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ABSTRACT
Cancer/testis antigens (CTAs) are strongly expressed in some solid tumors but 

minimally expressed in normal tissue, making them appealing therapeutic targets. 
KK-LC-1 (CXorf61) has cytoplasmic expression in gastric, breast, and lung cancer. We 
characterized the molecular subtypes of non-small cell lung cancer (NSCLC) expressing 
KK-LC-1 to inform rational clinical trials of T-cell receptor therapy (TCR-T) targeting 
KK-LC-1. 9790 NSCLC tumors that underwent whole transcriptome sequencing 
(Illumina NovaSeq) and NextGen DNA sequencing (NextSeq, 592 Genes and NovaSEQ, 
WES) at Caris Life Sciences (Phoenix, AZ) were analyzed. Tumors were split into 
quartiles based on KK-LC-1 expression and pathological and molecular differences 
were investigated. Adenocarcinoma had significantly higher KK-LC-1 expression 
than squamous cell carcinoma (median, 3.25 vs. 1.17 transcripts per million (TPM), 
p < 0.0001). Tumors with the highest quartile of KK-LC-1 expression had a greater 
proportion of tumors with high tumor mutation burden (TMB) (≥10 mutations per 
megabase; 44% vs. 28% in Q1, p < 0.001). Increased KK-LC-1 expression was 
associated with increased M1 macrophage abundance. Higher levels of KK-LC-1 
expression were seen in pan-wild type and KRAS mutated tumors and associated with 
high TMB. TCR-T therapy directed against KK-LC-1 should be considered in patients 
whose clinical features reflect these characteristics.

INTRODUCTION

Cancer testis antigens (CTA) are germ cell antigens 
that are typically minimally expressed in normal tissues, 

but commonly expressed in tumors. Because of this, they 
are appealing therapeutic targets with less potential for 
off target toxicity [1]. Kita-Kyushu lung cancer antigen-1 
(KK-LC-1), also known as CT 83 and CXORF61, is a 
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CTA containing 113 amino acids that maps to chromosome 
Xq22 and is not expressed in normal tissues except for the 
testis. It has been shown to be expressed in 82% of gastric 
cancer tumors and 52.9% of breast cancer tumors, with 
even higher detection rates in triple negative breast cancer 
[2, 3]. In lung cancer, surgical series have shown KK-
LC-1 to be expressed in about one-third of lung cancer 
tumors [1, 3–5]. In one study with Japanese patients, 
KK-LC-1 has been shown to be expressed at similar 
rates in adenocarcinoma and squamous cell carcinoma 
[5]. KK-LC-1 high expression was shown in a greater 
proportion of TNM stage II and III tumors compared to 
TNM stage I tumors [1]. There are no large series studying 
the prevalence of the disease in patients with stage IV 
NSCLC.

Cytotoxic T lymphocytes (CTLs) are an emerging 
modality for immunity against cancers, as antigen specific 
CTLs can be formulated to specifically target CTA 
expressing tumor cells. T-cell receptor therapy is designed 
to modify patient T cells with a selected T-cell receptor 
targeting a cancer testis antigen which can promote 
selective targeting of tumor antigens while limiting off 
target toxicity. One challenge is that not all patients have 
T cells that will effectively recognize their tumors. TCR-
Ts in order to be effective need a high affinity towards the 
cancer testis antigen and many times the T cells that would 
be designed to recognize these tumors are eliminated 
during the negative selection process in the thymus 
[6–8]. Fukuyama et al. identified the KK-LC-1 CTA by 
establishing a lung adenocarcinoma cell line and induced 
a CTL clone from regional lymph node lymphocytes of a 
patient [9]. More recently, Marcinkowski et al. identified 
a KK-LC-1 reactive T cell receptor from tumor infiltrating 
lymphocytes (TIL) in a patient with cervical cancer who 
had a subsequent complete tumor response to TIL therapy 
[10]. Paret et al. also showed strong antigen-specific 
response in HLA-A*02 transgenic mice with KK-LC-1 
encoding RNA in triple negative breast cancer cell lines. 
[11]. In addition, other cancer testis antigens such as 
MAGE-A4 and NY-ESO-1 have shown promise in lung 
cancer [6, 12].

The majority of non-small cell lung cancer 
(NSCLC) is diagnosed at an advanced, incurable stage. 
Five-year relative survival rate for all stages combined is 
21% and only 6% for lung cancer that has spread to distant 
sites, according to SEER data from 2009–2015 [13]. Lung 
cancer treatment has made tremendous strides in the past 

decade with advances in targeted therapies for EGFR, 
ALK, ROS1, BRAF V600E, MET exon 14 skip mutation, 
RET, NTRK, and most recently KRAS G12C along with 
checkpoint inhibitor immunotherapy in other variants 
of the disease. Targeted therapies have shown a median 
progression free survival of around 9–18 months with long 
term results showing 5-year survival of greater than 14% 
in EGFR patients and 4-year survival in ALK and ROS1 
gene rearrangement of 56.6% and 51.1% respectively 
[14–20]. While immunotherapy has shown significant 
improvements, standard of care immunotherapy with 
chemotherapy showed an ORR of 48% and a median PFS 
of 9 months and OS of 22 months [21].

Because the treatment algorithms have diverged 
between lung cancer subtypes that are amenable to 
targeted therapy or immunotherapy, positioning emerging 
treatments for future clinical trials requires understanding 
of which molecular subtype of lung cancer would be most 
appropriate for the new CTA directed immune treatments. 
Therefore, the aim of this study is to identify the molecular 
subtypes of lung cancer expressing KK-LC-1 to determine 
which patients would be most likely to benefit from a 
clinical trial of T cell receptor therapy (TCR-T) targeting 
KK-LC-1.

RESULTS

The study population included a total of 9790 
tumors with KK-LC-1 expression ranging from 
0–266 TPM. Tumors were then categorized into four 
groups based on quartiles of KK-LC-1 expression 
(Supplementary Table 1). We observed a relatively equal 
median age of patients across all four quartiles of KK-
LC-1 expression (Supplementary Table 1). Overall, 
there seemed to be a slightly higher prevalence of males 
in the lowest quartile (Q1) of KK-LC-1 expression and 
a higher prevalence of females in the highest quartile 
(Q4) of KK-LC-1 expression. (Table 1) We see an 
even greater proportion of adenocarcinoma tumors 
(1730/2448, 70.6%) in the tumors in Q4 compared 
to tumors (1294/2448, 52.9%) in Q1 (Supplementary 
Table 2). Adenocarcinoma tumors were mostly pan-
wild type (36.5%), KRAS mutated (35.4%), and EGFR 
mutated (16.3%) while squamous cell carcinoma tumors 
were even more predominantly pan-wild type (85.5%) 
(Supplementary Figure 1).

Table 1: Baseline characteristics of 9790 NSCLC patients
KK-LC-1 expression quartiles Total Female N (%) Male N (%) Median age
Q1 2448 1138 (46.5) 1310 (53.5) 69
Q2 2447 1295 (52.9) 1152 (47.1) 69
Q3 2447 1311 (53.6) 1136 (46.4) 69
Q4 2448 1320 (53.9) 1128 (46.1) 68
Total 9790 5064 (51.7) 4726 (48.3) 69
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Adenocarcinomas had significantly higher median 
KK-LC-1 expression than squamous cell carcinomas (3.25 
vs. 1.17 transcripts per million (TPM), p < 0.0001). We 
also saw a significant difference between squamous cell 
carcinoma and unclear or mixed (1.14 vs. 3.078 TPM, p < 
0.001). KK-LC-1 expression between other subtypes were 
not statistically different (Figure 1).

Tumors within the highest quartile of KK-LC-1 
expression (Q4) had a greater proportion of TMB > 

10 mutations per megabase (mt/MB) (44% vs. 28%) 
compared to Q1. No difference was seen in PD-L1 
expression (Figure 2). In adenocarcinoma, Q4 had a higher 
TMB (9 vs. 5 in Q1).

There was a statistically higher KRAS mutation 
prevalence in Q3/Q4 (34.8%/35.0%) than Q1/Q2 
(22%/29%) but a lower ALK fusion prevalence in Q3/4 
(1.0%/0.5%) compared to Q1/2 (3.3%/2.6%) (Figure 3A, 
3B). There is statistically higher expression of KK-LC-1 in 

Figure 1: KK-LC-1 expression by histological subtypes between adenocarcinoma, squamous cell carcinoma, adenosquamous 
carcinoma, and unclear or mixed carcinomas using a boxplot. TPM expression is represented here using a log scale.

Figure 2: IO markers in tumors in their respective quartile of KK-LC-1 expression that have TMB >= 10, MSI-H/
dMMR, and PD-L1 with TPS >= 1%.
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pan wild type (3.95 TPM) compared to tumors with EGFR 
mutation (1.95 TPM, p < 0.0001), ALK fusion (0.6 TPM, 
p < 0.0001), MET exon-14-skip (1.22 TPM, p < 0.0001), 
RET fusion (1.42 TPM, p = 0.0001), and ROS1 fusion 
(1.78 TPM, p = 0.0162) (Figure 4).

Actionable mutations (ALK, RET, ROS1) are 
significantly more prevalent in KK-LC-1 low expressors 
(Q1) where as KRAS mutations are significantly 
more prevalent in KK-LC-1 high expressors (Q4) 
(Supplementary Figures 2 and 3). 

Specifically, KRAS G12C mutations trended 
higher in KK-LC-1 Q4 when compared to Q1 (p = 
0.0258) (Supplementary Table 3). There was no 
significance in number of EGFR sensitizing or resistant 
mutations when comparing KK-LC-1 Q1 vs. Q4. 
(Supplementary Table 4) In addition, no significance 
in difference among BRAF mutations was seen across 
the KK-LC-1 expression quartiles (Supplementary 
Tables 5 and 6).

When comparing Q4 vs. Q1 in the tumor 
microenvironment for KK-LC-1, we see a greater 
proportion of M1 macrophages in Q4 tumors whereas 

there is a lower proportion of M2 macrophages and CD4+ 
T cells (Figure 5, Supplementary Figure 4).

DISCUSSION

Models of cancer tumorigenesis have focused 
cancer cells arising from molecular mutations in mature 
somatic cells. However, pluripotent stem cells can 
give rise to either tissue composed of mature somatic 
tissue or immature embryonic tissue by ectopically 
induced transcription factors [22]. Both hematopoietic 
and solid tumor cancer cells have transcriptional 
activity that mirrors that of pluripotent and multipotent 
stem cells [23]. These same transcription factors 
involved in the reprogramming of pluripotent cells 
have also been shown to be involved in vivo in tissue 
damage and senescence signaling [24]. Thus, it has 
been hypothesized that genes involved in early-stage 
embryogenesis and silenced after might be reactivated 
as a result of an insult or damage [25]. Targeting CTAs 
provides an opportunity to help patients based on 
recognition of this biology. 

Figure 3: (A) Prevalence of fusions based on KK-LC-1 expression quartiles. (B) Prevalence of oncogenic mutations based on KK-LC-1 
quartiles. Further breakdown of KRAS, EGFR, and BRAF mutations are noted in Supplementary Tables 3–5. NGS-ALK mutations refer to 
pathogenic/likely ALK mutations.
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Figure 4: KK-LC-1 expression by transcripts per million (log-scale) based on whether NSCLC tumors were pan-wild 
type, EGFR mutant, ALK fusion positive, cMET exon 14 skipping, RET fusion positive, and ROS1 fusion positive 
tumors. TPM expression is represented here using a log scale.

Figure 5: Tumor microenvironment in KK-LC-1 high vs low expressing (Q4 vs. Q1) in adenocarcinomas as measured by 
immune cell fraction calculated by QuantiSeq. The elements of the tumor microenvironment calculated include B cell, M1 macrophage, 
M2 macrophage, monocytes, myeloid dendritic cells, neutrophils, NK cells, CD4+ T cells, CD8+ T cells, and regulatory T cells.
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In determining the optimal patient population 
for future trials of KK-LC-1 targeted T cells, we see 
that there is a higher tumor mutation burden in NSCLC 
expressing high levels of KK-LC-1, as evidenced by 
higher percentages of tumors with TMB ≥10 in the highest 
quartile expression of KK-LC-1 and greater median 
TMB in Q4 versus Q1 (9 vs. 6 in Q1) (Figure 2). Also, a 
significantly higher percentages of KK-LC-1 expression 
was observed in pan wild type tumors and those with 
KRAS mutations compared to actionable oncogenic 
mutation tumors such as EGFR, BRAF, ALK, NTRK, RET, 
and ROS1 (Figure 3A, 3B). 

Meanwhile, in discordance with previous literature, 
we find that tumors with adenocarcinoma had significantly 
higher KK-LC-1 expression levels than squamous cell 
carcinomas (Supplementary Figure 1) [5]. This may be 
explained by the propensity for patients with molecular 
profiling to be of more advanced stage and the use of a 
more diverse North American patient population than prior 
surgical series [1, 4, 5, 9].

Tumor associated macrophages (TAMs) 
are involved in creating an immunosuppressive 
microenvironment. They affect tumor growth, 
angiogenesis, immune regulation, metastasis, and 
chemoresistance. M1 macrophages are part of the 
classically activated macrophage pathway and are 
known to secrete proinflammatory cytokines and express 
markers, notably MHCII, CD68, CD80, iNOS, pSTAT. 
M2 macrophages meanwhile exert an immunosuppressive 
phenotype, favoring tissue repair and tumor progression; 
they secrete anti-inflammatory cytokines such as IL-10, 
IL-13, and IL-4 along with expressing CD206. TAMs tend 
to acquire a M2-like phenotype acquired macrophages 
with macrophage polarization between M1 and M2 
macrophages [26]. Previous studies have shown that 
TAMs in NSCLC have been associated with angiogenesis 
and lymphangiogenesis with high M2 macrophage ratio 
and VEGF expression [27].

In evaluating our analysis, tumors with higher 
KK-LC-1 expression seem to favor a microenvironment 
enriched for cells representing innate immunity. There was 
significantly fewer CD4+ cells in Q4 tumors compared to 
Q1 and while not statistically significant fewer CD8+ and 
myeloid dendritic cells as well in Q4 tumors. Q4 tumors 
also trended to have more neutrophils and NK cells. In 
addition, we saw significantly greater representation of 
M1 macrophages while a significantly lower fraction 
of M2 macrophages was observed in highly KK-LC-1 
expressing tumors. Previous therapies shown to induce 
M1 macrophage polarization include agents used to treat 
lung cancer in paclitaxel and docetaxel [28]. Anti PD-L1 
treatment has been shown to remodel the macrophage 
compartment towards a pro-inflammatory phenotype 
favoring M1 macrophage expression [29]. We do not 
have treatment history available on our cohort, further 
studies looking at pretreated and untreated cohorts may be 

beneficial in delineating between which patients would be 
benefit from targeted therapy towards KK-LC-1.

Our findings show that the KK-LC-1 antigen is 
associated with a higher mutation burden. This suggests 
that patients with the highest KK-LC-1 expression are 
likely those with lung adenocarcinoma without targetable 
mutations aside from KRAS G12C. From our findings, 
the most likely candidates for a clinical trial using TCR-T 
therapy directed against KK-LC-1 would be patients who 
have been treated with checkpoint inhibitors and less 
likely to have been treated with tyrosine kinase inhibitors. 

There are several limitations of our study. First is 
that the study was performed using de-identified patient 
samples without the benefit of clinical history. Second, 
we did not include protein expression measurements 
which would be important for identification of lung 
cancer patients most likely to benefit from TCR-T 
therapy. Finally, although we identified those tumors 
with higher and lower numbers of transcripts for KK-
LC-1, we do not know the threshold of gene expression 
that would be relevant for targeted T-cells or for any 
other targeted immunotherapy. Establishing this minimal 
level will require interventional studies with clinical 
endpoints. Future directions include investigation of other 
cancer testis antigens particularly those antigens that are 
candidates for T-cell based immunotherapy [6, 12].

MATERIALS AND METHODS

Tumor samples

The study included NSCLC tumor samples 
submitted to Caris Life Sciences (Phoenix, AZ) for 
analysis. This study was conducted in accordance with 
guidelines of the Declaration of Helsinki, Belmont report, 
and U.S. Common rule. In keeping with 45 CFR 46.101(b)
[4], this study was performed utilizing retrospective, 
deidentified clinical data. Therefore, this study was 
considered IRB exempt and patient consent was not 
required.

mRNA expression (WTS)

KK-LC-1 expression data was evaluated using 
RNA sequencing. Full formalin-fixed paraffin-embedded 
(FFPE) specimens underwent review by a board-certified 
pathologist to measure percent tumor content and tumor 
size; a minimum of 20% of tumor content in the area for 
microdissection was required to enable enrichment and 
extraction of tumor-specific RNA. Qiagen RNA FFPE 
tissue extraction kit was used for extraction, and the RNA 
quality and quantity were determined using the Agilent 
TapeStation. Biotinylated RNA baits were hybridized 
to the synthesized and purified cDNA targets and the 
bait-target complexes were amplified in a post capture 
PCR reaction. The Illumina NovaSeq 6500 was used to 
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sequence the whole transcriptome from patients to an 
average of 60M reads. Raw data was demultiplexed by 
Illumina Dragen BioIT accelerator, trimmed, counted, 
PCR-duplicates removed and aligned to human reference 
genome hg19 by STAR aligner. For transcription counting, 
transcripts per million molecules was generated using 
the Salmon expression pipeline. Human All Exon V7 
bait panel (Agilent Technologies, Santa Clara, CA).  
Additionally, immune cell fraction was calculated by 
QuantiSeq [30] using this transcriptomic data.

Immunohistochemistry (IHC)

Immunohistochemistry (IHC) was performed on 
FFPE sections of glass slides. Slides were stained using 
automated staining techniques, per the manufacturer’s 
instructions, and were optimized and validated per CLIA/
CAO and ISO requirements. The primary PD-L1 antibody 
clone was 22c3 (Dako). Tumor Proportion Score (TPS) 
was measured, defined as the percentage of viable tumor 
cells showing partial or complete membrane staining at any 
intensity. The tumor was considered positive if TPS ≥ 1%.

Next-generation sequencing (NGS)

NGS was performed on genomic DNA isolated 
from FFPE tumor samples using the NextSeq platform 
(Illumina, Inc., San Diego, CA). Matched normal tissue 
was not sequenced. A custom-designed SureSelect XT 
assay was used to enrich 592 whole-gene targets (Agilent 
Technologies, Santa Clara, CA). All variants were detected 
with >99% confidence based on allele frequency and 
amplicon coverage, with an average sequencing depth of 
coverage of >500 and an analytic sensitivity of 5%. Prior 
to molecular testing, tumor enrichment was achieved by 
harvesting targeted tissue using manual microdissection 
techniques. Genetic variants were interpreted by molecular 
geneticists and categorized as “pathogenic,” “presumed 
pathogenic,” “pathogenic variant”, “variant of unknown 
significance,” “presumed benign” or “benign” according to 
the American College of Medical Genetics and Genomics 
(ACMG) standards. “Pathogenic”, “resumed pathogenic”, 
and “pathogenic variants” were counted as mutations 
whereas “benign”, “presumed benign”, and “variants of 
unknown significance” were excluded. Pan wild type tumors 
were defined as tumors that did not contain a “pathogenic,” 
“presumed pathogenic,” or “pathogenic variant” mutation. 
Specific information on criteria for BRAF and EGFR 
mutations are provided (Supplementary Tables 7 and 8).

Tumor mutational burden (TMB)

TMB was measured by counting all non-
synonymous missense, nonsense, inframe insertion/
deletion and frameshift mutations found per tumor 
that had not been previously described as germline 

alterations in dbSNP151, Genome Aggregation Database 
(gnomAD) databases or benign variants identified by 
Caris geneticists. A cutoff point of ≥10 mutations per MB 
was used to define high TMB. [31] Caris Life Sciences 
is a participant in the Friends of Cancer Research TMB 
Harmonization Project [32].

Microsatellite instability (MSI)

A combination of multiple test platforms was used 
to determine dMMR/MSI-H status of the tumors profiled, 
including fragment analysis (FA, Promega, Madison, WI), 
IHC (MLH1, M1 antibody; MSH2, G2191129 antibody; 
MSH6, 44 anti-body; and PMS2, EPR3947 antibody 
[Ventana Medical Systems, Inc., Tucson, AZ, USA]) and 
NGS (for tumors tested with NextSeq platform, 7,000 
target microsatellite loci were examined and compared 
to the reference genome hg19 from the University of 
California).

Data and statistical analysis

Prevalence of molecular alterations among KK-
LC-1 expression quartiles were analyzed using Chi-
square or Fisher Exact tests. KK-LC-1 TPM distribution 
among molecular subtypes and histological subtypes 
were analyzed using non-parametric Kruskal-Wallis 
testing. Similarly, tumor microenvironment cell fractions 
were analyzed among expression quartiles as described 
previously. A value of <0.05 was considered a trending 
difference; p values were further corrected for multiple 
comparison using Benjamini-Hochberg method to avoid 
type I error and an adjusted p value (i.e., q value) of <0.05 
was considered a significant difference.
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CTAs: Cancer/Testis Antigens; KK-LC-1/CXorf61: 
Kita-Kyushu Lung Cancer Antigen-1; CT 83: Cancer/
Testis Antigen 83; NSCLC: Non-Small Cell Lung Cancer; 
TCR-T: T-Cell Receptor Therapy; TPM: Transcripts Per 
Million; EGFR: Epidermal Growth Factor Receptor; 
ALK: Anaplastic Lymphoma Kinase; KRAS: Kirsten 
Rat Sarcoma Virus; CTLs: Cytotoxic T Lymphocytes; 
TIL: Tumor Infiltrating Lymphocytes; MAGE-A4: 
Melanoma-Associated Antigen A4; NY-ESO-1: New York 
Esophageal Squamous Cell Carcinoma 1; ROS1: Proto-
oncogene tyrosine-protein kinase ROS; BRAF: V-raf 
murine sarcoma viral oncogene homolog B1; MET: Exon 
14 Mesenchymal-to-Epithelial Transition Exon 14; RET: 
Rearranged During Transfection Proto-oncogene; NTRK: 
Neurotrophic Tyrosine Receptor Kinase; FFPE: Formalin-
Fixed Paraffin-Embedded; IHC: Immunohistochemistry; 
PD-L1: Programmed Death-Ligand 1; PD-1: Programmed 
Death-1; TPS: Tumor Proportion Score; NGS: Next-
Generation Sequencing; TMB: Tumor Mutational Burden; 
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MSI: Microsatellite Instability; TAMs: Tumor Associated 
Macrophages; MHC-II: Major Histocompatibility 
Complex Class II; CD68: Cluster of Differentiation 68; 
CD80: Cluster of Differentiation 80; iNOS: Inducible 
Nitric Oxide Synthase; pSTAT: Phosphorylated Signal 
Transducer and Activator of Transcription; IL-10: 
Interleukin 10; IL-13: Interleukin 13; IL-4: Interleukin 4; 
VEGF: Vascular Endothelial Growth Factor; CD4: Cluster 
of Differentiation 4; CD8: Cluster of Differentiation 8.
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