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ABSTRACT
The rising incidence and mortality of endometrial cancer (EC) in the United 

States calls for an improved understanding of the disease's progression. Current 
methodologies for diagnosis and treatment rely on the use of cell lines as models 
for tumor biology. However, due to inherent heterogeneity and differential growing 
environments between cell lines and tumors, these comparative studies have found 
little parallels in molecular signatures. As a consequence, the development and 
discovery of preclinical models and reliable drug targets are delayed. In this study, 
we established transcriptome parallels between cell lines and tumors from The Cancer 
Genome Atlas (TCGA) with the use of optimized normalization methods. We identified 
genes and signaling pathways associated with regulating the transformation and 
progression of EC. Specifically, the LXR/RXR activation, neuroprotective role for THOP1 
in Alzheimer’s disease, and glutamate receptor signaling pathways were observed to 
be mostly downregulated in advanced cancer stage. While some of these highlighted 
markers and signaling pathways are commonly found in the central nervous system 
(CNS), our results suggest a novel function of these genes in the periphery. Finally, 
our study underscores the value of implementing appropriate normalization methods 
in comparative studies to improve the identification of accurate and reliable markers.

INTRODUCTION

Endometrial cancer (EC) is a common gynecologic 
malignancy in the United States with an estimated 66,570 
new cases and 12,940 deaths in 2021 [1]. Historically, 
while EC is presented more commonly amongst older 
women, it is the only gynecologic cancer with increased 

incidences at earlier age onset with a concomitant rise 
in mortality rate [2–5]. Current staging approaches for 
tumors are important in assessing size, spread, prognosis, 
and treatment of the disease. Reports that analyzed the 
Surveillance Epidemiology, and End Results (SEER) 
database suggest that early tumor staging (stage I and 
stage II) is correlated to better prognosis and a higher 
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5-year overall survival rate (OS) in comparison to 
advanced stages (stage III and stage IV) [1]. The survival 
rates drop dramatically from 96 to 18–70% respectively 
[1, 6]. Although the OS is relatively high with early stage 
detection, the vast majority of late stage EC exhibits a 
dramatic decline in survival due to lowered responses to 
radiation, hormone, and non-hormone based treatments 
[7]. However, staging can be inaccurate and limited in 
predicting responses to therapy, as some of the early stage 
lesions display aggressive metastatic behavior, tumor 
heterogeneity, ambiguous histology, and overlapping 
molecular characteristics [8–16]. 

Over the past few decades, cell lines have been 
frequently used as models to understand cancer biology 
in tumors [17–20]. With the advent of various platforms 
and bank centers for next-generation sequencing, large 
sets of molecular profiles are available for comparison 
between tumor samples and cell lines [21–23]. Cell lines 
with maximal molecular similarity to tumors can be 
useful in identifying targets and signaling mechanisms 
necessary for drug development [17]. However, a majority 
of these comparative molecular profiling studies between 
cell lines and tumors in EC have reported their findings 
based on integrated genomic characterization (e.g., 
copy number alternations, polymerase epsilon (POLE) 
ultramutations, microsatellite instability); whereas analyses 
in transcriptomics related to stage advancement still remains 
obscure [24–33]. This is a limitation of targeted genomic 
approaches due to lack of substantiation at the level of 
expression and function. Therefore bridging the gap between 
gene mutations-alterations and transcriptional activity 
between cancer stages can provide a more comprehensive 
insight into the processes involved in EC progression. 

Here we present a comparative transcriptome 
analysis between early and advance stage endometrial 
carcinomas in cell lines and patient tumor samples from 
the TCGA database. Initially we ascertained whether there 
are overall transcriptome parallels between cells lines and 
tumors. Once similarities were established, we identified 
signaling pathways and potential molecular markers 
that define changes in progression between early and 
advanced stage EC. These molecular insights into tumor 
classification and progression may have a direct effect on 
providing a more accurate stage classification for EC.

RESULTS

Removal of unwanted variation in RNA-seq data

Preliminary findings using scatter plots with linear 
regression analysis of overall transcriptome for TCGA 
patients vs cell lines indicates a global shift in favor for 
higher overall expression for TCGA patients at each stage 
with R2 < 0.46 (Supplementary Table 1; Supplementary 
Figure 1, left panel). This bias between data sets suggests 
the existence of unwanted technical effects and the need for 

a more effective normalization procedure. For this purpose, 
comparisons between library size and removal of unwanted 
variation by control genes (RUVg) normalization methods 
was further evaluated using relative log expression (RLE) 
and principal component analysis (PCA).

As seen previously in our findings, normalization 
of read counts using library size demonstrated to be 
unsatisfactory. The RLE boxplots displays distributional 
differences and excessive variability between samples 
(Figure 1A, left panel). In contrast, the RUVg normalization 
method resulted in shifting distributions of all read counts 
across all samples towards 0. Furthermore, an attenuation 
of expression magnitude suggests improved resilience 
against outliers (Figure 1A, middle and right panel). This 
in turn led to a more robust differential expression result 
downstream (Supplementary Table 2). Due to increase in 
statistical sensitivity with increasing k value (k = 10), a 
slight reduction in the number of differentially expressed 
genes (DEGs), approximately 11–13%, was also observed.

The PCA modeling of overall transcriptome 
expression offers a global assessment of similarity between 
samples. The values of first two principal components 
PC1 (44.26, 14.43, and 8.76%) and PC2 (19.82, 8.40, 
7.54%) between library size, RUVg k = 3, and RUVg 
k = 10 normalization method respectively demonstrated 
a reduction in variation in expression between samples 
when using the RUVg method (Figure 1B). Furthermore, 
when considering normalization by library size, a 
biological divergence inferred by differential clustering 
between TCGA patient tumors and cell lines samples 
was also observed (Figure 1B, left panel). In contrast, the 
RUVg normalization method eliminated this separation 
and exhibited scatter plots clustering towards the center 
indicating greater similarity in overall transcriptome profile 
between samples (Figure 1B, middle and right panel).

Differential gene expression analysis

With the exception of stage I and stage II 
comparison (Figure 2A, left panel), the hierarchical heat 
map of the tumor-derived endometrial cancer cell lines 
and their respective TCGA patient samples clustered 
together in a stage dependent manner (Figure 2A, 
middle and right panel). This demonstrates that changes 
in expression between early and late stage EC in both 
tumors and cell lines are dependent on staging and not 
dependent on sample type. The number of DEGs (FDR < 
0.05) between each stage comparisons are summarized in 
Supplementary Table 2.

In order to better understand genes that may be 
driving stage progression in EC, we identified a set of 
genes for each stage comparison by merging cell lines and 
TCGA patients according to stage and using volcano plots 
that highlights DEGs that are up- or downregulated (p < 
0.05; at least |log2 fold change (FC)| ≥ 1). For stage I vs. 
stage II comparison, we observed a differential expression 
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signature of 3,414 genes (2,182 up-regulated and 1,232  
down-regulated genes; Figure 2B, left panel). In stage II 
vs. stage II comparison, we observed 3,369 DEGs (887 up-
regulated and 2,482 down-regulated genes; Figure 2B, middle 
panel). In stage I vs. stage III comparison, we observed 2,070 
DEGs (733 up-regulated and 1,337 down-regulated genes; 
Figure 2B, right panel). The shift from up- to downregulation 
in global expression from early to late cancer stage suggests 
a possible divergent mode of action. Gene sets correlated to 
each stage comparisons and expression directionality are 
described in Supplementary Table 3.

Ingenuity pathway analysis (IPA) and gene set 
enrichment analysis

In order to determine signaling pathways that are 
involved in cancer progression, DEGs from each stage 

comparison in Figure 2B, were used as input for the 
IPA Core analysis. We identified the top five signaling 
pathways (p-value < 0.05) for each comparison with its 
respective number of genes that were up- or downregulated 
(Figure 3A). Out of the fifteen pathways identified, a third 
appear to be conserved: (1) liver X receptor/retinoid X 
receptor (LXR/RXR activation), (2) neuroprotective role 
of THOP1 gene in Alzheimer’s disease, (3) glutamate 
receptor signaling, (4) nNOS signaling in skeletal muscle 
cells, and (5) calcium signaling pathways. The majority 
of these signaling pathways, specifically in the later stage 
comparisons, appear to be downregulated with a negative 
z-score indicating a divergent expression direction 
relationship from the Ingenuity Pathway Knowledge Base 
(IPKB) (Figure 3B). All other significant pathways are listed 
in Supplementary Table 4. All genes identified under each 
signaling pathways are described in Supplementary Table 5. 

Figure 1: Relative log expression (RLE) and principal component analysis (PCA) plots of overall transcriptome 
profiles of TCGA tumor samples and endometrial cancer cell lines. (A) The RLE boxplot distributions of datasets normalized 
using RUVg k = 3 or k = 10 resulted in improved log counts centered around zero; demonstrating lowered magnitude in variability and 
higher resilience toward outliers between tumor samples and cell lines. (B) PCA plot axes represents major sources of variation based on 
genes profiles in the first two dimensions, PC1 and PC2 (centered, log scale)). Scatter plots indicates normalization by RUVg methods leads 
to better clustering between TCGA tumor samples and cell lines. Normalization with library size, as seen by a distinct separation in scatter 
plots between TCGA patients and cell lines, suggests similarities in expression are more dependent on sample type.
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Further insights into the biological relevance and 
mechanism of these expression profiles were ascertained 
using a Venn diagram with subsequent gene set enrichment 
analysis (GSEA) (FDR <0.05) to identify genes sets 
within each zone of the Venn diagram. Across all stage 
comparisons, 241 genes are identified as conserved 
(intersect), suggesting dynamic expression changes in that 
set. (Figure 3C; Supplementary Table 6). The identification 
of the top three significantly enriched gene ontology 
(GO) gene sets with each stage comparison demonstrates 
enrichment for regulation of transport, extracellular space, 
intrinsic component of plasma membrane, cell projection, 
ion transport, neuron part, neurogenesis, and regulation of 
membrane potential (Figure 3D). All other gene sets in each 
of the seven zones are identified in Supplementary Table 6. 

DISCUSSION

In this study, we established transcriptome 
similarities between the cell lines used in this study 
and patient tumor samples from TCGA database. This 
comparison allowed us to identify signaling pathways 
and gene sets that are dysregulated in both datasets. 
Most notably, an altered expression pattern in neuronal 
related signaling pathways and markers was observed 
between early and advanced histological stages. This 
expression pattern indicates a novel function of these 
genes in the periphery with a potential role in regulating 
the transformation and progression of tumors in EC.

Identifying mutually dysregulated biomarkers 
and signaling pathways in cell lines and tumors can 

Figure 2: Differential expression analysis of transcriptomes in TCGA tumor samples and endometrial cancer cell lines. 
(A) Hierarchiral clustering analysis of all DEGs between TCGA tumors and cell lines indicates that early stage comparisons show higher 
degree of clustering between sample types. However, comparisons between early to a later cancer stage demonstrates clustering between 
stages suggesting clear distinctive expression differences that is stage dependent. All DEGs shown are significant (p value <0.05) (top 
panel). (B) Respective volcano plot and bar charts highlighting up- or downregulated DEGs (red dots) suggests downregulation of DEGs 
with advanced cancer stage (p < 0.05; at least |log2 fold change (FC)| ≥ 1), non-significant (NS, grey), log2 fold change (FC)| ≥ 1 (logFC, 
green), p < 0.05 (p-value, blue) (bottom panel). 
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advantageously provide a more expedient method for 
studying mechanisms in cancer biology. However, these 
comparative type studies have proven to be relatively 
unsuccessful due to the high degree of variability between 
datasets [18, 20, 23]. Furthermore, inherent variation 
in tumor collection, processing, and storage between 

specimens can add an additional layer of variability within 
the tissue data set [34]. The current standard practice of 
RNA-seq normalization by library size may be inadequate 
for complex data sets involving varied samples, platforms, 
library kits, sequencing depth, and users [35]. Previous 
efforts have demonstrated that unaddressed ‘latent-hidden 

Figure 3: Top signaling pathways and enriched gene sets associated to stage comparisons. (A) Top five signaling pathways 
that are altered between stages. (B) Respective z-scores and color intensity that is correlated to expected relationship direction (gene 
expression from knowledge base) and observed gene expression (C) Venn diagram identifying DEGs that are unique or commonly regulated 
across or between all stages. (D) GO analysis of all dysregulated gene sets (FDR <0.05).
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variables’ during the normalization process can introduce 
unwanted expression heterogeneity and inadvertent 
biases [36–38]. These artifacts can subsequently deviate 
differential expression (DE) analysis downstream and 
generate higher false positive rates with reduced detection 
power for true differences [38].

In our study, we determined that normalization 
by library size was insufficient in removing the high 
degree of variability to justify a comparative analysis 
between the two data sets. A preliminary linear regression 
analysis between our cell lines and TCGA patient tumors, 
normalized solely by library size, displayed a global 
shift in higher raw count values for TCGA tumor data 
in all intra-stage comparisons (Supplementary Figure 1; 
left panel). These augmented raw count values clearly 
demonstrated the need for a better normalization method 
to ensure unbiased expression levels for all subsequent 
analyses.

Due to the need for better normalization, we 
utilized another normalization method to mitigate all 
possible innate biases in our study. The RUVg method is 
fundamentally a modified version of RUV-2 that adjusts 
for technical effects as described previously [39–41]. It 
performs a factor analysis on counts by identifying a set 
of negative control genes not affected by the biological 
covariates of interest, but are affected by the factors of 
unwanted ‘technical’ variation (technical effects are 
independent of biological conditions of interest). Other 
researchers that have employed the RUV normalization 
methods have successfully removed latent variables 
in bulk RNA-seq experiments [42–47]. In this study, 
expression variances and overall expression similarities 
between the two data sets, as demonstrated in the RLE 
and PCA plots, were markedly improved using RUVg 
normalization (Figure 1). Furthermore, subsequent DE 
analysis between stages yielded a much higher number 
of DEGs (Supplementary Table 2). This increase in 
sensitivity may be more reflective of the genes regulating 
changes that may be lost during standard library 
normalization procedures.

Establishing similarity in overall transcriptome 
between cells lines and tumors in the TCGA database 
using the RUVg normalization method allowed us to 
further investigate signaling pathways and enriched gene 
sets involved in cancer progression. Expression clustering 
analysis of DEGs in both instances, stage I and stage II, 
demonstrated better grouping by stage when compared 
to advanced stage III; suggesting that the expression 
profile in advanced stage EC is clearly distinct to early 
stages (Figure 2A). Furthermore, in contrast to an elevated 
number of upregulated genes between the early EC 
stages, a vast majority of genes exhibited downregulation 
by advanced stage III (Figure 2B). Likewise, prior 
studies have reported gene downregulation in advanced 
cancer stages as a consequence of heightened negative 
feedback in order to maintain network stability despite 

environmental and genetic stress [48, 49]. Another 
possibility, as demonstrated in a four-stage model study, 
indicates that the malignant transformation of tumors 
may be driven by the downregulation of genes to promote 
dedifferentiation [50]. 

In addition to distinguishing the expression pattern 
of genes between stages in our study, we also identified 
the top five signaling pathways that may be involved in 
cancer progression. Three of those pathways specifically 
the LXR/RXR activation, neuroprotective role for THOP1 
in Alzheimer’s disease, and glutamate receptor signaling 
pathways, shift from being up- to mostly downregulated as 
approaching advanced cancer stage III. Biological systems 
rely heavily on negative feedback mechanisms to maintain 
homeostasis. In signal transduction pathways, feedback 
inhibition is integral to dampening over activation 
of signaling output in response to external stimuli or 
growth factors; however in tumor cells this feedback 
inhibition is dysregulated by constitutively activated 
oncoproteins. Moreover, mutational occurrences resulting 
in the attenuation of negative feedback loop during cancer 
development may be a critical step in the transformation 
of tumors to a more aggressive metastatic phenotype  
[48, 49]. 

The LXR/RXR pathway is known for regulating 
cholesterol, glucose, and fatty acid metabolism in a 
tissue tissue- dependent manner. In addition to its role in 
metabolism, this pathway is correlated to carcinogenesis 
[51–58]. Currently, researchers have correlated obesity 
and elevated cholesterol levels as a major risk factor for 
malignancy in EC. A study using a luciferase reporter 
gene system demonstrated that the cholesterol metabolite, 
27-hydroxycholesterol (27HC), functions as an agonist 
for LXR. Stimulation of LXR resulted in the increase of 
LXR response element (LXRE) transcriptional activity to 
augment cell proliferation in the Ishikawa cell line [59]. 
In another study from the endometrium of ovariectomized 
C57BL/6 mouse given subcutaneous 17-β estradiol (E2) 
treatment and a high-fat diet (HFD) displayed a divergent 
action. Their IPA analysis demonstrated a decrease in 
the LXR/RXR signaling pathway whereas the NF-κB 
pathway was elevated [60]. Taken together, our findings 
suggests that an altered LXR/RXR signaling pathway may 
contribute to the progression of EC and markers identified 
in this paper should be further investigated. 

THOP1 encodes for zinc metalloendopeptidase 
EC 3.4.24.15 (EP24.15, thimet oligopeptidase), a 
neuropeptide processing enzyme that is central to the 
formation and degradation of many bioactive peptides. 
EP24.15 is also expressed in the periphery and hydrolyzes 
the neuropeptide, gonadotropin-releasing hormone 
(GnRH), to yield a biologically active metabolite GnRH-
(1–5) [61–66]. The decapeptide GnRH and GnRH 
analogs have demonstrated to exert an anti-tumorgenic 
effect in EC [67–70]. However, its metabolite GnRH-
(1–5), displays a divergent mechanism of action and 
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biological behavior from its parental peptide [71–73]. 
In earlier studies, GnRH-(1–5) mediated changes in 
GnRH-II expression and increased cell proliferation in the 
Ishikawa cell line [72, 73]. The mechanism for driving 
cell proliferation and enhanced migration by GnRH(1–5) 
is through its ability to stimulate the release of epidermal 
growth factor (EGF) through G protein-coupled receptor 
101 (GPR101) to activate the EGF receptor (EGFR) 
signaling pathway [74]. A subsequent study identified 
EGF release and increased cellular invasion to be 
dependent on matrix metallopeptidase (MMP)-9 activity; 
suggesting the possibility of its role in increasing cellular 
metastatic potential [75]. Future studies should address 
the relationship between increased THOP1 expression 
and enzymatic activity to all its related markers identified 
in this paper to ascertain its role in driving cancer 
progression. 

Glutamate is a primary excitatory neurotransmitter 
in the CNS. It has also been implicated in exerting 
proliferative effects on peripheral tumors through its 
behavior as a growth factor and subsequent activation of 
known oncogenic signaling pathways [76–79]. Recent 
studies have suggested that the altered expression of 
specific glutamate receptor subunits in cancer cells 
may regulate DNA repair and intracellular signaling. 
As a consequence, the stimulation of angiogenesis and 
cell proliferation leads to the promotion of malignant 
phenotype and metastatic potential [76, 77, 79]. All things 
considered, while these observations are intriguing, the 
biological function or purpose for the shift in expression of 
genes identified between stages still remains elusive and 
warrants further investigation.

In addition to signaling pathways, we also identified 
enriched gene sets to define stage-dependent changes 
correlated to biological relevance. As seen previously 
with the signaling transduction analyses, enriched gene 
sets involving neurogenesis and neuron part emerges 
several times between stage comparisons and may be 
a potential driver for metastatic transition across all 
cancer stages (Figure 3C and 3D). Abnormal neuronal 
growth and innervation within the endometrium has 
been correlated to infertility, uterine dysfunction, and 
endometriosis [80–86]. Previous studies have noted 
associations between the nervous system and cancer by 
implicating nerves as having an important role in tumor 
growth, invasion, and metastasis [87, 88]. Autonomic 
nerves, specifically the sympathetic nerves, demonstrated 
a significant role in progression of prostate, gastric, and 
breast cancers by regulating the cancer microenvironment 
and immune checkpoints [89–91]. Therefore targeting 
cancer neurogenesis with corresponding neuronal markers 
with possible autocrine function may be a promising 
development in new cancer treatment. 

In conclusion, the conventional method of staging 
classifications to define patients groups to standardize 
management has been limited due to inconsistencies in 

tumor behavior, heterogeneity, ambiguous histology, 
and overlapping molecular characteristics. Here we 
demonstrate that with the appropriate normalization, we 
were able to correlate progression in histological staging 
with transcriptomics that is conserved in both cells lines 
and TCGA patient tumor sets. The signaling pathways 
and markers identified in this paper may possibly be used 
to define and distinguish molecular changes between 
stages. We demonstrate a substantial down-regulation of 
genes between early and advanced staged tumors with an 
altered expression pattern of neuronal signaling pathways 
and markers. These findings may serve as a novel and 
promising development in the cancer field as the initial 
function in these neuronal markers may have a different 
role and function in the periphery. 

MATERIALS AND METHODS

Cell culture

The human endometrial adenocarcinoma cell line, 
the Ishikawa cell line [92], was obtained from American 
Type Culture Collection (ATCC) (Manassas, VA) [93]. 
The primary tumor-derived endometrial adenocarcinoma 
cell lines originated from patients with Stage IC Grade 
3 (ACI-181), Stage IIB Grade 2 (ACI-52), and Stage 
IIIC Grade 2 (ACI-80) International Federation of 
Gynecology and Obstetrics (FIGO) staging (gift from 
Dr. Risinger, Michigan State University, Department 
of Obstetrics, Gynecology and Reproductive Biology, 
Michigan State University, Grand Rapids 49503, MI, 
USA) (Supplementary Table 1). All cell lines used in this 
study are identified as having endometrioid histologic 
characteristics and were grown-maintained as previously 
described [74, 75]. In brief, cells were grown in phenol 
red free-DMEM (Cellgro-Mediatech, Inc., Manassas, VA, 
USA) supplemented with 10% FBS (Atlanta Biologicals, 
Lawrenceville, GA, USA) and 2 mM L-Glutamine 
(Quality Biological Inc., Gaithersburg, MD, USA). These 
cells were maintained at 37°C with humidified atmosphere 
of 5% CO2 until 90–100% confluence was reached. Cells 
were subsequently passaged in a 1:5 ratio into 10-cm 
dishes (Costar, Corning, NY, USA).

RNA extraction and data acquisition

Total RNA was extracted using Trizol reagent 
(Invitrogen, Carlsbad, CA, USA) according to 
manufacturer’s recommendations then purified with 
DNase I using RNeasy Mini Kit (Qiagen, Germantown, 
MD). Sequencing libraries were generated from purified 
RNA from cell lines as described previously [94, 95]. 
Illumina reads in FASTQ format were trimmed and 
cropped using Trimmomatic before aligning and mapping 
to Genome Reference Consortium Human Build 38 patch 
release 7 (GRCh38.p7) using HISAT Alignment v2.0. 
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Subsequent processing with Samtools v1.3.1 and HTSeq 
0.6.0 generated counts based on the number of reads that 
matched each gene in an annotation file in gene transfer 
format (GTF). All raw RNA-Seq data for the primary 
tumor-derived EC cell lines discussed in this publication 
have been submitted to the SRA database under the 
accession number SRP074707, and BioProject accession 
number PRJNA321028. RNA-Seq data acquisition from 
patients with similar histology, staging, and grading 
to the primary tumor-derived cell lines were obtained 
from TCGA cBio Cancer Genomics Portal (http://www.
cbioportal.org) in HTSeq file format. Count tables 
generated by HTSeq-count were imported into R version 
3.5.1. 

Normalization methods and assessment of data 
variation 

Previous studies have demonstrated that 
normalization in RNA-seq data is a crucial step to consider 
due to its impact on DEGs downstream [35–38, 96, 97]. 
Numerous factors in our study may introduce nuisance 
technical effects (i.e., multiple sequencing centers, low 
input, differences in sequencing depth, gene length 
biases, varying library kits, flow cells, batches, different 
experimenters) leading to unwanted bias in our expression 
sets [36, 40, 96]. Here we employed two normalization 
methods and determined which was most suitable approach 
under these experimental conditions. Normalization 
methods on raw counts using library size or RUVg method 
were processed as previously described [39–42]. The 
RUVg method, in brief, utilizes factor analysis to adjust 
counts for unwanted technical effects based on negative 
control genes that is determined a priori, in silico, which 
are not affected by the biological covariates of interest. 
The observed read counts are regressed on both the known 
covariates of interest and unknown nuisance variables 
(factors of unwanted variation, k). Although there is no 
clear cut way for determining k, the number of factors of 
unwanted variation, k = 3, for this study was selected by 
considering sample size (number of DEGs obtained) and 
the degree of technical effects (represented by error bar 
magnitude) demonstrated by varying k values [39–42]
(Figure 1A). 

For a preliminary determination of whether the 
global transcriptome of TCGA patients and cell lines are 
comparative, the counts per million (CPM) of each gene 
was log transformed to log2CPM. Each gene was plotted 
for TCGA patients vs. cell lines for each normalization 
method. The R2 values were assessed to determine how 
similar TCGA tumor samples were to cell lines. Scatter 
plots and R2 values were generated using SigmaPlot 10.0.

The effectiveness of normalization in removing 
variability and improving clustering between samples was 
assessed using RLE and PCA. RLE is a diagnostic box 
plot that is useful in visually presenting overall quality 

and distributions of transformed read counts of each 
gene across samples. The distribution of the log-ratio 
of a read count of each gene to the median count across 
samples that have unwanted variation removed should 
be centered at the zero line. Furthermore, comparable 
samples should display similar RLE distributions. The 
PCA plot displays clusters of samples by assessing 
similarities in overall gene expression [97–99]. It also 
describes variation and accounts for varied influences of 
the original characteristics. The principal components are 
orthogonal linear combinations of gene expression profiles 
for each sample. Similarly expressed groups will cluster 
by class in the first few PCs. Clustering will also highlight 
possible batch effects and outlying samples. The RLE and 
PCA analysis were performed using EDASeq packages in 
R [40]. 

Differential gene expression analysis and 
clustering

DEGs between each stage comparisons in cell 
lines and tumors were determined by negative binomial 
generalized linear models (GLMs) by weighted likelihood 
empirical Bayes with estimate dispersion within edgeR 
[35]. Genes with false discovery rate (FDR) < 0.05 were 
considered differentially expressed. To ascertain whether 
various normalization methods have an impact on 
downstream differential expression results, we considered 
changes in the number of DEGs obtained. Once a 
normalization method was selected, hierarchical heat maps 
of DEGs and respective volcano plots were generated to 
determine clustering of stage comparisons-sample types 
and to identify sets of up- and downregulated DEGs with 
each stage comparison (p < 0.05 and |log2FC| > 1). P-values 
instead of FDR values were used for all downstream 
bioinformatics analysis for statistical uniformity unless 
indicated. Differential gene expression analysis, heat maps, 
and volcano plots were performed using gplot function 
and packages edgeR [35], RUVSeq [40], EDASeq [40], 
ggplot2 [100], and Rcpp [101] in R environment.

Ingenuity pathway analysis and gene ontology 
analysis

The Core analysis feature of the IPA software 
(Ingenuity Systems, https://www.ingenuity.com [Qiagen]) 
was used to discover signaling pathways that may regulate 
cancer progression during stage comparison analysis. The 
list of DEGs for each stage comparisons were uploaded 
and categorized to related canonical pathways based 
on the IPKB. This analysis was set to include direct 
and indirect relationships and filtered to only consider 
molecules and/or relationships of the human species. 
Cutoffs for gene inputs were set to p < 0.05 and |log2FC| 
> 1 for down-and upregulated gene expression. Pathways 
with an overlapping p-value < 0.05 calculated by Fisher’s 

http://www.cbioportal.org
http://www.cbioportal.org
https://www.ingenuity.com
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exact test right tailed were considered to be significant. 
The z-score as indicated by the color intensity considers 
the match between expected relationship direction (gene 
expression from IPKB) and observed gene expression. 
Only z-scores <-2 or >2 were considered significant. The 
identification of gene sets that define stage-dependent 
changes or are conserved across all stage comparisons 
were depicted using Venn diagrams. Only DEGs that were 
positively mapped ID in the IPA analyses with a p < 0.05 
and |log2FC| > 1 were considered. The GSEA analyses 
using the Molecular Signatures Databases (MSigDB v6.2) 
on each venn zone was performed using tools from GSEA 
Broad Institute (http://software.broadinstitute.org/gsea/
msigdb/annotate.jsp) [102–104]. Gene sets corresponding 
to GO terms with FDR q-value < 0.05 were considered 
significantly enriched. Venn diagrams were performed 
using VennDiagram package in R.
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