.31

Squamous SAGE1 24 8.72 3.02 2 0.62 1.81

Squamous RPL39L 0 0.48  1 0.04 3.02

Small cell TP53 106 0.51 6.36 19 0.04 4.74

Small cell KIAA1211 31 3.14 3.92 1 0.29 0.39

Small cell SPHKAP 34 3.69 3.88 1 0.31 0.37

Small cell MUC12 26 12.05 3.77 1 0.82 1.05

Small cell POLR2K 3 0.11 3.60 0 0.01  

Small cell BLCAP 0 0.19  2 0.01 3.43

Small cell KLK8 2 0.08 3.41 0 0.01  

Small cell KRTAP23-1 3 0.13 3.33 0 0.01

Small cell FAM47C 22 2.62 3.33 1 0.19 0.52

Small cell OTOF 19 5.07 3.30 1 0.35 0.84

Small cell ZNF208 28 2.43 3.27 4 0.33 1.02

Small cell NPAS3 17 2.47 3.19 0 0.16  

Small cell MYO16 17 4.28 3.15 1 0.33 0.70

Small cell CACNA1I 15 5.79 3.14 0 0.32  

Small cell ALG10B 5 0.27 3.12 0 0.02  

Small cell CD1E 5 0.28 3.05 1 0.02 1.71

Small cell PCDHA3 14 2.38 3.03 1 0.16 0.88

Small cell HMCN1 18 11.98 3.02 3 0.97 1.89
*The LOG ratios of the observed to the expected numbers of mutations  are adjusted for the excess of silent mutations.
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relevant. The approach we have used is easily applicable 
to other cancer types, provided that there are enough 
somatic mutation data generated by exome wide mutation 
detection methods.

We found seven genes, TP53, KRAS, ARID1A, RB1, 
BICRA, KLB and SLC5A12 common for adenocarcinoma 
and squamous cell carcinoma. TP53 is a known cancer-
gene commonly mutated in many cancer types including 
lung cancer [20]. KRAS plays an important role in lung 
cancer and other types of cancer [21, 22]. AT-Rich 
Interaction Domain 1A – ARID1A gene is a member 
of the SWI/SNF family regulators of transcription by 
altering the chromatin structure. ARID1A is shown to 
have a tumor suppressor activity [23], which is consistent 
with our observation of an excess of nonsense mutations 
in it. BRD4 Interacting Chromatin Remodeling Complex 
Associated Protein (BICRA) is a component of SWI/
SNF chromatin remodeling complex. So far there is no 
published evidence that this gene is associated with cancer 
risk or development. The retinoblastoma susceptibility 
gene (RB1) is a known tumor suppressor gene involved 
in lung cancer development [24, 25]. Klotho Beta-Like 
Protein – KLB gene plays a role in immune response 
(cytokine signaling) [26]. The literature on the role of 
KLD in lung cancer is rather limited, though a recent 
study [27] found that overexpression of KLB inhibits lung 
tumor growth in vivo. Solute Carrier Family 5 Member 
12 - SLC5A12 gene plays a role as an ion and glucose 
transporter. There is no published evidence that the gene 
is involved in lung tumorigenesis. However, a recent study 
[28] found that SLC5A12 is a prognostic marker in head 
and neck squamous cell carcinoma.

Small cell lung cancer shows less overlap with both 
adenocarcinoma and squamous cell carcinoma which is 
consistent with the fact that small cell lung cancer overall 
differs from non-small lung cancer [29]. We found four 
genes shared by squamous cell carcinoma and small cell 
lung cancer: TP53, DEFB110, H3F3A and AKR1D1. 
Defensin Beta 110 – DEFB110 gene plays a role in 
innate immune system [30]. The gene may be considered 
as a novel lung cancer gene candidate since there is no 
published evidence for its involvement in cancer. H3.3 
Histone A – H3F3A gene encodes H3 histone. H3F3A has 
been shown to promote lung cancer cell migration [31]. 
Aldo-Keto Reductase Family 1 Member D1 - AKR1D1 
gene is involved in synthesis of steroid hormones. At 
present there is no published evidence that the gene is 
involved in cancer development.

We found four genes shared by adenocarcinoma 
and small cell lung cancer: TP53, PLCH1, RGS21 and 
FAM122C. Phospholipase C Eta 1 – PLCH1 gene plays 
a key role in inositol synthesis. There is no evidence for 
the gene’s involvement in cancer. Regulator Of G Protein 
Signaling 21 – RGS21 gene encodes structural components 
of G protein-coupled receptor complexes. Currently there 
is no published evidence that RGS21 is involved in cancer 
development. PABIR Family Member 3 – FAM122C 
gene has serine/threonine phosphatase inhibitor activity. 
There is no published evidence that this gene is associated 
with cancer risk or development. Therefore, our analysis 
identified known and novel candidate cancer genes 
common for three major lung cancer cell types. The 
complete list of candidate genes for all the three histologies 
can be found in Supplementary Table 2.

Figure 4: Venn diagram of candidate genes for the three major lung cancer cell types identified using the very strict 
threshold of 3 (left panel) and a more liberal threshold of 2.5 (right panel).



Oncotarget764www.oncotarget.com

We found that nucleotide context (adjacent 
nucleotides) strongly influence mutability. We noted a 
significant variation among the three major lung cancer 
histologies for the absolute majority of the nucleotide 
context dependent single nucleotide substitutions 
(Supplementary Figure 1). These findings emphasize 
the importance of the cancer and histology type-specific 
estimates of mutability for the prediction of the expected 
number of somatic mutations in transcripts.

Limitations of the analysis

Our analysis does not directly include gene 
characteristic, for example gene expression level, 
associated with mutability as independent predictors of 
the number of somatic mutation in the gene.

MATERIALS AND METHODS

Data used 

We used somatic mutations data from the Catalog 
Of Somatic Mutations In Cancer (COSMIC) database 
[32, 33]. Only verified mutations (those with confirmed 
somatic origin) were used. To ensure that all genes were 
targeted equally, only somatic mutations detected by 
whole genome/whole exome sequences were used in the 
analysis. The database was accessed September 15, 2021. 
Lung cancer somatic mutation data were available for 
40,021 transcripts from 18,622 genes. Table 2 shows the 
number of missense, silent and nonsense mutations for 
each histology. 

The three major histological types of lung cancer, 
adenocarcinoma, squamous cell carcinoma and small cell 
carcinoma, were analyzed separately. For adenocarcinoma, 
data for 902 tumors from 17 studies were used. The 
corresponding numbers for squamous cell carcinoma 
were 723 tumors from 8 studies, and for small cell lung 
cancer, 210 tumors from 8 studies. The PubMed IDs of the 
published studies whose data were used in this study are 
shown in Supplementary Materials. 

Nucleotide context-dependent single nucleotide 
substitutions (NCD-SNSs)

It is known that the mutation rate of a given single 
nucleotide substitution (SNS) depends on the adjacent 
nucleotides [34, 35]. Therefore, we estimated mutation 

rates in a nucleotide context-dependent (NCD) way. In 
total, 64 trinucleotides are possible in the human genome. 
There are three possible substitutions for the core (middle) 
nucleotide, which gives the total number of possible NCD-
SNSs 64 × 3 = 192. We analyzed these 192 NCD-SNS 
separately. All mutations were annotated for the sense 
strand.

Estimating the numbers of potential sites 
for silent, missense and nonsense mutations 
generated by individual NCD-SNSs

Reference sequences were downloaded from the 
Consensus Coding Sequence Database [36]. To estimate 
the number of potential sites for each mutation type, we 
considered all possible trinucleotides in each transcript. 
For each trinucleotide we computationally mutated the 
core nucleotide into 3 possible SNSs by replacing it with 
a different nucleotide. SNS may produce missense, silent 
or nonsense mutations depending on the type of SNS, e.g. 
A>T, and the position within the trinucleotide. For each of 
all possible 192 NCD-SNSs we counted the numbers of 
possible SNSs producing missense, silent and nonsense 
mutations and used them as the numbers of potential sites 
for each transcript. Supplementary Figure 3 illustrates 
the approach of counting the number of potential sites 
for missense, silent and nonsense mutations for different 
NCD-SNSs.

Estimation of mutation rates for NCD-SNSs

Mutation rates were computed as the ratio of the 
observed number of silent mutations to the corresponding 
number of potential sites across the whole genome, 
divided by the total number of analyzed samples. For 30 
NCD-SNSs it is impossible to generate silent mutations, 
and the number of potential sites for silent mutations for 
such NCD-SNSs equals zero. The list of these NCD-
SNSs is shown in Supplementary Text. We used missense 
mutations to estimate mutation rates for NCD-SNS with 
zero numbers of potential sites for silent mutations. To 
do this we applied a linear regression model. For 162 
NCD-SNSs for which both missense and silent mutations 
are available, we built a linear regression model with 
the mutation frequency based on the analysis of silent 
mutations as the outcome and the mutation frequency 
based on the analysis of missense mutations as the 
predictor. We used the regression equation to predict 

Table 2: Numbers of missense, silent and nonsense mutations per sample

Histology Number of samples
Number of mutations per sample

Missense Silent Nonsense All
Adenocarcinoma 902 236.74 74.68 19.63 331.04

Squamous cell carcinoma 723 326.54 117.48 26.04 470.07
Small cell lung cancer 210 379.45 85.70 29.32 494.46
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mutation rates for the 30 NCD-SNSs unable to produce 
silent mutations.

Analysis of the association between the number of 
potential sites and the observed number of likely 
functional missense and nonsense mutations

For each transcript, Pearson’s correlation 
coefficients (ρ) between the number of potential sites 
and the observed number of mutations were computed 
across 192 NCD-SNSs. This was done separately for 
missense and nonsense mutations. We also computed 
the correlations between the observed numbers of 
mutations and the number of sites for NCD-SNS 
weighted (multiplied) by the corresponding mutation rate. 
Supplementary Figure 4 shows how the correlations were 
computed. As the next step, we compared the distributions 
of ρ for the weighted and unweighted number of sites. The 
goal of the comparison was to test if accounting for the 
mutation rate improves the prediction of the observed 
number of mutations.

The expected numbers of missense and nonsense 
mutations in a transcript

The expected number of somatic mutations was 
computed assuming that the chances to find missense 
and nonsense mutations are the same as chances for silent 
mutations. To compute the expected number of mutations in 
a transcript, the numbers of sites for missense and nonsense 
mutations were multiplied by the corresponding mutation 
rates. The sum of the products across the 192 NCD-SNSs 
gives the expected number of mutations in the transcript: 
E n mi ii
= ×∑ ( )

192 ; where ni is the number of NCD-SNS
sites and mi is the corresponding estimated mutation rate. 

Logarithms of the ratios of the observed to the 
expected number of mutations

Our hypothesis was that genes with the excess of 
missense and/or nonsense mutations are cancer-related. 
We used LOG of the ratio of the observed to the expected 
numbers of mutations as a measure of the excess of somatic 
mutations in transcript. To account for gene characteristics 
that may influence the mutation rate in a gene-specific 
manner, we adjusted the LOG ratios for missense and 
nonsense mutations by the LOG ratios for silent mutations. 
This was done by subtracting LOG ratios for silent 
mutations from the LOG ratios for missense and nonsense 
mutations. Our rationale for doing it was that if a gene has 
a high intrinsic propensity to mutate, this gene will have 
a high LOG ratio for silent mutations, so subtracting it 
from the LOG ratio for missense or nonsense mutations 
will provide an adjustment for the gene’s overall higher 
propensity to mutate.
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