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ABSTRACT
Background: The purpose of the study was to investigate the role of pre-treatment 

quantitative ultrasound (QUS)-radiomics in predicting recurrence for patients with 
locally advanced breast cancer (LABC). 

Materials and Methods: A prospective study was conducted in patients with LABC 
(n = 83). Primary tumours were scanned using a clinical ultrasound device before 
starting treatment. Ninety-five imaging features were extracted-spectral features, 
texture, and texture-derivatives. Patients were determined to have recurrence or no 
recurrence based on clinical outcomes. Machine learning classifiers with k-nearest 
neighbour (KNN) and support vector machine (SVM) were evaluated for model 
development using a maximum of 3 features and leave-one-out cross-validation.

Results: With a median follow up of 69 months (range 7–118 months), 28 patients 
had disease recurrence (local or distant). The best classification results were obtained 
using an SVM classifier with a sensitivity, specificity, accuracy and area under curve 
of 71%, 87%, 82%, and 0.76, respectively. Using the SVM model for the predicted 
non-recurrence and recurrence groups, the estimated 5-year recurrence-free survival 
was 83% and 54% (p = 0.003), and the predicted 5-year overall survival was 85% 
and 74% (p = 0.083), respectively.

Conclusions: A QUS-radiomics model using higher-order texture derivatives 
can identify patients with LABC at higher risk of disease recurrence before starting 
treatment.
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INTRODUCTION

Breast cancer is one of the most common cancer in 
women and is accountable for the leading cause of death 
[1]. Locally advanced breast cancer (LABC) is seen in 
approximately 10–30% of patients and is associated 
with a poor prognosis compared to early breast cancer 
(EBC) [2]. LABC encompasses advanced primary 
disease with or without metastatic involvement of 
regional lymph nodes. The 5-year survival for patients 
with LABC can vary between 50–80%, depending 
upon several factors including clinical characteristics 
and molecular features like the expression of estrogen 
(ER), progesterone (PR) receptors, or human epidermal 
growth factor receptor 2 (HER 2) expression [3–5]. 
Treatment typically involves a multimodality approach, 
including surgery, systemic therapy (chemotherapy, 
targeted therapy, endocrine therapy), and radiotherapy 
(RT). Translational and clinical research are 
investigating different strategies to improve outcomes 
and developing up-front biomarkers to identify patients 
at higher risk of disease recurrence. Several genetic 
tests are available in predicting tumour aggressiveness 
in parallel to what is classically ascertained through 
tissue assessment, with their role well established for 
early breast cancer [6–9]. Such tests have found utility 
in guiding clinicians to decide the role of treatment 
intensification (particularly chemotherapy) in patients 
predicted to harbour a relatively higher risk of disease. 
However, the application of such biomarkers is limited 
in LABC, where clinical outcomes could be potentially 
improved given the higher risk of relapse.

Imaging in oncology has a well-established role in 
diagnosis, staging, response assessment, and surveillance. 
In recent years, there has been a paradigm shift with the 
introduction of artificial intelligence in medicine, with 
the promising role of imaging to be used as a noninvasive 
biomarker in understanding tumour biology [10, 11]. 
More popularly known as “radiomics,” advanced imaging 
analysis has generated promise in disease stratification and 
predicting clinical outcomes. Several imaging modalities 
like mammography (MMG), ultrasonography (USG), 
computed tomography (CT), magnetic resonance imaging 
(MRI), and positron emission tomography (PET) have 
proved utility in the field of radiomics for breast cancer 
[12, 13]. Quantitative ultrasound (QUS) is similar to 
conventional USG with the advantage of capturing and 
analysis of raw radiofrequency (RF) data, which can 
better characterize tissue microstructure [14, 15]. The 
basis for QUS is its ability to detect the microstructural 
elastic properties, which are different between benign 
or malignant tissues or also between various grades of 
tumours. The commonly used spectral features include 
mid-band fit (MBF), spectral slope (SS), spectral intercept 
(SI), spacing among scatterers (SAS), acoustic scatterer 
diameter (ASD), average acoustic-scatterer concentration 

(AAC), and attenuation coefficient estimate (ACE). 
Texture analysis from spectral images using gray level 
co-occurrence matrix (GLCM) can extract second-
order imaging features like contrast (CON), correlation 
(COR), energy (ENE), and homogeneity (HOM), which 
can provide insights into different aspects of tumour 
heterogeneity. Studies have demonstrated the clinical 
efficacy of QUS in predicting response to neoadjuvant 
chemotherapy (NAC) in LABC [16–20], and in patients 
with head-neck malignancies treated with radiotherapy 
[21].

In this study, we investigated the role of QUS 
obtained before the start of treatment in predicting the 
risk of tumour recurrence in patients with LABC. The 
imaging features were obtained from the QUS imaging, 
which included spectral parameters, texture of spectral 
parameters (QUS-Tex1), and second-order texture 
analysis of QUS-Tex1 features (QUS-Tex1-Tex2). Model 
development was done using k-nearest neighbours (KNN) 
and support vector machines-radial basis function (SVM). 
To the best of our knowledge, this is the first study of 
QUS-radiomics to predict the recurrence groups in patients 
with LABC.

RESULTS

Clinical features 

A total of 83 patients were included in the final 
analysis. The median follow up was 69 months (range 
7–118 months) for all patients and 74 months (range 49–
118 months) for patients without any evidence of disease 
recurrence. The total number of patients with recurrence 
was 28, whereas 55 were free from any recurrence until 
the last follow up. The distribution of various features 
between the two patient groups (recurrence versus non-
recurrence) is summarized in Table 1. The most common 
histological type was invasive ductal carcinoma, found in 
92% of patients. The majority of the patients had hormone-
positive disease with ER+ and PR+ status in 58% and 52% 
of patients, respectively. Her2 expression was observed in 
35% of patients. 

Survival outcomes

The 3 and 5-year recurrence-free survivals (RFS) for 
the entire cohort were 77% and 68%, respectively. The 
median time to recurrence was 24 months (range 4–82 
months). Out of all recurrences, more than 80% occurred 
in the initial 4 years. The predominant pattern of initial 
recurrence was distant metastasis (DM) in 22 patients, 
followed by local relapse in 7, and regional nodes in 6 
(Supplementary Figure 1). The common sites of DM were 
bone, lung, and liver in 61%, 54%, and 46% of patients, 
respectively. The 3 and 5-year overall survival (OS) in the 
entire group was 89% and 79%, respectively. 
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Feature analysis and classifier performances

The representative B-mode, QUS parameter, texture 
and texture-derivative parametric maps for one patient, 
each with and without any recurrence, are presented 

in Figure 1. Two QUS-Tex1 features had a significantly 
different distribution between the two groups- SAS-COR 
(p = 0.025), ASD-ENE (p = 0.026) (Table 2). Another 
three QUS-Tex1-Tex2

 features exhibited significant 
differences-ASD-COR-CON (p = 0.042), SI-COR-CON 

Table 2: Features with differential distribution between the two groups with statistical significance 

Parameter
Recurrence No recurrence

p-value
Mean ± SEM Mean ± SEM

SAS-COR .3396 ± .02734 .3684 ± .06400 0.025
ASD-ENE .0354 ± .00853 .0510 ± .05399 0.026
ASD-COR-CON 5.30 ± 0.95 4.85 ± 0.85 0.042
SI-COR-CON 5.0289 ± .75007 4.6532 ± .76247 0.033
SI-COR-HOM .5484 ± .01998 .5585 ± .02659 0.049

Abbreviations: SEM: Standard error of the mean; SAS: Spacing among scatterers; ASD: Acoustic scatterer diameter; SI: 
Spectral slope; COR: Correlation; ENE: Energy; CON: Contrast; HOM: Homogeneity.

Table 1: Clinical characteristics for the two groups (recurrence vs. no recurrence)
Features Recurrence (n = 28) No recurrence (n = 55)

Variables Categories n % n %
Age Median (Range) 50 (29–79) years 48 (31–72) years
Menstrual status Premenopausal 16 56 33 60

Perimenopausal 1 4 3 6
Postmenopausal 10 36 17 30
Unknown 1 4 2 4

Laterality Right 15 54 27 49
Left 13 46 28 51

Histology IDC 25 89 51 92
ILC 2 7 1 2
Others 1 4 3 6

ER Status Negative 13 46 22 40
Positive 15 54 33 60

PR Status Negative 13 46 27 49
Positive 15 54 28 51

HER2 Status Negative 18 64 36 66
Positive 10 36 19 34

T stage T1 0 0 0 0
T2 7 25 28 50
T3 13 46 24 44
T4 8 29 3 6

N stage N0 5 18 15 27
N1 16 57 34 61
N2 4 14 3 6
N3 3 11 3 6

Abbreviations: IDC: Invasive ductal carcinoma; ILC: Invasive lobular carcinoma; ER: Estrogen receptor; PR: Progesterone 
receptor; HER2: Human epidermal receptor 2.
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(p = 0.033), and SI-COR-HOM (p = 0.049). The scatter 
plots indicating the distributions of these features 
between the two groups are presented in Figure 2. The 
scatter plots for all the 95 features have been included in 
Supplementary Figure 2.

 The classifier performances using KNN and 
SVM are summarized in Table 3. The best result was 
obtained with the SVM classifier (selecting from all 
95 features) with a sensitivity, specificity, accuracy, 
and AUC of 71%, 87%, 82%, and 0.76, respectively. 

Figure 1: (A) Pre-treatment B-Mode images, QUS parametric maps ((B) AAC, (C) MBF), QUS-texture maps ((D) AAC-CON, (E) MBF-
COR), and QUS-texture derivative maps ((F) AAC-CON-CON, (G) MBF-CR-COR) for one patient with recurrent disease (left panel) and 
one without recurrence (right panel). The colour-coded maps are generated over the region corresponding to the tumour using normalized 
values for individual features within the sub-ROIs. The colour scale on the right side represents the values for the individual features (B) 7 to 
64 dB/cm3, (C) −21 to 21 dB, (D) 0 to 34, (E) −0.43 to 0.94, (F) 0 to 53, and (G) −0.54 to 0.94. The scale bar represents 2 cm.
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Table 3: Classification performance of the two machine learning classifiers with the best-selected 
features

Classifier Features Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%) AUC Selected features

KNN QUS+ QUS-Tex1 84 54 70 0.73 ASD-COR 
SAS-HOM
 SAS-ENE

QUS+ QUS-Tex1+ 
QUS-Tex1-Tex2

84 68 76 0.78 ACE
AAC-CON-CON
AAC-ENE-HOM

SVM QUS+ QUS-Tex1 69 87 80 0.75 SAS
ASD-CON
MBF-COR

QUS+ QUS-Tex1+ 
QUS-Tex1-Tex2

71 87 82 0.76 SAS
ASD-CON
MBF-COR

Abbreviations: KNN: k-nearest neighbour; SVM: Support vector machine; AUC: Area under curve; QUS: Quantitative 
ultrasound; QUS-Tex1: QUS-texture; QUS-Tex1-Tex2: QUS-texture derivatives.

Figure 2: Scatter plots showing the features with the difference in distribution between the two groups (Recurrence vs. 
Non-recurrence) reaching the threshold of statistical significance (p < 0.05).
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Using the KNN model and again selecting from all 
features, the sensitivity, specificity, accuracy, and 
area under curve (AUC) were 84%, 68%, 76%, 0.78, 
respectively. The inclusion of third-order features 
(QUS-Tex1-Tex2) further improved the diagnostic 
performances remarkably for the KNN classifier 
from 70% to 76%, while for SVM, it had only a small 
performance increment, changing from 80% to 82%. 
The corresponding ROC plots for the models are 
presented in Figure 3A and 3B and the representative 
bar diagram in Figure 3C and 3D. 

 Finally, the model-based predicted groups were 
evaluated to investigate the impact on RFS and OS. The 
SVM model performed best in segregating the two groups, 
with the predicted 5-year RFS being 83% (predicted non-
recurrence) versus 54% (predicted recurrence), with a 
p-value of 0.003. The 5-year OS for the predicted non-
recurrence and recurrence groups using the SVM classifier 
was 85% and 74%, respectively (p = 0.08). The estimated 
RFS and OS plots using the SVM model have been shown 
in Figure 4. 

DISCUSSION

Breast cancer represents a heterogeneous disease 
entity with survival dependant upon several clinical, 
biological, and treatment-related factors. In-situ and early 
breast cancer lie on one end of the spectrum with excellent 
survival rates, whereas metastatic breast cancer represents 
a disease with a dismal prognosis [22–24]. Locally 
advanced breast cancer is associated with an intermediate 
prognosis, with disease recurrence more commonly 
encountered than earlier breast cancer. In recent decades, 
the identification of specific molecular pathways and the 
availability of systemic and targetted agents have helped 
to improve the outcomes to a certain extent. Still, there is 
an unmet need to develop biomarkers, which can further 
help refine existing risk-stratification and pave the way 
towards precision and personalized medicine. The study 
presented here presents a novel strategy of using imaging 
like QUS and artificial intelligence-based tools to predict 
patients with a higher risk of recurrence before initiating 
any treatments. 

Figure 3: The classifier indices for the two machine learning classifiers. (A and B) show the ROC curves using KNN and 
SBM classifiers, respectively, showing the effect of inclusion of higher-order imaging features (texture-derivatives). (C and D) are the bar 
diagrams representing the diagnostic indices (sensitivity, specificity, accuracy, and AUC) for the KNN and SVM model with and without 
the use of texture-derivatives. 
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Several genetic markers have established their 
role in stratifying risk recurrence in patients with EBC 
[6–8]. A 21-gene recurrence score had been used to guide 
treatment, particularly in EBC, showing improvement 
of clinical outcomes with consideration of adjuvant 
systemic therapy and treatment de-escalation in low-
risk patients [25, 26]. However, there is limited literature 
related to such genetic markers with clinical application 
in patients with LABC. Molecular profile has been shown 
to influence the recurrence risk in LABC, with ER/PR+/
HER2- tumours having better outcomes as compared to 
triple-negative cancers [27, 28]. Circulating microRNA 
and DNA methylation have been indicated to correlate 
with the clinical outcomes in patients with LABC [29, 
30]. The introduction of radiomics has shown promise of 
developing noninvasive biomarkers in risk stratification 
and response monitoring. Several radiomic studies have 
been adopted in breast cancer patients using different 
imaging modalities [12, 13]. Radiomic analysis of MRI 
scans has been correlated with the established genetic 
tools in prognostication of patients with breast cancer 
[31]. In a study including 294 patients with breast cancer, 
Park et al. demonstrated an MRI-based radiomic signature 
correlated with disease-free survival [32]. QUS-Radiomics 
obtained before starting treatment and early during NAC 
have also predicted patients’ final pathological response 
with LABC [16, 17]. Ha et al. demonstrated the utility of 
radiomic features obtained from PET/CT to be associated 
with treatment response and prognosis in patients with 
LABC [33]. 

 Ultrasound is a widely available portable imaging 
modality with rapid scan acquisition and significantly 
lower costs than other imaging modalities. Conventional 
B-mode US is commonly used in screening and diagnostic 
evaluation [34, 35], with morphological features 

demonstrating correlation with breast cancer biology to 
some extent [36, 37]. Compared to conventional B-mode 
imaging, QUS provides more detailed information as 
obtained from the unprocessed radiofrequency data and 
is machine-independent, thus less influenced by technical 
variations or subjective interpretations. QUS spectral 
parameters have been demonstrated to be related to tissue 
microstructural elastic properties. In preclinical studies, 
QUS has been shown to effectively detect cell death 
associated with various treatment modalities [14, 38]. 
Further clinical studies have demonstrated the efficacy of 
pre-chemotherapy QUS-radiomics in predicting responses 
to NAC with an accuracy of 88% [16]. In the current 
study, the pre-treatment QUS-radiomics parameters could 
be used to identify patients developing disease recurrence 
with an accuracy of 82% using an SVM-based model. The 
SAS (scatterer spacing) parameter was one of the selected 
features in the SVM model, suggesting a differential 
microstructural organization and architecture between 
the two risk groups with its influence on biological 
behaviour. In a previous study, the SAS and associated 
textural features were shown to help differentiate grade I 
from grade II/ III breast cancer, with tumour grade known 
to reflect cancer differentiation and aggressiveness [39]. 
The other two features selected in the SVM model were 
ASD-CON and MBF-COR (texture features). The ASD 
parameter reflects the microstructural size, while MBF 
represents scatterer size, shape, number, organization, and 
elastic properties. The texture features are particularly 
helpful in characterizing tissue heterogeneity. Intratumoral 
heterogeneity is a well-known entity in breast cancer, 
leading to the evolution of therapeutic resistance and 
the development of disease recurrence [40, 41]. It is, 
therefore, reasonable to assume during presentation that 
high-risk and low-risk tumours harbour diverse levels 

Figure 4: Predicted survival plots using support vector machine classifier predicted groups (predicted recurrence vs. predicted non-
recurrence)-recurrence-free survival (A) and overall survival (OS) (B).
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of intratumoral heterogeneity, which can be detected by 
advanced imaging analysis methods. QUS probes into 
tumour structure and is influenced by the organization at 
the cellular level. In this regard, it is important to note 
that third-order imaging features or texture-derivatives 
significantly improved here of the KNN model from 70% 
to 76% (modest improvement for SVM). It is possible 
the higher-order imaging features can further detect the 
heterogeneity at a deeper level helping in the refinement 
of the radiomics model. 

The 5-year RFS of 68% and 5-year OS of 79% in 
our study is comparable to previous reports [3–5]. As 
noted earlier, in EBC, genetic-based recurrence scores had 
initially shown the way towards the development of risk-
adapted treatment protocols [26, 42]. In the neoadjuvant 
setting, response-guided chemotherapy [43] or the 
addition of bevacizumab to docetaxel and trastuzumab 
[44] has been demonstrated to improve disease-free 
survival and response rates. It is crucial to identify in 
advance patients with an aggressive disease having a 
higher risk of recurrence, which can help prognosticate 
and design appropriate treatment intensification 
strategies. For instance, high-risk LABC patients could 
be investigated for additional systemic treatment options, 
including maintenance therapies, given the higher risk 
of distant metastases. Similarly, some patients clinically 
presenting with LABC can have biologically relatively 
indolent tumours, and careful de-escalation strategies 
can be explored in such cohorts avoiding or minimizing 
treatment-related toxicities. 

Limitations and future directions

The study presented here has a relatively small 
number of patients and has been expanded to continue in 
a larger population. It is possible with a higher number 
of patients, advanced strategies like deep learning can 
be used to improve classification performance and the 
reliability of generated radiomics models. Although we 
had a relatively longer follow up (median follow up >6 
years in patients without recurrence), small groups can 
exhibit late recurrence with a possible switch of the output 
groups. Based on the use of QUS-radiomics to predict 
the response to NAC, a randomized trial is currently 
underway to study the effect of adaptive chemotherapy 
(https://clinicaltrials.gov identifier NCT04050228). 

MATERIALS AND METHODS

Patient selection and treatment

This prospective, observational study was approved 
by the Sunnybrook Health Sciences Centre Research 
Ethics Committee and registered (https://clinicaltrials.gov 
identifier NCT00437879). The research was conducted 
following good clinical practice and as per the declaration 

of Helsinki. Written consent was obtained for all study 
participants. Patients with a diagnosis of LABC were 
deemed eligible for the study. All the patients were 
treated with neoadjuvant chemotherapy (NAC) followed 
by surgery in the form of breast-conserving surgery or 
mastectomy with sentinel lymph node biopsy or axillary 
dissection (according to clinical standards and patient 
preferences). Additional subsequent adjuvant treatment 
was carried out with radiation and systemic therapies 
(endocrine therapy, targeted therapy) according to 
standard institutional practice. Patients were seen in the 
clinic every 3–6 months in the first 2 years, and after that 
every 6–12 months or as indicated clinically. Recurrence 
was confirmed by clinical investigations, medical imaging 
and supplemented with tissue diagnosis where available 
and appropriate, based on the decision of the treating 
physicians. Patients without any evidence of recurrent 
disease who had a minimum follow up of 4 years or 
recurrence (any time point within 4 years) were included 
in this analysis. Patients with recurrence suggesting a 
new breast primary (e.g. recurrence involving different 
quadrant or contralateral breast) or second different 
primary malignancy (e.g. lung primary) were excluded 
from the analysis, as they were likely to be associated with 
different biological etiology. 

Acquisition of ultrasound data 

All patients were scanned using a clinical ultrasound 
device Sonix RP (Analogic Medical Corp., Vancouver), 
with a linear array transducer having a central frequency 
of 7 MHz (bandwidth 4–9 MHz). For digital RF data 
acquisition, a sampling frequency of 40 MHz was used 
with a 16-bit resolution. Scans were obtained before the 
initiation of any cancer-directed treatment. For imaging, 
the transducer was focused towards the centre of the 
tumour and was scanned at regular intervals of 1 cm. The 
primary tumour was contoured manually and designated 
as the region of interest (ROI). 

Image analysis

RF Data corresponding to the ROI was analyzed 
using a sliding window analysis with an overlap of 94% in 
the axial and lateral directions to generate sub-regions of 
interest (sub-ROI). The corresponding dimensions of the 
sub-ROIs were 2 mm x 2 mm. The RF data obtained from 
each sub-ROI was subjected to a fast Fourier transform 
(FFT) and normalized using a tissue-mimicking phantom 
to obtain power spectra. Individual QUS parameters 
were determined throughout the entire tumour-MBF, SS, 
SI, SAS, ASD, and AAC. An ACE parameter was used 
in the spectral correction and served as an independent 
feature as well. The QUS parameters from all the sub-
ROIs were determined, and the final values from the 
entire ROI served as first-order imaging features. Further 

https://clinicaltrials.gov
https://clinicaltrials.gov
https://clinicaltrials.gov 
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details related to data processing are described in previous 
publications [39].

 For the determination of second-order features, first, 
a parametric-coded map was generated for each of the 
QUS parameters (except ACE), accounting for individual 
values within the sub-ROIs, called QUS parametric 
maps. Texture analysis was carried out subsequently 
using GLCM, which computes the relation of the index 
pixel with the neighbouring ones at four different angular 
relations, 0°, 45° 90°, and 135°. Four GLCM features were 
analyzed-CON, COR, ENE, and HOM. These led to a total 
of 24 QUS-Tex1 features (from 6 QUS parametric maps, 
no parametric map generated for ACE).

 In order to obtain the third-order imaging 
parameters, 16 QUS-Tex1 features were used (the texture 
maps of SS and SAS were not used). Firstly, a colour-
coded map was regenerated from the values obtained 
from the texture values corresponding to the sub-ROIs. 
In a similar manner, the 4 GLCM texture analysis was 
repeated, which led to 64 QUS-Tex1-Tex2 features. The 
study proceeded with a total of 95 features (7 QUS, 24 
QUS-Tex1, 64 QUS-Tex1-Tex2). Each of these features was 
averaged from all the tumour slices obtained from a single 
patient, and the mean value was used for final analysis. 

Statistical analysis and machine learning 
classifiers

The patients were labelled using binary classes 
depending upon the final clinical outcomes, including 
recurrence (R) and non-recurrence (NR). The distribution 
of each feature between the two groups was tested using 
a Shapiro-Wilk test. Unpaired t-tests and Mann-Whitney 
tests were conducted for normally distributed data and 
non-parametric data, respectively. A p-value of <0.05 was 
considered statistically significant. Two machine learning 
classifiers were used for model development using 
forward feature selection algorithms- KNN and SVM. A 
maximum of three features was used for classification to 
avoid overfitting of data into the model. As the number 
of individuals was unevenly distributed between the 
two groups (recurrence versus non-recurrence), the data 
was balanced divided into several subsets prior to the 
application of the machine learning classifiers. Subsets 
were selected randomly from the entire group selecting 
proportionately equal number of patients with and without 
disease recurrence. Leave-one-out cross-validation was 
used to test the reliability and obtain the confusion matrix 
for the classifiers. The data were analyzed independently 
using first-order and second-order features (QUS+ 
QUS-Tex1) and then incorporating both using all 95 
features (QUS+ QUS-Tex1+ QUS-Tex1-Tex2) to evaluate 
the impact of higher-order features on classification 
performances. The AUC was obtained from receiver 
operating characteristics (ROC) analyses. Also, other 
indices like sensitivity, specificity, accuracy were obtained 

and compared between the outputs from the different 
classifiers. For processes of tumour segmentation, 
data processing, data extraction, and machine learning 
classification MATLAB R2011B (Mathworks, USA) 
were used. The Kaplan Meier product-limit method was 
used for survival analysis using the Statistical Package 
for the Social Sciences (SPSS V21, IBM Corporation, 
Armonk, New York, USA). The date of starting NAC was 
considered as the baseline for survival analysis. The final 
performance of the classifier models was tested using log-
rank tests (comparison of survival rates between predicted 
recurrence and predicted non-recurrence groups). 

Ethics approval and consent 

The study was conducted following the Declaration 
of Helsinki. The ethics committee of Sunnybrook Health 
Sciences Centre, Toronto, was involved in study approval, 
necessary data monitoring, and appropriate conduct of the 
research. The participants signed a written consent form 
prior to study accrual.

Data availability

Anonymized data will be shared based on an 
individual request in compliance with the institutional 
ethics committee policies.

CONCLUSIONS

QUS-Radiomic features obtained before the start 
of treatment can predict the risk of disease recurrence 
with reasonable accuracy. The incorporation of higher-
order imaging features in the form of texture derivatives 
leads to the improvement of the classifier performances. 
The noninvasive imaging biomarker can lead to future 
strategies in the prognostication of patients with LABC 
and pave the way towards personalized medicine.
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