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AbstrAct:
Most BCR-ABL1-negative myeloproliferative neoplasms (MPN) carry an activating 
JAK2 mutation. Approximately 96% of patients with polycythemia vera (PV) harbors 
the V617F mutation in JAK2 exon 14, whereas the minority of JAK2 (V617F)-
negative subjects shows several mutations in exon 12. Other mutation events as 
MPL, TET2, LNK, EZH2 have been described in chronic phase, while NF1, IDH1, IDH2, 
ASX1, CBL and  Ikaros in blast phase of MPN. The specific pathogenic implication 
of these mutations is under investigation, but they may have a role in refinement 
of diagnostic criteria and in development of new prognostic models. Several trials 
with targeted therapy (JAK inhibitors) are ongoing mostly involving patients with 
PMF, post-PV MF and post-essential thrombocythemia (ET) MF. Treatment with 
ruxolitinib  and TG101348  has shown clinically significant benefits, particularly 
in improvement of splenomegaly and constitutional symptoms in MF patients. 
On the other hand, JAK inhibitors have not thus far shown disease-modifying 
activity therefore any other deduction on these new drugs seems premature.

Chronic myeloproliferative neoplasms (MPN) 
include three main diseases that are polycythemia vera 
(PV), essential thrombocythemia (ET) and primary 
myelofibrosis (PMF) [1].

As illustrated in Figure 1, ET patients may slowly 
progress to PV, especially those carrying the JAK2 
(V617F) mutation [2, 3]. Furthermore, PV and ET have a 
variable risk of transformation to secondary myelofibrosis 
(post-PV and post-ET MF) [4, 5] and subsequently to 
acute myeloid leukemia (AML) [6]. Finally, AML may 
occur directly from ET and PV without the intermediate 
step of MF, in which case AML may lack JAK2 mutation 
even if arising from JAK2-positive MPN [7]. Evolution to 
post-PV and post-ET myelofibrosis occurs at a rate of 10% 
to 20% after 15 to 20 years of follow-up [5]. Progression 
to AML is less frequent in PV and ET (2-7%) than in PMF 
(8-30%) [2, 8-10].

towArds moleculAr 
understAnding of mPn

The as yet unfinished story of MPN pathogenesis 
started with the discovery of the JAK2 (V617F) 
mutation;[11] afterwards many other mutations have 
been found in chronic (exon 12 mutations of JAK2, MPL, 
TET2, LNK, EZH2) and blast phase (NF1, IDH1, IDH2, 
ASXL1, CBL, Ikaros ) of MPN, some involving JAK-
STAT signaling activation, others chromatin remodeling 
and others leukemic transformation. Mutations with 
a gain of function of JAK2, MPL, CBL and those with 
a loss of function of LNK and NF1 activate the JAK-
STAT pathway[12] leading to a final phenotype of MPN 
with alteration of immune response, inflammation, 
angiogenesis, proliferation and resistance to apoptosis 
(Figure 2). This pathway is the target of new JAK2 
inhibitors.
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mutations mainly found during chronic phase of 
mPn

JAK2 (V617f)

JAK2 (V617F) mutation (Janus kinase 2), occurring 
within exon 14 of JAK2 and located on 9p24 is the most 
frequent mutation in MPN, ranging from roughly 96% in 
PV to 65% in ET and PMF.[11, 13] This mutation affects 
the auto-inhibitory domain (JH2, pseudokinase) of JAK2 
leading to constitutive activation of JAK2 and JAK/STAT 
signaling. In retroviral mouse models JAK2 (V617F) 
confers a PV-like phenotype with a final evolution to 
MF,[14] whereas when modulating allele burden, lower 
mutant load generates thrombocythemia and higher 
mutant burden results in polycythemia [15]. This means 
that an increased signaling through JAK2 (V617F) may 
be responsible for a PV phenotype, as demonstrated in 
patients [13]. Clinical phenotype does not depend only on 
allele burden, in fact, downstream of JAK2, an enhanced 
phosphorylation of STAT1 or STAT5 may promote 
megakaryopoiesis or erythropoiesis [16].

JAK2 exon 12 mutations

JAK2 exon 12 mutations have been described in 
JAK2 (V617F)-negative PV and cover less than 2% of PV 
diagnoses [17]. Seventeen different mutations have been 
described with N542-E543del, K539L, and E543-D544del 
as the most frequent ones [18]. Exon 12 mutations result 
in strong ligand-independent signaling through JAK2 
as demonstrated by the high levels of phospho-JAK2 
and also of phospho-ERK1 and phospho-ERK2 [17], 

highlighting the cross talking with the Ras–ERK signaling 
pathway. Compared with JAK2 (V617F)-positive PV 
patients, those with exon 12 mutations had significantly 
higher hemoglobin level and lower platelet and leukocyte 
counts at diagnosis but similar incidences of thrombosis, 
myelofibrosis, leukemia, and death [18].

mPl mutations

The MPL (myeloproliferative leukemia virus) 
gene, located on 1p34, can comprise different mutations 
within exon 10 targeting the transmembrane domain of 
MPL receptor [19]. The parent of these mutations is the 
W515L, resulting in constitutive activation of the JAK/
STAT pathway. Mutation frequency is estimated at 3-5% 
for ET and 8-10% for PMF.[20, 21] In W515L-murine 
models, the mutation confers a PMF-like phenotype with 
thrombocytosis, splenomegaly, and fibrosis. In some 
instances MPL mutations and JAK2 (V617F) coexist as 
two independent clones or two subclones [20], revealing 
the genetic complexity of MPN. 

tet2 mutations

TET2 (ten eleven translocation), a putative tumor 
suppressor gene located on 4q24, can be affected by an 
array of frameshift, nonsense and missense mutations [22, 
23]. Experiments with NOD–SCID mice suggest that TET2 
might be involved in self-renewal pathways relevant to 
hematopoietic transformation [23]. Hierarchically, TET2 
mutations occur before or after the acquisition of JAK2 
mutations or may be an independent event [24]. In a large 
cohort of MPN patients, TET2 mutations were detected 
in 16% of PV, 5% of ET, 17% of PMF, 14% of post-PV 
MF, 14% of post-ET MF and 17% of blast phase MPN; 
but TET2 mutations are also described in other myeloid 
malignancies such as myelodisplastic syndromes (MDS), 
MPN/MDS syndromes and acute myeloid leukemia with 
variable, although not unequivocally defined, prognostic 
impact.

ET PV

MF AML

ET

Thrombosis

Hemorrhage

figure 1: natural history of myeloproliferative 
neoplasms. Most frequent clinical complications in MPN 
patients are thrombosis, whereas hemorrhage is  above all 
observed in essential thrombocythemia (ET) patients. ET may 
slowly develop into polycythemia vera (PV), especially if it 
carries the JAK2 (V617F) mutation. PV and ET may progress 
to myelofibrosis (post-ET, post-PV MF) and then turn into acute 
myeloid leukemia (AML), although they may evolve into AML 
even without showing a MF phase. 

figure 2: mPn mutations activating stAt3/5. Mutations 
of JAK2, MPL and CBL (due to gain of function) and mutations 
of LNK and NF1 (due to loss of function) activate STAT3/5 
which, through nuclear signal transduction,  determines  an 
amplification of immune response, inflammation, angiogenesis 
and proliferation, mostly modulated  by higher circulating 
cytokines levels. STAT3/5 activation also confers resistance 
to apoptosis which promotes and supports myeloid precursor 
proliferation.
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lnK mutations

LNK, located on 12q24.12, encodes for LNK, a 
plasma membrane-adaptor protein whose functions 
include inhibition of wild type and mutant JAK2 
signaling [25]. In fact, LNK is a negative regulator of 
thrombopoietin-mediated JAK2 activation. It’s intriguing 
that LNK-deficient mice exhibit increased number of 
megakaryocytes and erythrocyte progenitors, as well as an 
expanded hematopoietic stem cell pool with enhanced self 
renewal [26]. Loss of function mutations of LNK situated 
within exon 2 have been described at low frequency in ET 
and PMF, and in erythrocytosis with low erythropoietin 
[27, 28].

eZH2 mutations

Enhancer of zeste homolog 2 (EZH2) located on 
7q36.1 encodes the catalytic subunit of the polycomb 
repressive complex 2 (PRC2), a highly conserved histone 
H3 lysine 27 methyltransferase that influences stem cell 
renewal by epigenetic repression of genes involved in 
apoptosis [29]. EZH2 has oncogenic activity. Different 
mutations have been found in patients with myeloid 
malignancies with a mutation frequency of 12% in MDS/
MPN and of 13% in MF [29].

mutations mainly found outside chronic phase of 
mPn

nf1 mutations

NF1 (neurofibromatosis-1) (17q11.2 ) is 
associated with the hereditary von Recklinghausen’s 
neurofibromatosis. It has been shown that these patients 
have an increased risk of developing various tumors 
including myeloid leukemia [30]. NF1 functions as 
a negative regulator of the RAS signal transduction 
pathway, cross-talking with the JAK-STAT pathway, and 
loss of NF1 can lead to a progressive myeloproliferative 
disorder. NF1 mutations were described in few patients 
with post-ET and post-PV MF, while no patients with 
chronic phase MPN carried these mutations [31].

idH1 and idH2 mutations

Isocitrate Dehydrogenase 1 and 2 (IDH 1 and IDH2) 
are located at 2q33.3 and 15q26.1, respectively.[32] IDH1 
mutated protein produces 2-hydroxyglutarate (2-HG). 
Although the role of 2-HG in tumor initiation and growth is 
not fully understood, this putatively oncogenic metabolite 
plays a role in MPN progression to leukemia besides the 
well defined role in the pathogenesis of gliomas [33].The 
frequency of these mutation in chronic MPN such as PV, 
ET and PMF is under 5%, but it becomes 21% in post-
MPN AML [34].

AsXl1 mutations

ASXL1 (Additional Sex Combs-like 1) is located 

on 20q11.1 and belongs to a family of three identified 
members that encode poorly characterized proteins 
regulating chromatin remodeling, enhancing transcription 
of certain genes while repressing the transcription of 
others.[35] Mutations, mainly frameshift and nonsense, 
occur within exon 12. Both TET2 and ASXL1 alterations 
lead to an increase in the program of self-renewal in MPN 
progenitors through modifications of DNA and histone 
regulation. Mutations within ASXL1 are found in 8% of 
MPN, 11% of MDS, 43% of chronic myelomonocytic 
leukemia, 7% of de novo AML, and 47% of secondary 
AML [35].

cbl mutations

The casitas B-lineage lymphoma (c-CBL) gene is 
located on 11q23.3. CBL is a well characterized protein 
that plays both negative and positive regulatory roles in 
tyrosine kinase signalling.[36, 37] CBL targets a variety 
of activated tyrosine kinases for degradation and may 
also serve as an adaptor by recruiting some downstream 
transduction components. Mutations in this gene are more 
frequent in juvenile myelomonocytic leukemia (17%) 
than in MPN (6% in PMF) [38].

iKAros mutation

The transcription factor Ikaros encoded by the IKZF1 
gene (7p12) has a role in the regulation of hematopoiesis. 
In murine models, deficiency of Ikaros function may 
induce lymphoproliferative disorders and B- and T-cell 
leukemia, but also anemia and thrombocytopenia. In 
MPN, hemizygous loss of IKZF1 was detected in 21% of 
post-MPN leukemia and in 0.2% of chronic phase MPN 
indicating oncogeneic properties of IKAROS defects 
[39]. Post-MPN AML involving Ikaros may be due to the 
genetic instability after Ikaros deletion or, alternatively, 
by the recently documented interaction of Ikaros with the 
JAK-STAT pathway.

towArds new tArgeted tHerAPies 

Many drugs are now under investigations targeting 
different pathways critical for MPN development, such 
as the JAK-STAT (JAK2-inhibitors: INCB018424, 
TG101348, CEP701, CYT387, SB1518, AZD1480, 
XL019, LY2784544), the mTOR (everolimus), the MAPK 
(erlotinib), and the NF-Kb (bortezomib) pathways, or 
act through remodeling chromatin with a key role in 
epigenetics (givinostat, panobinostat, vorinostat). For 
a best update on new trials, we advise to check www.
clinicaltrials.gov.

Most of JAK2 inhibitors are small molecules that act 
by competing with ATP for the ATP-binding catalytic site in 
the kinase domain. Preclinical studies have demonstrated 
activity of these drugs by direct inhibition of interleukin-6 
signaling and of proliferation of JAK2(V617F)-positive 
Ba/F3 cells [40, 41]. In mouse models of JAK2 (V617F)-
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MPN, JAK2 inhibitors markedly reduced splenomegaly 
and preferentially eliminated neoplastic cells, resulting in 
significantly prolonged survival of mice. While treatment 
with a JAK2 kinase inhibitor ameliorates the MPN 
phenotype, it does not eliminate the disease-initiating 
clone [42].

Taking together all available clinical data on MPN, 
one may conclude that JAK2 inhibitors give a benefit 
to patients with MF, by reducing spleen size of ~ 50% 
in approximately 40-50% of patients and by abolishing 
symptoms in the vast majority of MF patients. However, 
effect on these disease manifestations should be balanced 
with the safety profile. Anemia and thrombocytopenia are 
on-target toxicities expected with all JAK2 inhibitors. 
Other toxicities may involve non-JAK2 targets, as in 
case of gastrointestinal events during therapy with JAK2 
inhibitors with off-target activity against FLT3 (CEP 701, 
TG101348, SB1518). For the current paper, we decided to 
report only data from the most promising JAK2 inhibitors, 
such as INCB018424 and TG101348, whose results are 
already available as full paper.

incb18424, ruxolitinib

A phase I/II trial with ruxolitinib (JAK1, JAK2 
inhibitor, orally bioavailable) was conducted in 152 
patients with PMF or post-PV/post-ET MF [40]. Eligible 
subjects were therapy-requiring patients, refractory, 
relapsed, intolerant to previous therapy, or patients with 
intermediate or high-risk Lille score, if at diagnosis. Main 
exclusion criteria were thrombocytopenia (platelets < 100 
x109/L) and neutropenia (ANC <1500 x109/L). The results 
available to date can be summarized in the following 
points. First, 15 mg BID (10 mg BID if platelet count 
<100 x109/L) was the best starting dose. Second, applying 
IWG-MRT criteria, 44% of patients obtained a clinical 
improvement (CI) of spleen size (≥50% reduction from 
baseline) by palpation at 3 months and responses were 
maintained at 12 months in more than 70% of patients. 
The majority of patients had ≥50% improvement in 
constitutional symptoms due to the activity against pro-
inflammatory cytokines. Among red blood cell (RBC) 
transfusion-dependent patients, 14% become RBC 
transfusion-independent. Third, no differences were 
reported in term of response rates according to disease type 
(primary or secondary MF) or JAK2 (V617F) mutational 
status. Fourth, non-hematologic toxicity occurred in less 
than 6% of patients and was usually grade 2. At a dose 
of 15 mg BID, grade 3 thrombocytopenia occurred in 
3% of patients and new onset of anemia in 8% of RBC 
transfusion-independent patients. Thrombocytopenia was 
more frequent if platelet count < 200 x109/L at treatment 
start; however, this toxicity proved to be reversible.

Two randomized trials with ruxolitinib are ongoing 
in MF patients: COMFORT I, randomizing ruxolitinib 
versus placebo, and COMFORT II, randomizing 
ruxolitinib versus best available therapy. The primary 

endpoint was the number of subjects achieving ≥ 35% 
reduction in spleen volume from baseline to week 24 for 
COMFORT I and the number of subjects achieving ≥ 35% 
reduction in spleen volume from baseline to week 48 for 
COMFORT II. Media release has recently revealed that 
both trials have met the primary endpoint.

tg101348, sAr302503

A phase I trial with TG101348 (JAK2 inhibitor, 
orally bioavailable) was conducted in 59 patients with 
PMF or post-PV, post-ET MF [41]. Eligible subjects 
were intermediate and high-risk patients unresponsive 
to current treatments. Main exclusion criteria were 
thrombocytopenia (PLT < 50 x109/L) and neutropenia 
(ANC <1000 x109/L). The results available to date can 
be summarized in the following points. First, maximum 
tolerated dose (MTD) was 680 mg/day and dose-limiting 
toxicity (DLT) was a reversible and asymptomatic increase 
in the serum amylase level. Dose chosen for a phase II/
III trial was 400 mg or 500 mg daily. Second, applying 
IWG-MRT criteria of response, 59% of patients achieved 
CI of spleen size by palpation at 6 months. The majority 
of patients with constitutional symptoms, fatigue, pruritus 
had a durable resolution without a measurable effect on 
cytokines. Across doses, leukocytosis and thrombocytosis 
were normalized at 12 months in 57% and 90% of patients. 
Third, no differences were reported in term of response 
rate according to JAK2 (V617F) mutational status. Fourth, 
39% of patients with more than 20% JAK2 (V617F) 
allele burden at enrollment had a reduction of mutation 
load exceeding 50% at 12 months. Fifth, grade 3 to 4 
hematologic adverse events included anemia (occurring 
in 35% of 37 patients who were not RBC transfusion 
dependent at baseline), thrombocytopenia (24%) and 
neutropenia (10%). At doses ranging between 240 mg 
and 520 mg, 2 of 5 (40%) RBC transfusion-independent 
patients became RBC transfusion-dependent and 2 of 9 
(22%) had grade 3/4 thrombocytopenia. The main non-
hematologic adverse events included all grades nausea 
(69%), diarrhea (64%) vomiting (58%), all self-limited 
and controlled by symptomatic treatments. Asymptomatic 
increase of lipase, AST, ALT, creatinine have been 
reported in roughly one quarter of patients.

conclusion

The discovery of new oncogenetic mutations in MPN 
has enriched our knowledge in these diseases resulting 
in the refinement of diagnostic criteria and in potential 
advantages in prognostication. JAK2 inhibitors can be 
beneficial to patients with improvement of spleen size and 
constitutional symptoms. For the time being, these are the 
most relevant conclusions on these new small molecules 
with anti-JAK2 properties and any other deduction seems 
premature. 
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