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Commentary

Defining the mechanisms underlying cyclin dependent kinase 
control of HIF-1α
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Constitutive activation of HIF-1α is common in 
human cancers, regardless of oxygen tension. While the 
majority of HIF-1 activation can be attributed to lack of 
oxygen in the tumor microenvironment, numerous non-
hypoxic stimuli have also been shown to regulate HIF-
1α levels. Stabilization of HIF-1α in normoxia has been 
attributed to genetic alterations, most notably loss of the 
von Hippel-Lindau (VHL) tumor suppressor gene, the 
primary E3 ligase responsible for targeting HIF-1α for 
proteasomal degradation [1]. In recent years, multiple 
new proteins and post-translational modifications have 
been implicated in the oxygen-independent control of 
HIF-1α. This includes alternative E3-ubiquitin ligases that 
target HIF-1α for proteasomal degradation (RACK, CHIP, 
HAF, etc.) [2], as well as binding proteins that enhance 
stability, such as HSP90 [3]. Another critical event that 
impacts HIF-1α levels and activation is phosphorylation. 
Numerous phosphorylation sites and upstream kinases, 
including PKA and PIM1 kinases, have been identified 
and shown to modulate HIF-1α protein stability in 
both normoxia and hypoxia [4–6]. Regardless of the 
mechanism, stabilization of HIF-1α in normoxia results 
in the constitutive upregulation of genes that initiate and 
sustain signaling pathways that drive cellular processes 
that support tumor growth and metastasis. As a result, 
identifying new mechanisms regulating HIF-1 is crucial 
to our understanding of cancer progression and developing 
more effective therapies.

Prior research from the El-Deiry lab was the first to 
demonstrate that the cyclin dependent kinases CDK1 and 
CDK4/6 are sufficient to stabilize HIF-1α, independent of 
hypoxia or VHL. Following up on these exciting findings, 
Zhou and El-Deiry utilized an unbiased proteomic screen 
to identify SMAD specific E3-ubiquitin protein ligase 2 
(SMURF2) as a novel E3 ligase controlling HIF-1α levels 
downstream of CDK4/6, regardless of oxygen tension. 
Moreover, mass spectrometry analysis revealed loss of 

phosphorylation of HIF-1α at Ser451 in cells treated with 
palbociclib, raising the possibility that this site could be 
important for maintaining HIF-1 stability. Interestingly, 
recent work from our group showed that phosphorylation 
of HIF-1α at Thr455 by PIM1 blocks HIF-1α degradation 
by disrupting prolyl hydroxylase domain (PHD) protein 
binding and hydroxylation, which is the initiating step 
in the canonical HIF-1α degradation pathway [4]. While 
the mechanism appears to be distinct, since PIM1 blocks 
VHL-mediated degradation, the close proximity of these 
sites and their localization within the oxygen dependent 
degradation domain in HIF-1α points to the importance 
of post-translational modifications to this region for 
the regulation of HIF-1α protein stability through both 
canonical and non-canonical means. Importantly, analysis 
of the TCGA data showed that high levels of SMURF2 
correlated with significantly better overall survival and 
disease-free survival in clear cell renal cancer, in which 
over 80% of patients lack functional VHL and display high 
basal levels of HIF-1α. In a parallel study, the same authors 
leveraged their findings to test whether targeting multiple 
molecules that stabilize HIF-1α simultaneously enhanced 
therapeutic response. Strikingly, the combination of FDA-
approved CDK4/6 inhibitors and HSP90 inhibitors showed 
enhanced inhibition of HIF-1 activity and synergistic anti-
tumor effects in models of renal and colon cancer lacking 
VHL and Rb [7]. Taken together, these studies describe a 
new mechanism responsible for the activation of HIF-1 in 
human cancer and provide a strong rationale for the use of 
CDK4/6 inhibitors to target HIF-1, particularly in tumors 
lacking VHL or harboring other signaling alterations that 
promote the constitutive activation of HIF-1.
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