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ABSTRACT
Purpose: Chemotherapy options for treating CRC have rapidly expanded in recent 

years, and few have predictive biomarkers. Oncologists are challenged with evidence-
based selection of treatments, and response is evaluated retrospectively based on 
serial imaging beginning after 2–3 months. As a result, cumulative toxicities may 
appear in patients who will not benefit. Early recognition of non-benefit would reduce 
cumulative toxicities. Our objective was to determine treatment-related changes in 
the circulating metabolome corresponding to treatment futility.

Methods: Metabolomic studies were performed on serial plasma samples from 
patients with CRC in a randomized controlled trial of cetuximab vs. cetuximab + 
brivanib (N = 188). GC-MS quantified named 94 metabolites and concentrations were 
evaluated at baseline, Weeks 1, 4 and 12 after treatment initiation. In a discovery 
cohort (N = 68), a model distinguishing changes in metabolites associated with 
radiographic disease progression and response was generated using OPLS-DA. A 
cohort of 120 patients was used for validation of the model.

Results: By one week after treatment, a stable model of 21 metabolites could 
distinguish between progression and partial response (R2Y = 0.859; Q2Y = 0.605; 
P = 5e-4). In the validation cohort, patients with the biomarker had a significantly 
shorter OS (P < 0.0001). In a separate cohort of patients with HCC on axitinib, 
appearance of the biomarker also signified a shorter PFS (1.7 months vs. 9.2 months, 
P = 0.001).

Conclusion: We have identified changes in the metabolome that appear within 
1 week of starting treatment associated with treatment futility. The novel approach 
described is applicable to future efforts in developing a biomarker for early assessment 
of treatment efficacy.

 Research Paper

https://creativecommons.org/licenses/by/3.0/


Oncotarget62www.oncotarget.com

INTRODUCTION

Colorectal cancer (CRC) is the second most 
common cause of cancer death worldwide [1]. 
Chemotherapy is the therapeutic mainstay in the setting 
of metastatic disease, present in about 25% of CRC 
patients. Drug choices are numerous. First-line therapy 
is mostly comprised of combinations of cytotoxic agents 
[2]. Molecular targeted agents including bevacizumab, 
cetuximab and panitumumab are now in common use 
[3, 4]. Regorafenib and trifluridine tipiracil also appear 
to benefit some [5–8], and niche drugs for cancers with 
specific molecular features are also becoming available. 
Currently, oncologists select treatments empirically with 
high levels of uncertainty of clinical benefit, and the 
likelihood of benefit decreases with each successive line 
of systemic therapy. In addition to a falling likelihood 
of response with later lines of therapy, toxicities 
accrued because of earlier lines of chemotherapy cause 
a decline in general health and deterioration in quality 
of life, causing a cumulative reduction in the proportion 
of patients who will be fit to receive newer agents. 
Therefore, if one could limit exposure to unbeneficial 
drugs in the first lines of therapy, it is conceivable that 
toxicities would have less impact on the health of each 
patient, allowing more opportunities to try other drugs, 
perhaps also increasing the odds of benefit with these 
newer agents.

Typically, in clinical practice, benefit from 
chemotherapy is estimated by performing cross-sectional 
imaging 2–3 months after treatment initiation. By that 
time, significant toxicities may have appeared. Repeated 
radiological imaging is expensive, and there are limitations 
to CT and MRI in gauging response. Size-based criteria 
such as RECIST [7, 8] underestimate response when 
targeted agents are used. Evidence of tumor progression 
also appears in a delayed fashion, often after clinical 
deterioration. Therefore, there is a need for a simple, 
inexpensive, convenient test that provides relatively 
immediate information on the biological activity (or lack 
of activity) of a treatment. 

Treatment response is known to have metabolic 
consequences. For example, chemotherapy can result in 
diminished FDG uptake in tumors, reflecting a reduction 
in glycolysis [9–14]. Harnessing that principle, recently 
we reported on changes in the circulating metabolome 
that accompanied a response to chemotherapy agents [15]. 
However, therapeutic decisions hinge more on identifying 
whether a treatment is futile than on whether there is a 
measurable response. Early detection of treatment futility 
would serve to reduce exposure to potentially toxic drugs, 
preserving health and quality of life so that alternative 
treatments could be explored.

Our objective was to identify treatment-related 
metabolomic changes that preceded radiographic 
evidence of tumor progression. To accomplish this, 

we acquired serial blood samples from patients with 
metastatic CRC who participated in a randomized trial of 
two third-line targeted systemic therapies: cetuximab vs. 
cetuximab and brivanib [16]. 

RESULTS

Metabolite changes related to tumor progression 
appear one week after treatment initiation

The discovery cohort consisted of 68 patients, 
summarized in Table 1. GC-MS detected 386 
compounds in all samples; of those, 94 comprised named 
metabolites. The PCA of the discovery set demonstrated 
5 outliers (Figure 1A), which were excluded from 
further analysis. Metabolite changes associated with 
radiographic progression were compared to changes 
associated with measurable treatment response to 
identify an array of metabolite changes that signified 
treatment futility. 

A stable model that distinguished progression 
and response could not be derived when patients from 
only one treatment arm were analyzed. This may have 
been due to insufficient power. PCA analysis showed 
no distinguishable clusters related to the treatment arm 
(Supplementary Figure 1). Therefore, samples from both 
treatment arms were analyzed as a single group. PCA 
also did not demonstrate an intrinsic pattern related to 
treatment response (Figure 1A). After filtering by VIP>1 
and p-value <0.05, a parsimonious model consisting of 
21 metabolites was generated: R2Y score = 0.859, Q2Y 
score = 0.605, CV-ANOVA = 5 × 10−4 (Figure 1B). The 
directionality of changes in metabolites that distinguished 
progression and response is summarized in the coefficient 
plot (Figure 1C). Age and sex did not have an influence 
on these changes.

To confirm that the progression-related changes 
in the circulating metabolome applied to both treatment 
arms, the model was applied separately to patients 
from each treatment arm. The loadings plots from the 
whole group were similar in structure to the loadings 
plots of each treatment group (Figure 1D). That is, each 
metabolite in the progression biomarker behaved in a 
similar fashion in each treatment arm. Based on these 
findings, it appears that the progression biomarker is 
agnostic to treatment arm.

We took a similar approach to samples acquired 
at Week 4 and Week 12 after treatment initiation 
(Supplementary Figure 2). In these later time periods, 
changes in the plasma metabolome in comparison to 
baseline became much more variable. As a result, we 
were unable to generate a stable and satisfactory model 
that distinguished PD and PR. This is to some extent 
expected, as these patients have quite divergent courses 
that may include variable toxicities and treatment dose 
modifications.
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Serial monitoring for progression biomarker

The S-score (range 0–1) is a construct in the 
SIMCA-P software that reflects the similarity of the 
metabolomic profile of an individual sample to the 
model generated using Week 1 samples (or, in the case 
of our study, the metabolomic changes from baseline). 
S-scores in patients with radiographic PD and PR are 
summarized in Supplementary Figure 2. On Week 1, 
S-scores associated with progression ranged from 0.7–
1.0; S-scores associated with treatment response ranged 
from 0.0–0.66. In 19 of the PR cases (86.3%), S-scores 
were <0.4; in the other three cases, S-scores dropped 
in the subsequent time period (Week 4) to <0.4. Based 
on these observations, we generated definitions of 
metabolomic biomarkers of progression and response that 
would be applied to the validation set. PD was defined as 
2 consecutive S-scores >0.7. PR was defined as 2 or more 
scores <0.4. 

The S-score values were dynamic and changed 
over time in each case. In 3 patients who initially had 
metabolomic changes associated with treatment response, 
the progression biomarker appeared in week 12. We 
considered that this reflected the emergence of resistant 
disease. However, given the deterioration in performance 
of the biomarkers past the Week 1 time point (Figure 
2A), we could not confidently use the biomarker to track 
patients serially over time. We also explored applying 
a running baseline, to see if the progression biomarker 
appeared between intervals. Again, results were spurious 
and no conclusions could be made. In all, we could 
not confidently identify metabolomic changes that 
convincingly signified the emergence of chemoresistance 
in this cohort.

To further assess the biomarkers we defined, we 
evaluated their association with PFS and OS. PFS and 

OS were significantly and markedly different in patients 
who had biomarker-defined progression in comparison 
to patients with biomarker-defined response (Figure 2B, 
2C). Specifically, PFS was 10.6 months when the PR 
biomarker was present and only 1.6 months when the PD 
biomarker appeared (p < 0.0001). OS was 14.3 months if 
the PR biomarker appeared and 3.9 months when the PD 
biomarker was present (p = 0.0002).

Subclassification of stable disease patients

In the CO.20 trial, 47% of patients did not 
have radiographic criteria of either a response from 
chemotherapy or disease progression; they were classified 
as having stable disease. What remains unclear is whether 
their stable disease was a result of indolent tumor biology 
or due to benefit from chemotherapy. We postulated that 
patients who received benefit from the chemotherapy 
would have changes in the circulating metabolome that 
were more similar to the PR biomarker. Conversely, 
SD patients with indolent tumor biology would have 
treatment-related changes in the metabolome more similar 
to PD. 

The metabolomic model for disease progression 
was applied to the 22 patients with radiographic stable 
disease. Figure 3A depicts their S-score distribution. In 
the discovery cohort, 5 of 22 patients with radiographic 
stable disease (23%) had S-scores that were in the 
intermediate range (i.e., neither progression nor response; 
0.4<S-score<0.7). We then dichotomized the group to 
cases that were more similar to progression (“PD-like”) 
and cases that more closely resembled a treatment response 
(“PR-like”). To explore whether this was an effective 
way of classifying stable disease patients, we compared 
survivals. Neither PFS nor OS were significantly different 
in the two subgroups (Figure 3B, 3C).

Table 1: Clinical factors of patients in discovery and validation cohort

Clinical Factors Discovery Cohort  
(N = 68)

Validation Cohort  
(N = 120)

Age (Years) 60.6 ± 6.8 63.7 ± 5.6
Gender
 Male 36 (53%) 80 (66.7%)
 Female 32 (47%) 37 (30.8%)
 Unknown 3 (2.5%)
Response Category
 PR 22 (32.3%) 6 (5%)
 PD 24 (35.3%) 33 (27.5%)
 SD 22 (32.3%) 73 (60.8%)
Treatment Arm
 Cetuximab+Placebo 35 (51.5%) 59 (49.2%)
 Cetuximab+Brivanib 33 (48.5%) 61 (50.8%)
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Biomarker validation

The metabolomic biomarkers for progression and 
response were subjected to validation in an independent 
cohort from the same clinical trial (N = 120). First, 

metabolomic biomarkers were compared to radiographic 
response. Overall, the progression signature had a sensitivity 
of 85% and a specificity of 86% in Week 1 samples (Figure 
4A). As in the discovery cohort, sensitivity and specificity 
declined in samples acquired during later time points.

Figure 1: Changes in circulating metabolites are identifiable 1 week after initiation of chemotherapy. (A) PCA scatter 
plot depicting changes in plasma metabolites as a function of treatment response. (B) Supervised (OPLS-DA) scores scatter plot based 
on a model distinguishing changes in the circulating metabolome that accompany disease progression and response to chemotherapy. 
(C) Coefficient column plot describing directionality of changes of individual metabolites in association with disease progression on 
chemotherapy. (D) Loadings column plot depicting behavior of individual metabolites in each treatment arm.
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Survivals were evaluated as a function of 
metabolomic biomarkers (Figure 4B, 4C). As seen in the 
discovery cohort, PFS was markedly and significantly 
inferior in patients with the PD metabolomic biomarker 
in comparison to patients who had the PR biomarker 
(6.5 months vs. 1.8 months; p < 0.0002). Patients with 
an intermediate S-score (designated SD) also had an 

intermediate PFS. The OS followed similar trends 
(P < 0.0001). 

Progression-related changes in metabolism

The treatment-related changes in metabolites that 
distinguished tumor progression from chemoresponse 

Figure 2: Biomarker-defined progression vs. response, based on S-scores. (A) ROC curves for validation of metabolomic 
biomarker of progression performance serially at post treatment week 1, 4 and 12 in independent validation cohort. (B) Kaplan–Meyer 
curves comparing progression-free survival (PFS) in patients with the metabolomic biomarkers of progression (PD) and response to 
treatment (PR). (C) Kaplan–Meyer curves comparing overall survival (OS) in patients with the metabolomic biomarkers of PD and PR.



Oncotarget66www.oncotarget.com

were synthesized to devise an understanding of the 
metabolic processes that drove our biomarker. Tumor 
progression was associated with a reduction in glycolysis 
precursor glucopyranose and increases in lactic acid, 
reflecting accelerated glycolysis and the Warburg 
effect. Progression is also associated with a reduction in 
circulating glutamine, a preferred fuel for cancer cells, 
possibly reflecting its consumption. A general increase 
in TCA cycle intermediates, including succinic acid and 
citric acid, may also reflect increased energy demands. 
Decreased levels of aromatic amino acids (tyrosine and 
phenylalanine) were observed. In contrast, branched chain 
amino acids (BCAAs) were increased. Elevated circulating 
BCAAs have previously been reported in a number 
of tumor types [17]; this may be a product of skeletal 
muscle wasting. In addition, the capability of the tumor 

to catabolize BCAAs varies widely, and impaired BCAA 
breakdown may be a contributing factor [17]. Finally, urea 
levels are decreased in association with progression, which 
may reflect the dysregulation of the urea cycle. Previous 
studies have shown that urea cycle dysregulation occurs 
across a broad array of cancer types and supports cancer 
cell proliferation [18]. In all, the changes in the circulating 
metabolome that accompany disease progression reflect 
processes that support the metabolic requirements of 
proliferating cancer cells.

Potential relevance in other tumor types

Because the progression biomarker contained 
features that had biological relevance to tumor growth in 
general and because it was applicable to patients who had 

Figure 3: Characterization of stable disease. (A) Distribution of S-scores based on Week #1 changes in the plasma metabolomic in 
the stable disease cohort. (B) Kaplan–Meyer curves comparing PFS in patients with “PD-like” SD and “PR-like” stable disease, based on 
the S-Score system. (C) Kaplan–Meyer curves comparing OS in patients with “PD-like” SD and “PR-like” stable disease.
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two different systemic therapies, we wanted to explore its 
generalizability. We had previously reported on a series 
of 24 patients with hepatocellular carcinoma treated with 
second-line axitinib [15]. Serial samples consisted of 
serum (as opposed to plasma, as in the current series). 
Metabolomic criteria for progression were present 
in 4 patients, and metabolomic criteria for response 
were present in 9 patients. When these biomarkers 
were evaluated as a function of radiographic response, 
AUROC was 0.70 for the progression biomarker. 
However, there were only 3 patients who had progressive 
disease in that series. The AUROC for the metabolomic 
biomarker of response was 0.79 (Figure 5A). The 
relationship of these biomarkers to PFS was significant. 
Median PFS was only 1.7 months in patients who had 
the metabolomic changes associated with progression, 
and 9.2 months for patients who had criteria of response 
(P = 0.001; Figure 5B).

DISCUSSION

As therapeutic options for cancer expand, 
oncologists are challenged with selecting the best 
treatment for each individual patient. Ideally, predictive 
biomarkers that identify individuals who will or will 
not respond to a given drug will aid in the selection. 
However, for the vast majority of drugs, such biomarkers 
are unavailable. Therefore, a common clinical approach 
is to select a drug or drug combination based on best 
evidence, then administer the drug until either dose-
limiting toxicities appear or until there is radiographic 
evidence of disease progression. This approach may 
adversely impair quality of life while administering an 
unbeneficial treatment. Additionally, the payer is strapped 
with the costs of drug(s), treatment of toxicities, and the 
costs of serial CT scans or MRI scans. An alternative 
approach is to devise a method to identify patients who 

Figure 4: Validation of metabolomic biomarker for disease progression. (A) ROC curve measuring performance of metabolomic 
biomarker for PD/PR in the validation cohort. (B) Kaplan-Meier curves for patients in validation cohort, comparing PFS as a function of 
biomarker response classification. (C) Kaplan-Meier curves for patients in validation cohort, comparing OS as a function of biomarker 
response classification.
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will not benefit from a treatment as soon as possible after 
treatment initiation, before substantial toxicities and costs 
are incurred.

To this end, we describe a biomarker-based approach 
for early identification of treatment futility that involves 
serial monitoring of the circulating metabolome. Within 
a week of initiating systemic therapy, features of tumor 
progression appear. In some instances, those features 
do not appear until 4 weeks after treatment initiation; 
repeated appearance of those metabolomic features is 
highly predictive of a poor survival outcome. 

In past efforts, we have focussed our efforts 
on identifying metabolomic changes that accompany 

a favourable response to systemic therapy [15, 19]. 
Others have also reported response-related changes in 
the circulating metabolome [20–23]. There were some 
limitations to this approach. Most significantly, the absence 
of a metabolomic response may be insufficient to spur the 
oncologist to stop treatment. Clinically, this is not unlike 
what oncologists already encounter when they identify 
stable disease or even minor progression on follow-up 
scans; they are often reluctant to stop therapy despite 
the absence of measurable response because it does not 
prove therapeutic futility. Here, we describe a biomarker 
that convincingly demonstrates futility; individuals 
who repeatedly demonstrate changes in metabolites 

Figure 5: Application of metabolomic biomarker for disease progression in patients treated with axitinib. (A) ROC 
curve measuring performance of metabolomic biomarker for PD in HPCC patients. (B) Kaplan–Meier curve for patients in external cohort, 
comparing PFS as a function of biomarker response classification.
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that accompany tumor progression reliably have short 
progression-free survivals. Interestingly, the appearance 
of the biomarker in patients with hepatocellular carcinoma 
on a different drug was also predictive of a shorter PFS. 
We have only identified one preclinical report of in vivo 
metabolomic changes associated with tumor progression 
that were diametrically opposite metabolomic changes 
corresponding to a treatment response [24].

Bertini et al. reported that baseline metabolomic 
features in serum predict survival in patients receiving 
chemotherapy [25]. We were unable to identify such 
features in our study. Our approach is different, involving 
identification of changes in the metabolome over time 
associated with tumor progression. Therefore, rather 
than identifying a predictive or prognostic biomarker, 
we have identified a reactive biomarker, its appearance 
corresponding to tumor growth. 

The metabolome is extremely sensitive to changes 
in physiology and health and, due to the co-relationship of 
various metabolites, metabolites change in recognizable 
patterns. This is what makes our approach to treatment 
monitoring attractive. On the other hand, the metabolome 
is sensitive to factors such as diet, environment and 
genetics. The approach we have taken does, to some 
degree, control for this since the biomarker depends on 
treatment-related changes from baseline. Ideally, one 
could follow serial changes in the metabolome indefinitely 
even in patients who initially responded, for the early 
identification of chemoresistance. This would perhaps 
limit cumulative toxicities. However, the biomarker does 
not appear to work as reliably at time points farther from 
pre-treatment baseline. More studies on serial blood 
samples will be required to determine if progression-
associated changes in the metabolome can appear during 
intervals. We were limited to three post-treatment time 
points in our study; extending the sample collection over 
a longer period may be helpful in this regard. 

Clinically, it is typical for an oncologist to 
continue therapy in patients with stable disease unless 
dose-limiting toxicities appear. The problem is that, in 
these circumstances, it is difficult to determine if the 
chemotherapy is actually benefiting the patient or whether 
the disease cadence is just slow. This is particularly 
problematic when cytostatic drugs are administered (as 
opposed to cytotoxic drugs). We explored whether the 
metabolomic biomarker would be able to discriminate 
individuals who are progressing, but this was not possible. 
Regardless, patients who did not fulfill metabolomic 
criteria of progression or response had an intermediate 
prognosis, which effectively distinguishes them from 
patients in whom further treatment is futile. 

In conclusion, we have described a novel method for 
identifying patients who will not benefit from palliative 
chemotherapy. The metabolomic changes that signify 
tumor progression are apparent within a week of initiating 
treatment, and decisions to cease treatment based on a 

confirmatory test can be made within 4 weeks. Further 
testing will be required to determine how generalizable the 
biomarker is for other tumor types and other antineoplastic 
therapies. Ideally, a standardized protocol for blood 
sampling should be devised. Finally, to bring such a 
biomarker to clinical fruition, it will be essential to adapt 
the test to quantify metabolites with minimal measurement 
variance. While the biomarkers generated in our studies 
may not be definitive, we have described a discovery and 
validation workflow that can be utilized for future use.

MATERIALS AND METHODS

Patients and samples

This study was approved by the Health Research 
Ethics Board of Alberta Cancer Committee (HREBA-
CC 14-0074). Samples used were taken from patients 
with metastatic colorectal cancer participating in an 
international, multicenter, double-blind, randomized 
controlled phase III study comparing third-line cetuximab 
and cetuximab plus brivanib (NCIC-CTG CO.20) [16]. 
Patients in that trial had KRAS wild-type, metastatic 
CRC previously treated with a fluoropyrimidine, 
irinotecan and oxaliplatin. Patients also had progression 
or contradictions to these treatments within 6 months of 
completing treatment. Patients were randomized into one 
of two treatment arms: cetuximab + brivanib (N = 376) 
or cetuximab + placebo (N = 374). Patient samples were 
accrued between 2008 and 2011. Plasma samples were 
collected in K2-EDTA lavender top tubes (Thermo Fisher 
Scientific, Waltham, Massachusetts) at baseline (prior to 
treatment initiation), and during the first 12 weeks after 
treatment (weeks 1, 4 and 12). Patients were not required 
to fast.

Chemotherapy response assessment

CT scans were performed at baseline and every 8 
weeks after treatment initiation until objective response 
was documented. Treatment response was evaluated 
and response was classified according to RECIST 1.0 
criteria [7]. According to those criteria, there were no 
complete responses. In the cetuximab only arm, 7.2% had 
a partial response, 43.6% had stable disease, and 38% had 
progression. In the cetuximab + brivanib arm 13.6% had 
a partial response, 50% had stable disease, and 21.5% 
had progression. Patients who died without documented 
objective radiological progression were excluded from this 
study. 

Study design

This was a nested case-control biomarker discovery 
design. The discovery cohort consisted of 68 patients who 
had blood samples from all four time points: baseline, 



Oncotarget70www.oncotarget.com

and weeks 1, 4 and 12. Samples were selected from each 
study arm, with approximately equal representation from 
each age group, gender and response category. Samples 
from each response category were matched by gender 
and age (within 5 years). The validation cohort consisted 
of 120 randomly selected patients who had blood samples 
from baseline, and at minimum two other time points. 
Samples with approximately equal representation from 
each study arm were selected. Patient characteristics of 
the discovery and validation groups are summarized in 
Table 1. 

Gas Chromatography-Mass Spectrometry 
(GC-MS)

Metabolite extraction and derivatization methods 
described by Bligh and Dyer were used. Briefly, a 
two-phase mixture of methanol and chloroform (2:1) 
was transferred to individual aliquoted sample tubes. 
Separating into aqueous and organic layers, the aqueous 
layer tubes were transferred and dried in vacuum 
(SpeedVac, Eppendorf, Germany) in order to concentrate 
and shift the solvent towards the gas phase. Sample 
metabolites were derivatized by adding methoxyamine-
hydrochloride in pyridine solution, and N-Methyl-N-
(trimethylsilyl) trifluoroacetamide (MSTFA; Millipore-
Sigma, Oakville, Canada) a silylating agent to each tube. 
GC-MS grade hexane was used to dilute the samples, 
and any solid- or micro-particles were removed by 
centrifuging the tubes. Spiked-in internal standards 
consisted of deuterium-labeled metabolites representative 
of diverse chemical classes with a wide range of retention 
indices. Deuterated metabolites included phenylalanine 
D-5, D-glucose-D7, malonic acid-D4, glycine-D5, 
palmitic acid-D31, L-leucine-D10, L-lysine-D9, and myo-
inositol-D6 at concentrations at the mid-range of the linear 
part of each of their standard curves.

GC-MS was performed on a Bruker Scion 436 GC-
MS (Bruker Daltonics INC, Fremont, United States). 
The MS was operated in the 50–800 m/z range. Mass 
spectra were processed and quantified using Metabolite 
Detector software (Version 2.06, Technische Universität 
Carolo-Wilhelmina zu Braunschweig, Braunschweig, 
Germany). Serial plasma samples from each patient were 
deliberately included in the same batch, but randomly 
distributed. In the discovery experiments, each batch was 
designed to include approximately equal representation 
of each treatment arm, sex and age group. Pooled quality 
controls were distributed throughout each batch, prior to 
each series of 10 experimental samples. Similarly, a series 
of aliphatic alkanes were used as calibration standards 
(n-decane, n-docosane, n-dodecane, n-hexacosane, 
n-nonadecane, n-pentadecane, n-triacontane (Millipore-
Sigma, Oakville, Canada)), and these were distributed 
throughout each batch prior to the pooled quality control 
controls.

Data analysis

Mass spectrometry peaks were analyzed using 
Metabolite Detector software (Version 2.06, Technische 
Universität Carolo-Wilhelmina zu Braunschweig, 
Braunschweig, Germany). Peaks were initially normalized 
based on spiked-in internal controls. Metabolites were 
identified based on retention indices, retention times, and 
individual ions, using the GOLM metabolite database 
and NIST library as a reference. A second normalization 
step was performed using median fold-change methods. 
Missing values were replaced with the minimum 
quantitative value in the data set. To correct for inter-batch 
variation in GC-MS, the ComBat approach (through the 
Bioconductor R package “sva”) in R environment (version 
3.3) was applied. ComBat also allows for the removal of 
batch-dependent noise.  

Changes in metabolite concentration from baseline 
were calculated for each post-treatment time point. Instead 
of submitting metabolite concentrations to further analysis 
(as is the usual approach), changes in metabolites were 
used as the dependent variable. Data were analyzed using 
SIMCA-P+ software (version 15.0, Umetrics AB, Umeå, 
Sweden). To identify potential outlier samples and to 
detect intrinsic data structures, a principal component 
analysis (PCA) was performed. Subsequent supervised 
analyses were performed using orthogonal partial least 
squares discriminant analysis (O-PLS-DA). Metabolites 
selected  were based on variable importance on projection 
(VIP) thresholds set to maximize R2Y and Q2Y values and 
to minimize the difference between them, as previously 
described [15, 19]. To assess the performance of 
supervised multivariate models, R2Y and Q2Y scores were 
used for measurement of the dataset variance covered by 
the model, and the predictability of the model in 7-fold 
cross-validation.

Progression-free survival (PFS) was calculated 
from the date of treatment initiation until radiographic 
assessment of disease progression. Overall survival (OS) 
was calculated from the date of treatment initiation until 
patient death. Survival curves were estimated using the 
Kaplan–Meier method, compared using the log-rank test 
using GraphPad Prism (version 7.0, GraphPad Software 
Inc, San Diego, United States).

Pathway analysis

Metabolites that changed with treatment were 
put into functional context using pathway analysis. 
Metabolites that differentially changed (from 
baseline) as a function of treatment response category 
were submitted to MetaboAnalyst (Version 4.0; 
https://www.metaboanalyst.ca). MetaboAnalyst allows for 
the identification of perturbed metabolic pathways from its 
HMDB-derived archive of over 7000 human metabolite 
entries and 350 metabolic pathways. Network and pathway 

https://www.metaboanalyst.ca
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analyses were performed in order to generate chemical 
KEGG identifiers. Subsequently, KEGG pathways were 
manually examined to extrapolate potential effects of 
tumor progression on metabolic pathways.

Abbreviations

AUROC: area under ROC curve; CRC: colorectal 
cancer; CT: computed tomography; GC-MS: gas 
chromatography-mass spectrometry; O-PLS-DA: 
orthogonal partial least squares discriminate analysis; 
PCA: principal component analysis; ROC: receiver 
operating characteristic. 
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