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ABSTRACT
Breast cancer (BC) is the most common type of cancer diagnosed in women. 

Among female cancer deaths, BC is the second leading cause of death worldwide. 
For estrogen receptor-positive (ER-positive) breast cancers, endocrine therapy is 
an effective therapeutic approach. However, in many cases, an ER-positive tumor 
becomes unresponsive to endocrine therapy, and tumor regrowth occurs after 
treatment. While some genetic mutations contribute to resistance in some patients, 
the underlying causes of resistance to endocrine therapy are mostly undetermined. 
In this study, we utilized a recently developed statistical approach to investigate 
the dynamic behavior of gene expression during the development of endocrine 
resistance and identified a novel group of genes whose time course expression 
significantly change during cell modelling of endocrine resistant BC development. 
Expression of a subset of these genes was also differentially expressed in 
microarray analysis of endocrine-resistant and endocrine-sensitive tumor samples. 
Surprisingly, a subset of those genes was also differentially genes expressed in 
triple-negative breast cancer (TNBC) as compared with ER-positive BC. The findings 
suggest shared genetic mechanisms may underlie the development of endocrine 
resistant BC and TNBC. Our findings identify 34 novel genes for further study as 
potential therapeutic targets for treatment of endocrine-resistant BC and TNBC.

INTRODUCTION

Breast cancer (BC) is the most prevalent type of 
cancer in women. More than 280 000 new US cases of 
breast cancer and 43 000 deaths were projected for 2021 
[1]. While current five-year survival rates of BC have 
reached 90%, it remains the second leading cause of 

cancer-related deaths in women overall [1]. Treatment 
options for breast cancers typically involve surgical 
resection of the tumor followed by drug treatment based 
on the cancer type [2]. Breast cancers are categorized 
into subtypes based on hormone receptors (HR), namely 
estrogen receptor (ER) and progesterone receptor (PR), 
and human epidermal growth factor receptor 2 (HER2) 
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expression status. Nearly 70% of breast cancers express 
the estrogen receptor (ER+) without overexpression of 
HER2 (ER+/HER2-negative BC, luminal A breast cancer) 
[2]. While 13% of breast cancers are HR+/HER2+ (luminal 
B), more than 13% are HR−/HER2−, also referred to as 
triple-negative breast cancer (TNBC). TNBC accounts 
for around 15% of breast cancer cases, characterized as 
one of the most aggressive types of breast cancer with 
no established therapy options yet [2]. While five-year 
survival rates of luminal A breast cancer are around 90%, 
the five-year survival rate of TNBC is more variable and, 
on average, lower at 77%, with patient prognosis typically 
poor [2].

ER exists in two isoforms, ERα (ESR1) and ERβ 
(ESR2), with ERα as the dominant form in BC. ER acts 
as a transcription factor mediating gene expression and 
as a signaling molecule, inducing kinase pathways and 
regulating cell growth in cultured breast cancer cells 
[3]. Given that 80% of breast cancers express ER, ER-
targeted endocrine therapies are a core component of 
systemic therapy. Endocrine therapies include selective 
ER modulators (SERMs) such as tamoxifen, selective 
ER down-regulators (SERDS) such as fulvestrant, and 
aromatase inhibitors (AIs) targeting estrogen biosynthesis. 
Endocrine therapies have been successful at improving 
cancer outcomes; however, the development of endocrine 
resistance, or resistance to inhibition of ER actions, 
remains a roadblock in breast cancer treatment. Many 
patients have intrinsic resistance to endocrine therapies. 
Only 30% of patients with metastatic disease see initial 
regression with endocrine therapies [4], however, in 
almost all patients the resistance develops eventually, and 
tumors frequently recur. Moreover, more than 20% of 
patients who present with early breast cancer will develop 
endocrine resistance throughout treatment [4, 5].

Resistance to endocrine therapies has been traced to 
mutations in ESR1, alterations in receptor tyrosine kinases 
such as HER2, and alterations in signaling pathways such 
as the MAPK pathway. Point mutations in the ligand-
binding domain (LBD) of ESR1, have been shown to cause 
endocrine resistance [5–8]. The most common mutations, 
Y537 and D538, lead to constitutive ligand-independent 
activation of ERα [8, 9]. These mutants are less sensitive 
to fulvestrant or tamoxifen [7]. LBD mutations in ESR1 
have been found in around 20% of metastatic ER+ cancers 
after endocrine therapy [7, 10]. ESR1 mutations in 
circulating tumor DNA (ctDNA) have been found in 36% 
of patients with metastatic tumors following AI treatment 
[11]. Gene fusions of the ESR1 DNA binding domain to 
the C-terminus of other proteins, though rare, can promote 
ligand-independent ERα activity [12].

HER2 mutations occur in 2.4% of primary tumors 
and 6.7% of metastatic tumors [9]. Activating mutations 
of HER2 can confer resistance to estrogen deprivation 
and fulvestrant treatment; fulvestrant sensitivity can be 
restored with HER2 inhibitors [13]. HER2 amplification 

is less common, occurring in 0.8% of primary and 2.1% 
of metastatic tumors [9], Amplification of HER2 has been 
linked to tamoxifen resistance, through the hyperactivation 
of MAPK [14]. Currently, ER+/HER2+ breast cancers are 
treated with both antiestrogens and HER2 inhibitors [9]. 
However, for patients with endocrine-resistant breast 
cancers, treatments are limited as the development of 
endocrine resistance is not well understood. Existing 
scientific literature focuses on the role of ESR1, receptor 
tyrosine kinases, and their signaling pathways; however, 
genetic mutation of these genes comprises a small 
percentage of cases. In at least 60% of cases, additional 
factors must play important roles in the resistance 
development process as those cases show intact ESR1 and 
no up- or down-regulation in other signaling pathways [10]. 

In this study, we explored the dynamic behavior of 
the entire gene population to identify novel genes that play 
fundamental roles in the development and progression 
of endocrine-resistant breast cancer. We used the (i) 
time course gene expression patterns cells that develop 
endocrine resistance over time [15], (ii) expression of 
patient data from endocrine-resistant tumors compared 
to endocrine-sensitive ones, and (iii) expression data for 
TNBC compared to luminal A breast cancer to determine 
whether similarities among different BC subtypes 
were present and, if so, to identify key candidate genes 
associated with underlying mechanisms.

RESULTS

Selection of cell-based model for endocrine 
resistance: LTED MCF7 cells display similarity 
to patient tumor data

First, we sought to identify the optimal cell-based 
model for development of endocrine resistance. For this 
purpose, we used three datasets from the GEO repository, 
summarized in Table 1. First, we compared the gene 
expression patterns of several cell models before and after 
establishment of resistance, utilizing datasets GSE20361 
and GSE111151, to those of endocrine-resistant and 
-sensitive tumors in the GSE87411 patient tumor dataset 
[16]. To the best of our knowledge, it represents the only 
publicly available expression dataset for endocrine-
resistant tumors. It includes measurements from baseline 
and follow-up after 2–4 weeks exposure to aromatase 
inhibitors for 109 subjects [16]. Evaluating patient 
response to treatment, tumors were biopsied, analyzed, 
and categorized into endocrine-resistant and endocrine-
sensitive categories. This data was compared to potential 
cell models.

Possible models were inspired by GSE20361 
and GSE111151. One possible model came from 
the GSE20361 dataset, which was obtained through 
culturing MCF7 cells in estrogen-deprived medium, 
called long-term estrogen-deprived (LTED) cells, 
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which developed resistance to endocrine therapy [15]. 
In contrast, GSE111151 contained multiple models of 
tamoxifen resistance in several breast cancer cell lines: 
MCF7, T-47D, ZR-75-1, and BT-474. Their expression 
data was observed at two time points, before and after 
resistance development [17]. We computed the distance, 
or similarity, of each to the patient data, visualized as a 
heatmap in Figure 1. By applying hierarchical clustering 
to these possible models, we found the gene expression 
patterns of LTED cells were most similar to the patient 
data, visually shown as the shortest distance, closest 
cluster, in the heatmap’s overhead dendrogram. ZR-75-1 
tamoxifen-resistant cell lines were next closest, followed 
by BT-474, MCF7, and T-47D tamoxifen-resistant cell 
lines. Therefore, we decided to use LTED cells as the most 
suitable cell line model for studying endocrine resistance 
in breast cancer.

Estrogen-deprived MCF7 cells show four 
dominant expression patterns with unique cell 
functions

To better understand the process of acquiring 
endocrine resistance and its underlying gene expression 
patterns, we re-used the time course GSE20361 dataset 
for bioinformatic analysis. This data contained RNA 
measurements from the deprived MCF7 cells after 0, 
3, 15, 30, 90, 120, 150, and 180 days. We applied our 
recently developed statistical pipeline to the dataset to 
find dynamically regulated genes active in the process 
of endocrine resistance development and progression 
[18]. The pipeline provides three main functions. First, 
statistical hypothesis testing determines a set of dynamic 
response genes (DRGs) that exhibit significant changes 
over time. Next, these DRGs are clustered into gene 
response modules (GRMs), sets of DRGs with similar time 
course expression patterns. Finally, the GRMs associations 

and regulatory effect are analyzed as a gene regulatory 
network using ordinary differential equations.

Starting with 54 675 probes in the GSE20361 
microarray data, the pipeline detected 14 693 probes as 
DRGs. The 14 693 DRGs were ranked based on F-statistic, 
and the top 3 000 DRGs were selected for correlation-
based iterative hierarchical clustering [18, 19]. The top 3 
000 DRGs were clustered into 20 distinct GRMs. Each 
GRM is a cluster of genes exhibiting a high degree of 
expression profile trajectory correlation. Module sizes 
ranged from containing 1 gene to 1 095 correlated genes. 
The trajectories for the 10 largest modules show evident 
differences from one module to another, which emphasizes 
the resolution of our clustering method (Figure 2A, 2B).

Though 20 modules were identified, the largest four 
modules dominate, accounting for 92% of the top DRGs 
(Figure 2C). The largest, module 1, contained 1 095 unique 
genes whose expression was characterized by a gradual 
downregulation in expression from day 0 to 30, at which 
point the pattern shifted, revealing sharp upregulation 
from day 30 to 150. Module 2, comprised of 812 
genes, showed nearly opposite behavior, demonstrating 
gradual upregulation until day 30, after which sharp 
downregulation was observed. By gene enrichment 
analysis against pathway and ontology annotations, 
module 1 was significantly enriched for cell division, 
DNA replication, DNA-dependent DNA replication, 
and cell cycle functions. The interaction between these 
different gene ontologies is also visualized in a tree cluster 
in Figure 2E. Module 2 was significantly enriched in 
membrane trafficking, cellular protein catabolic processes, 
and macro-autophagy. Module 3 was enriched in positive 
regulation of protein autophosphorylation and regulation 
of cellular ketone metabolic processes while module 4 was 
associated with cell junction organization (Figure 2D, 2E). 
After identifying genes displaying significant changed 
during the development of endocrine resistance, clusters 

Table 1: Summary of incorporated datasets from the GEO repository
GEO Dataset Cell line(s) Experimental exposure Observed time points

per sample
GSE20361 MCF7 Long-term estrogen deprivation 0

3
15
30
90
120
150
180 days

GSE87411 MCF7
ME16C

Neoadjuvant aromatase inhibitor 
treatment

0 days (pre-treatment)
14–28 days (post-treatment)

GSE111151 MCF7
T47D
ZR75-1
BT474

Control,
Tamoxifen exposure (8–12 months)

0 days
8–12 months (post-exposure)
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of genes with correlated time-resolved profile trajectories 
were found to be significantly enriched in unique cellular 
functions.

Dynamic gene expression analysis of LTED data 
overlaps with endocrine-resistant patient data 
and with genes regulated in TNBC

We further compared the top DRGs to two additional 
datasets to identify candidate genes with highly active 
roles in endocrine resistance.

The first dataset we filtered against was GSE87411, 
the patient data used for cell model selection. To find 
significant differentially expressed genes involved in 
regulation of endocrine-resistant breast cancer tumors 

versus -sensitive tumors, we compiled, analyzed, and 
compared results [20]. Among the differentially expressed 
genes, 984 genes were significantly upregulated in 
endocrine-resistant tumors while 621 genes were 
significantly downregulated. We then compared against the 
DRGs found in dynamic gene expression analysis, selecting 
318 common genes for further analysis (Figure 3A). 

Next, we incorporated a third dataset. Like 
endocrine-resistant breast cancer patients, the tumor cells 
of TNBC lack of hormone receptors, rendering them 
resistant to conventional endocrine therapies. To examine 
the potential for shared expression patterns, we analyzed 
UALCAN data from the Cancer Genome Atlas project. 
Between luminal A breast cancer and TNBC, we identified 
1 497 genes significantly, differentially expressed. 

Figure 1: Heatmap of the global gene expression patterns between cell-based models of endocrine resistance and 
patient data. Data for the LTED cell model was obtained from GSE20361. Data for patient’s responses to hormonal therapies was 
obtained from GSE87411. The rest of the cell model data was obtained from GSE111151. For cell models ZR75-1, BT474, and T47D 
the data consisted of two populations of tamoxifen-resistant cell lines, each represented above. The dendrogram plots similarity measures 
between datasets, showing that the LTED cell model was most similar to patient data.
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Surprisingly, 97.8% of genes significantly expressed in 
the TNBC vs. Luminal A gene set were present among the 
DRGs. More than 80% of the genes common to the DRGs 
and endocrine-resistant patient data were also significant 
in TNBC vs. Luminal A.

The common gene set between the three analyses 
was comprised of 254 genes. We posit these genes are 
important to the development of endocrine resistance, 
estrogen deprivation, and TNBC (Figure 3A). Enrichment 
analysis of the shared 254 genes showed significant 

Figure 2: Dynamic gene expression analysis results, gene expression trends of top four modules, and network analysis 
of the top four modules DRGs using Metascape. (A) Presents the individual time-resolved expression trends for the top 3 000 
dynamic response gene probes. These 3 000 probes are comprised of 2 305 identifiable unique genes. Y-axis represents the normalized 
expression of genes as described in the methods section. (B) Illustrates the multiple-sampling method (MSM) results of mean expression 
trends for the 10 largest modules. (C) The time-resolved expression trends for the top four largest modules are shown. Each blue dotted 
curve represents one gene, and the middle orange line illustrates the mean expression at each time point. (D) Presents the significantly 
enriched terms in modules 1–4 based on the corresponding Fisher’s Exact Test p-values. (E) Presents the statistically enriched terms in 
module 1 hierarchically clustered into a tree based on Kappa-statistical similarities among gene memberships.
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enrichment for cell cycle, cell division, and DNA repair 
pathways, all signatures affected in cancer cells (Figure 
3B). Enriched pathways related to DNA repair support 
the importance of the DNA repair system to account for 
mutations in TNBC and endocrine resistant breast cancer 
[21]. One of the common genes was ribonuclease H2 
subunit A (RNASEH2A), a gene known for upregulation 
in cancers. RNASEH2A is a mediator of the removal of 
lagging-strand Okazaki fragment RNA primers, thus it can 
be integral in the proliferation of both triple-negative and 
endocrine-resistant breast cancers [22]. Moreover, many 
of the common genes are regulated by transcription factors 
E2F1, MYCN, and TFDP1, all important transcription 
factors in TNBC (figure 3C). This finding provides 

evidence supporting the hypothesis that TNBC tumors 
share similarities with endocrine-resistant breast cancer.

Top candidate genes responsible for endocrine-
resistant development include MCM family, 
RAD51, CAV1, and CCNE1

To further refine the genes common to endocrine 
resistance development and progression, we utilized 
several bioinformatic approaches designated to rank and 
prioritize the 254 common genes. Using generated gene-
gene and protein-protein networks, we identified genes 
with the highest number of network neighbors as master 
regulators. These master regulators among the common 

Figure 3: Similar gene expression patterns between endocrine-resistant breast cancer and triple-negative breast 
cancer. (A) Venn diagram depicts the shared significantly regulated genes between endocrine-resistant and TNBC and patient data. (B) 
Enrichment analysis of ontologies and pathways for the shared genes. (C) Transcription factor (TF) analysis of the common genes shows 
the majority of genes are regulated by E2F1, MYCN, and TP53 TFs.
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254 genes formed our main candidates for their potential 
in holding essential roles in the development of endocrine 
resistance in LTED-MCF7 cells. Figure 4 features the 
networks for module 1 and module 2 [23–26]. Thereby, 
we were able to narrow the list of candidates to 34 genes 
presented in Supplementary Table 1.

Master regulators were found across the top four 
modules but were predominantly represented by modules 1 
and 2. Among the genes in module 1, we found PARP1 and 
E2F1, recently discovered important genes for endocrine 
resistance in breast cancer, supporting the validity of our 
approach. We also found minichromosome maintenance 
(MCM) family genes as important genes, namely MCM2 
and MCM7, RAD51, and TCF3 (Figure 4), which yet 
to be thoroughly studied [27–29]. MCM family genes 
(MCM2-7) form an MCM complex protein that functions 
as a DNA replication licensing factor and plays a central 
role in eukaryotic DNA replication [30]. Recent evidence 
suggests that blocking the expression of these genes 
can lead to the inhibition of the growth of tamoxifen-
resistant cancer cells. This evidence perfectly matches 
the expression pattern of these genes in our dataset, as 
these genes are significantly upregulated during the 
endocrine resistance process in breast cancer cells [31]. 
RAD51 overexpression, a key protein of homologous 
recombination, is also linked to overall poor survival and 
endocrine resistance in breast cancer, although the exact 
underlying signaling pathways are not well understood 

yet [32]. As for TCF3, while there is no study on its role 
in endocrine resistance, it is important for breast cancer 
differentiation, development, and prognosis [33]. Genes 
from in module 2 were slightly upregulated by day 30 and 
significantly downregulated afterward (Figure 5). In line 
with our data, reports show downregulation of CAV1 as an 
important step in breast cancer development and resistance 
to endocrine therapies [34]. Further studies are warranted. 
Additional important candidate genes were selected from 
modules 3 and 4, including ATG3, CCNE1, and MFAP4.

Validation of LTED MCF7 profiles shows cells 
gain resistance at day 90

As validation of the bioinformatic findings, we 
established the LTED MCF7 cell model by culturing 
human breast cancer MCF7 cells in estrogen-depleted 
growth media for an extended period. This cell model 
recapitulated acquired resistance to aromatase inhibitors 
in postmenopausal women. Using the same experimental 
settings as GSE20361, we conducted gene expression 
analysis and extended the sample collection period [15]. 
After the initial quiescence state of around 30 days when 
the cell’s growth rate was minimal, cells started to adapt 
with estrogen depletion and regain their growth ability 
while losing their responsiveness to 17β-estradiol (E2). 
At around day 90, LTED cells showed complete loss of 
response to E2, characterized by a loss of ability to respond 

Figure 4: Tissue-specific protein-protein interaction network for modules 1 and 2 candidate genes. Candidate genes from 
modules 1 and 2 were analyzed using NetworkAnalyst. Resulting interaction networks are shown below. Red and orange circles represent 
the candidate proteins while yellow represent proteins that interact with our candidate proteins. The size of the circle represents the number 
of interactions. The scale of the module 1 and 2 varies due to module size.
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to estrogen stimulation to increase growth rate, while basal 
growth rate reached similar levels as those of parental 
MCF7 cells cultured in estrogen-rich media (Figure 5A). 
We maintained the LTED cells for another 6 months. After 
a period of super-sensitivity to estrogen at low doses (10−11 

to 10−13 M), which happened around day 150, cells became 
completely unresponsive to estrogen treatments at all 
concentrations by day 250 (Figure 5B). These results are 
consistent with the previous reports and follow a similar 
timeline [15, 35–38].

Figure 5: Proliferation assay and qRT-PCR results support bioinformatic findings. (A) Proliferation assay of the LTED cells 
at day 90 and normal MCF7 cells under different treatment doses of E2 (from 10–14 to 10–7 M) showed that LTED cells were not responsive 
to estrogen treatment. (B) Proliferation assay of the LTED cells at different days under several doses of E2 (from 10–15 to 10–7 M) show no 
responsiveness to E2 treatment by day 250. (C) qRT-PCR results for MCM2, CDK1, and CAV1 confirmed that the gene expression patterns 
in vitro match their expected gene expression patterns from microarray bioinformatics analysis. All values represent mean ± SEM (n = 3–6).
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To validate the gene expression profiles of the 34 
candidate genes, we collected samples of LTED cells 
at different time points (from day 0 to day 135) and 
measured the expression of some of the candidate genes 
using qRT-PCR (Figure 5C). The expression profile of 
these genes closely mimicked the gene expression patterns 
from the microarray study, which validates both the public 
microarray data and our downstream bioinformatics 
analysis. Furthermore, as our qRT-PCR analysis contains 
many more data points compared to the previous study, the 
expression patterns of the genes are more thorough than 
the previous microarray results.

DISCUSSION

We utilized a newly developed statistical and 
computational pipeline to examine the process of 
endocrine resistance in breast cancer and found novel 
underlying gene associations. First, we compared the 
data from patients resistant and sensitive to the endocrine 
therapies with publicly available gene expression data 
from cell-based models. We found LTED MCF7 cell 
model to be the closest to the patient tumor data based on 
full microarray chip gene expression. Next, we analyzed 
the time course expression in LTED cells during the 
process of acquiring endocrine resistance. Using our 
statistical pipeline, which is designed for identifying 
dynamically significant genes and clustering time-
resolved expression [18, 19], we compared the DRGs 
to the gene expressions of patient tumor samples from 
endocrine-resistant and -sensitive tumors, finding a group 
of 318 genes as potential drivers of endocrine-resistance 
development. Using multiple bioinformatics approaches, 
we narrowed down the candidate genes list to 34 genes 
from four major modules, primarily from modules 1 and 
2. Analyzing genes in the context of gene-gene networks 
enabled us to select the genes with a higher probability 
of being highly integral to resistance functions. These 
candidate genes are potential targets for developing 
potent therapies for endocrine-resistant breast cancer. 
The expression patterns of several candidate genes were 
further validated in biological settings by developing an 
LTED cell line.

Twenty out of the 34 genes were from the first 
module, which showed a slight decrease in expression by 
day 30, followed by significant upregulation afterward, 
which correlates to the growth rates of MCF7 cells under 
the development of endocrine resistance. As anticipated, 
the genes in module 1 were primarily associated with 
DNA replication and repair mechanisms, emphasizing the 
importance of these mechanisms in the replication and 
growth of cancer cells. Minichromosome maintenance 
complex genes MCM2, 3, 4, 6, and 7 were identified in 
Module 1. Overexpression of MCM2, MCM3, MCM4, 
and MCM6 is associated with luminal B, HER2+, and 
triple-negative breast cancers [39, 40]. RAD51, is known 

to be related to overall poor survival and endocrine 
resistance in breast cancer and is also linked to regulation 
of metastasis in TNBC [32, 41]. Among other genes in 
module 1 is replication factor C subunit 3 (RFC3), which 
is essential for the homologous DNA pairing and strand 
exchange. Downregulation of RFC3 has been shown to 
attenuate cell proliferation, migration, and invasion in 
TNBC [42, 43]. The cyclin-dependent kinases (CDKs) 
are critical regulatory enzymes governing cell cycle 
transitions and play an essential role in the development 
of endocrine resistance in some breast cancer cases 
[10, 44]. While CDK 4/6 are the most studied members 
of the CDK family in relation to endocrine-resistant 
breast cancer, our analysis revealed another member of 
this family, CDK1 to be important for both endocrine 
resistance and TNBC. Notably, CDK1 is required for 
the initiation of mitosis and cell proliferation, and its 
inhibition in TNBC led to a decrease in cell viability and 
an increase in cell apoptosis [45].

Among the remaining modules, 14 genes were 
identified, with 11 of them captured in module 2. The 
majority of these genes are already known to be related 
to breast cancer in some way, yet their connection to 
endocrine resistance and TNBC has not been discovered 
yet, calling for further experiments. Among the genes 
in module 2, the network analysis suggested ELAVL1, 
GABARAPL2, and CAV1 as the main regulators of all 
other genes. Among the downregulated genes in module 
2 was also protein phosphatase 1A (PPM1A). It was 
downregulated in both endocrine-resistant breast cancer 
and TNBC. This protein is a member of the protein 
phosphatase 2C family of Ser/Thr protein phosphatases 
and has been shown to regulate mitogen-activated protein 
kinase cellular signaling pathways as well as proliferation, 
cell invasion, and migration [46, 47]. Recently, 
Mazumdar et al. showed that this protein is significantly 
downregulated in ER-negative breast cancers and that its 
upregulation suppresses in vitro and in vivo growth of 
TNBC cells [48], which supports our findings.

Through identification of the candidate genes, we 
address a gap in knowledge regarding genetic factors 
underlying endocrine-resistant and triple negative breast 
cancers. As these two subtypes of breast cancer are 
the most fatal breast cancers with no known effective 
therapeutic approaches available to date, research on 
underlying genetic factors is of great importance. Here, 
we found a group of candidate genes that are significant 
dynamic genes and potential master regulators in the 
process of endocrine resistance. With further study, they 
may be potential targets for the treatment of endocrine-
resistant breast cancers. Moreover, the majority of 
these genes are also significantly regulated in TNBC 
compared to luminal A breast cancer, suggesting that 
endocrine-resistant breast cancer and TNBC share 
mechanism similarity. Therefore, these genes may also be 
potential therapeutic targets for TNBC. Still, more than 
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1 200 genes were significantly regulated in TNBC and 
endocrine resistance development in LTED cells but not 
in endocrine-resistant breast cancer patients. This area 
of dissent may be due to the limitation that data from 
endocrine-resistant patients only show the comparisons 
between already resistant and sensitive tumors. Therefore, 
expression measurements may not represent genes 
important to establishment of endocrine resistance. 
Because we cannot determine whether the endocrine-
resistant patients had already developed resistance by the 
time of the endocrine therapy exposure, we cannot verify 
the “stage” of resistance. In contrast, our time course 
approach analyzed the process of developing endocrine 
resistance, not just the endpoints.

Our novel statistical and computational analysis 
approach, combined with the use of multiple data sources, 
from cell modelling to patients, reveal new potential 
for developing effective therapeutic approaches toward 
various diseases. Further biological experiments are 
warranted to confirm a measurable degree of importance 
of these genes. While we utilized existing time course 
expression and patient tumor sample datasets, future 
datasets for both types will enhance the ability to validate 
and increase the reliability of our findings.

Our analysis identified novel candidate genes with 
potential significance in endocrine-resistant breast cancer 
as well as TNBC, which opens new doors for designing 
novel therapeutic approaches for endocrine-resistant breast 
cancer and TNBC. Potential future studies should focus on 
translational aspects on this research through deleting or 
overexpressing these genes in breast cancer models in vivo 
and explore the effects, as these genes can potentially lead 
to therapeutics for breast cancer.

MATERIALS AND METHODS

Data acquisition and processing

The microarray data of GSE20361, GSE87411, 
and GSE111151 were downloaded from GEO, the public 
functional genomics repository [15–17]. Data from 
GSE111151 and GSE87411 were analyzed with Limma. 
Using setting defaults, we identified the differentially 
expressed genes from both datasets for downstream 
analysis. To generate the heatmap, the log-fold-change 
values of the datasets and the “ComplexHeatmap” 
package in R were used. To identify the genes significantly 
regulated in TNBC compared to luminal A breast cancer, 
we used UALCAN [49]. Each gene was checked for its 
expression in the TNBC subtype compared to luminal 
A subtype. Using significance level of 0.05, those with 
significant differential expression were selected for further 
analysis.

Data from GSE20361 were analyzed using a 
MATLAB-based pipeline to identify DRGs, described 
as below. Individual GRMs were analyzed using the 

Metascape tool for gene enrichment analysis with default 
parameters [50]. To generate the gene-gene and protein-
protein interaction networks, gene lists were analyzed 
using NetworkAnalyst, ToppGene, ToppFun, and Funcoup 
using the default parameters [23–26]. For tools that 
required a training gene set, we gathered known genes for 
endocrine-resistance development from literature.

Dynamic gene expression analysis pipeline

As part of the analysis, we used a pipeline analysis 
method previously published [18, 19]. The pipeline analysis 
streamlines key processing performed in MATLAB. 
First, spline smoothing is applied to centered expression 
trajectories. Second, statistical hypothesis testing identifies 
a set of dynamic response genes (DRGs) that exhibit 
significant change over time. Third, these DRGs are 
clustered into gene response modules (GRMs), subsets of 
DRGs with similar time course expression patterns.

One key assumption of the methodology is that a 
small fraction of the genes respond to external stimuli. 
Implicit in this assumption, we assume a large fraction 
of the genes maintain constant expression over time. 
We assume our observations of both responsive and 
unresponsive trajectories are distorted by noise. We 
present the centered expression profile of the ith gene, 
belonging to experimental condition j, as Xi,j(t), a smooth 
function of time. Each measurement becomes a discrete 
realized value of the function, distorted by independent 
and identically normally distributed noise Ei,j(tk) with 
mean 0 and variance σ2,

Y t X t E t
i n j N and k

i j k i j i j k i j k, , , ,( ) ( ) ( ),

, , , , , ,

− = +

= = =

µ

for 1 1 1   KKi j,

where n is the number of genes, N is the number of 
subjects, and Ki,j is the number of time points observed 
for each gene.

Spline smoothing is employed to obtain the 
functional entity Xi,j(t). To obtain a smoothing regularity 
parameter, a subset of genes that exhibit large interquartile 
ranges, the top 200 most-responsive genes are used to 
minimize generalized cross-validation. After smoothing 
was applied, statistical hypothesis testing was conducted 
using F-tests

H X t H X ti j a i j0 0 0: ( ) : ( ), ,= ≠vs

to identify DRGs. Any gene with significant results is 
classified as a DRG; however, due to computational 
demand, only the top 3000 DRGs were selected for further 
analysis, as justified by simulation study [18].

In the next step, the DRGs that exhibit similar 
expression patterns over time are clustered into temporal 
gene response modules (GRMs) using iterative hierarchal 
clustering (IHC) with Spearman correlation threshold 
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of 0.7. The IHC algorithm can identify inhomogeneous 
clusters, capturing trends at many scales by selecting 
optimal cluster size, resulting in large and also very 
small clusters. From a biological perspective, this step is 
interpreted as genes tend to act in collaboration. From a 
computational perspective, the step reduces dimension of 
the problem. Additional methodology description is found 
in previous works [18, 19].

LTED cell line development

MCF7 cells were cultured in estrogen-depleted 
growth media (phenol red-free RPMI1690 medium 
(Thermo Fisher Scientific, Waltham, MA) supplemented 
with 5% charcoal-stripped serum (CSS) and 10 µg/ml of 
Insulin (Thermo Fisher Scientific) for extended periods. 
Cell samples were collected every 7 days and used for 
downstream analysis.

Proliferation assay

Both parental and LTED MCF7 cells were cultured 
in a 96-well plate. After 24 hours, the cells were treated 
in triplicates with E2 in RPMI1690 plus 5% CSS. The 
treatment was repeated every other day and at the end of 
the seventh day, then the plates were frozen for the assay. 
FluoReporter blue fluorometric dsDNA quantification 
kit (Invitrogen, Waltham, MA, USA) was used per 
the manufacturer’s protocol. The excitation/emission 
wavelength of 360/460 nm were read and normalized to 
the control wells.

qRT-PCR analysis

mRNA abundance was evaluated by qRT-PCR as 
described [19]. Relative mRNA levels were calculated 
by using the comparative CT method normalized to 
cyclophilin. The primers were designed using Primer 
Express Software (Applied Biosystems, Waltham, MA, 
USA) as shown in Supplementary Table 2.
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