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ABSTRACT
Although basal cell carcinoma (BCC) is often managed successfully with surgery, 

patients with locally advanced BCC (laBCC) or metastatic BCC (mBCC) who are not 
candidates for surgery or radiotherapy have limited treatment options. Most BCCs 
result from aberrant Hedgehog pathway activation in keratinocyte tumor cells, caused 
by sporadic or inherited mutations. Mutations in the patched homologue 1 gene that 
remove its inhibitory regulation of Smoothened homologue (SMO) or mutations in 
SMO that make it constitutively active, lead to Hedgehog pathway dysregulation and 
downstream activation of GLI1/2 transcription factors, promoting cell differentiation 
and proliferation. Hedgehog inhibitors (HHIs) block overactive signaling of this 
pathway by inhibiting SMO and are currently the only approved treatments for 
advanced BCC. Two small-molecule SMO inhibitors, vismodegib and sonidegib, 
have shown efficacy and safety in clinical trials of advanced BCC patients. Although 
these agents are effective and tolerable for many patients, HHI resistance occurs in 
some patients. Mechanisms of resistance include mutations in SMO, noncanonical 
cell identity switching leading to tumor cell resistance, and non-canonical pathway 
crosstalk causing Hedgehog pathway activation. Approaches to managing HHI 
resistance include switching HHIs, HHI and radiotherapy combination therapy, 
photodynamic therapy, and targeting Hedgehog pathway downstream effectors. 
Increasing understanding of the control of downstream effectors has identified 
new therapy targets and potential agents for evaluation in BCC. Identification of 
biomarkers of resistance or response is needed to optimize HHI use in patients with 
advanced BCC. This review examines HHI resistance, its underlying mechanisms, and 
methods of management for patients with advanced BCC.

INTRODUCTION

Basal cell carcinoma (BCC) is the most common 
keratinocyte tumor and human malignancy worldwide 
[1, 2]. In the United States, the overall lifetime risk of 

developing BCC is estimated to be at least 20%; the 
incidence rate and the associated healthcare costs increase 
annually [3]. Major risk factors for the development of 
BCC include age and ultraviolet light exposure [3]. Most 
cases of BCC are treated surgically, which typically 
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has an excellent prognosis [4, 5]. Standard excision or 
curettage and electrodessication are often used for low-
risk lesions, and Mohs micrographic surgery is often 
effective for treating high-risk tumors [4]. However, a 
subset of advanced BCC cases that includes both locally 
advanced BCC (laBCC) and metastatic BCC (mBCC) are 
not amenable to surgery due to high morbidity and risk for 
severe disfigurement [1, 6].

The majority of BCCs have aberrant activation 
of the Hedgehog signaling pathway, most often from 
inactivating mutations in a negative regulator, patched 
homologue 1 (PTCH1), or less often from activating 
mutations in a positive regulator, Smoothened homologue 
(SMO) [7, 8]. Dysregulation of the Hedgehog signaling 
pathway leads to activation of transcription by the 
transcription factors GLI1 and GLI2 (Figure 1) [9]. In 
keratinocytes, the Hedgehog signaling pathway controls 
cell differentiation and proliferation to maintain cutaneous 
stem cell populations and regulate the development of 
sebaceous glands and hair follicles [10]. 

Hedgehog pathway inhibitors (HHIs) are the only 
US Food and Drug Administration (FDA)-approved 
pharmacologic treatment for patients with advanced 
BCC [4]. Vismodegib (Erivedge®, Genentech Inc., South 
San Francisco, CA) and sonidegib (ODOMZO®, Sun 
Pharmaceutical Industries, Inc., Cranbury, NJ, USA) are 
two oral HHIs indicated for the treatment of adults with 
laBCC following surgery or radiation therapy or for those 
who are not candidates for surgery or radiation therapy 
[11, 12]. Vismodegib is also indicated for the treatment of 
adults with mBCC in the US [12]. These agents are small 
molecule inhibitors of SMO that prevent the activation of 
GLI1 and GLI2. 

The efficacy and safety of vismodegib was 
investigated in three main clinical trials: the ERIVANCE 
study, the STEVIE study, and the MIKIE study [13–15]. 
Sonidegib was evaluated in the phase 2 BOLT clinical trial 
at 6, 12, 30, and 42 months [16–19].

The phase 2, multicenter, international, non-
randomized ERIVANCE study (NCT00833417) evaluated 
a continuous regimen of vismodegib 150 mg/day in 63 
patients with laBCC and 33 patients with mBCC [13]. In 
the primary analysis, objective response rate (ORR) by 
independent review, was 43% for patients with laBCC 
and 30% for patients with mBCC; in both cohorts, 
most patients had tumor shrinkage. The most common 
grade 3–4 adverse events (AEs) were muscle spasms, 
weight loss, fatigue, and loss of appetite; the rate of 
discontinuation due to AEs was 12% [13].

The STEVIE study (NCT01367665), a phase 2, 
single-arm, multicenter, international, non-randomized, 
open-label study, evaluated vismodegib in elderly 
patients (median age of 72 years) with a high incidence 
of comorbidities—a population similar to clinical 
practice. Patients with laBCC (n = 1119) or mBCC (n = 
96) received vismodegib 150 mg/day [14]. The primary 

endpoint was safety. The most common treatment-
emergent AEs (TEAEs; ≥ 20% of patients) were muscle 
spasms, alopecia, dysgeusia, and decreased weight, 
similar to the profile observed in ERVIANCE [13, 14]. 
Vismodegib exposure ≥ 12 months did not result in 
increased incidence or severity of TEAEs, and the rate of 
discontinuation due to TEAEs was 31%. Among patients 
with measurable disease at baseline, investigator-assessed 
responses occurred in 68.5% of patients with laBCC and 
36.9% of patients with mBCC [14].

The randomized, double-blind, regimen-
controlled, intermittent dosing, phase 2 MIKIE study 
(NCT01815840), investigated vismodegib in adult 
patients with multiple BCCs amenable to surgery, as 
well as patients with basal cell nevus syndrome [15]. 
Patients were randomized 1:1 to treatment A (150 mg oral 
vismodegib once daily for 12 weeks, followed by three 
rounds of 8 weeks of placebo daily, then 12 weeks of 150 
mg vismodegib once daily [n = 116]) or treatment B (150 
mg oral vismodegib once daily for 24 weeks, then three 
rounds of 8 weeks of placebo daily followed by 8 weeks 
of 150 mg vismodegib once daily [n = 113]) [15]. The 
primary endpoint was percent reduction from baseline in 
clinical BCCs at week 73 [15]. Mean percent reduction 
in BCCs from baseline to the end of the study was 62.7% 
(95% confidence interval [CI] 53.0–72.3) and 54.0% 
(43.6–64.4) for treatment groups A and B, respectively.
[15] Overall, 94% and 97% of patients in treatment groups 
A and B, respectively, experienced TEAEs, while the 
most common AEs grade 3 or greater included muscle 
spasms, increased blood creatine phosphokinase, and 
hypophosphatemia [15].

The safety and efficacy of sonidegib, another FDA-
approved HHI for advanced BCC, was evaluated in the 
phase 2, multicenter, randomized, double-blind BOLT 
clinical study (NCT01327053) [11, 16–19]. Patients 
with laBCC not amenable to surgery or radiotherapy or 
mBCC received sonidegib 200 mg (n = 79) or 800 mg 
(n = 151) once daily. In the primary analysis, the primary 
endpoint, ORR by central review, was 43% vs 15% for 
laBCC and mBCC, respectively, in the 200-mg group, and 
38% vs 17%, respectively, in the 800-mg group [19]. The 
most common AEs included muscle spasms, dysgeusia, 
alopecia, and nausea. The most common AEs leading to 
treatment discontinuation were muscle spasm, dysgeusia, 
weight decrease, and nausea [16–19].

Other HHIs under investigation in advanced 
BCC include patidegib, itraconazole, and arsenic 
trioxide. Patidegib has orphan drug and breakthrough 
therapy designations from the FDA and an orphan drug 
designation from the European Medicines Agency as a 
topical agent for Gorlin syndrome, also known as nevoid 
basal cell carcinoma syndrome, a rare genetic form of 
BCC characterized by mutations in PTCH1 resulting in 
multiple BCCs [20, 21]. Patidegib is being studied in a 
phase 3 trial for the reduction of disease burden in Gorlin 
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syndrome (NCT03703310) and in a phase 2 trial of non-
Gorlin high frequency BCC (NCT04155190). Itraconazole 
binds to SMO at a site distinct from the other HHIs [22]. 
Arsenic trioxide destabilizes GLI2 to inhibit transcription 
of target genes of the Hedgehog signaling pathway and 
has shown activity in combination with itraconazole in 
BCC refractory to vismodegib or both vismodegib and 
sonidegib [23].

Despite the reported excellent overall efficacy of 
and safety profile for treatment with vismodegib and 
sonidegib, some patients demonstrate tumor intrinsic 
resistance to HHI treatment or develop resistance during 
treatment. This review will discuss HHI resistance, its 
underlying mechanisms, and methods of management for 
patients with advanced BCC.

Hedgehog inhibitor resistance in clinical studies 
and practice

Results from clinical studies of vismodegib and 
sonidegib show proportions of patients with advanced 

BCC resistant to treatment (intrinsic resistance) and who 
develop resistance to treatment after an initial response 
(acquired resistance). Case studies from clinical practice 
provide further descriptions on lack of response, partial 
response, and development of resistance after an initial 
response to an HHI [24, 25].

In the primary analysis of the ERIVANCE study, 
the rate of progressive disease (PD) with vismodegib 
treatment was 13% and 3% for laBCC and mBCC, 
respectively [13]. In both cohorts, median progression-
free survival (PFS) was 9.5 months, and median duration 
of response was 7.6 months [13]. At data cutoff (9 months 
after last patient enrolled), 10 of 13 patients who had a 
complete response did not have disease progression. 
Disease progression was the most common reason for 
discontinuation of vismodegib among patients with mBCC 
(18%); 7% of patients with laBCC also discontinued 
treatment for that reason [13].

In the primary analysis of the BOLT study, the 
rate of PD for patients receiving sonidegib 200 mg was 
10% for laBCC and 8% for mBCC [19]. Median PFS 

Figure 1: Hedgehog signaling pathway. When the HH ligand is present, Ptch1 is inactivated and allows SMO to move to the top of 
the cilia, triggering downstream signals and GLI activation. Adapted from [82]. Abbreviations: BCC: basal cell carcinoma; DYRK1B: dual-
specificity-tyrosine-phosphorylation-regulated kinase 1B; GLI: glioma-associated oncogene; HH: Hedgehog; Ptch1: Patched-1; SMO: 
Smoothened; SUFU: Suppressor of fused.
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was not reached in patients with laBCC and was 13.1 
months in patients with mBCC in the 200-mg group; 
it was not reached in patients with laBCC and was 7.6 
months in patients with mBCC in the 800-mg group. 
Median duration of tumor response was not reached for 
either disease cohort with sonidegib 200 mg or for patients 
with laBCC in the 800-mg group, and was 8.3 months for 
patients with mBCC in the 800-mg group [19]. At the 
12-month analysis, 29.1% of patients receiving sonidegib 
200 mg and 9.9% of patients receiving sonidegib 800 mg 
discontinued treatment due to PD [17]. 

A case report described an elderly man with 
recurrent laBCC invading his right orbit and frontal sinus 
after excision and radiation therapy [25]. After 1 year of 
treatment with vismodegib 150 mg/day, the lesion initially 
decreased in the nasal region, but later progressed in 
the orbital region and upper cheek [25]. After receiving 
treatment with vismodegib for a total of 28 months, 
molecular analysis of tumor tissue revealed a mutation in 
PTCH1 but no mutation in SMO [25]. After discontinuing 
vismodegib treatment, he developed mBCC. Thus, BCCs 
may exhibit intratumoral heterogeneity and may acquire 
mutations during treatment that confer HHI resistance 
[25]. 

Some patients develop resistance after an initial 
response to an HHI [26–28]. In the STEVIE study, a 
59-year-old man with Gorlin syndrome responded to 
vismodegib 150 mg/day and achieved a reduction in size 
and in number of BCCs, until clinically undetectable, 
and a disappearance of palmar pits. After 3 years of 
continuous vismodegib treatment, three lesions appeared 
(2 histologically confirmed as BCC recurrence), and 
treatment was discontinued per study protocol. Within 2 
months, multiple recurrences were observed at the original 
locations. Molecular analysis of the two excised BCCs 
showed a germline mutation in PTCH1 and a mutation in 
SMO known to cause vismodegib resistance [26].

Although biomarkers of HHI resistance have not 
been identified, hair regrowth may be an early marker 
of HHI resistance based on observations in a 65-year-
old female with Gorlin syndrome and a 56-year-old male 
with laBCC. Each had a partial response to vismodegib 
and alopecia as a treatment side effect. After being 
progression-free on long-term continuous vismodegib 
treatment, each patient experienced disease progression. 
In addition, each patient had reversal of alopecia within 
2 months of disease progression, suggesting resistance 
to vismodegib allowed for sufficient Hedgehog pathway 
signaling to reverse the alopecia and enable tumor growth 
[29].

Mechanisms of Hedgehog inhibitor resistance

HHI resistance may develop via disruption of 
the HHI binding site through SMO mutations, which 
differentially modulate the activity of HHIs depending on 

changes in SMO structure [30–32]. In vitro binding site 
kinetics of vismodegib and other SMO antagonists (with 
the same binding site) differed between wild type SMO 
and a frequently identified SMO mutant (D473H) known 
to cause vismodegib resistance; moreover, these binding 
differences may provide an explanation for sensitivity to 
D473H and SMO D473H inhibitory activity [31].

Most patients with HHI-resistant BCC have 
mutations in SMO, regardless of whether resistance is 
intrinsic or acquired [33–35]. Molecular analysis of tumors 
from two vismodegib-resistant patients enrolled in the 
STEVIE study—one with intrinsic resistance and one with 
acquired resistance—showed the patient with intrinsic 
resistance had an SMO G497W mutation known to 
interfere with drug entry to the binding site, and the patient 
with acquired resistance had an SMO D473Y mutation 
known to interfere directly with vismodegib binding 
affinity [35]. Analysis of SMO mutations identified in 
50% of SMO inhibitor-resistant BCCs demonstrated two 
distinct mechanisms of resistance: binding site mutations, 
observed in patients with acquired resistance, or mutations 
releasing SMO autoinhibition to confer constitutive SMO 
activity, observed in patients with intrinsic and acquired 
resistance [36]. Concurrent, non-SMO mutant forms of 
resistance were identified as reduced copy numbers of 
Suppressor of fused (SUFU) and increased copy numbers 
of GLI2 [34].

Typically, canonical activation of the Hedgehog 
signaling pathway occurs in cancers with mutations in 
PTCH1 and SMO, which are often responsive to SMO 
antagonists [37]. However, HHI resistance may occur with 
noncanonical Hedgehog pathway activation. Specifically, 
regulation and activity of GLI expression can occur in 
response to pathways other than PTCH and SMO, thereby 
reducing the efficacy of SMO antagonists [37]. Recently, 
a link between cytoskeletal regulators and Hedgehog 
pathway activation was identified in SMO inhibitor-
resistant BCC [38]. In these SMO inhibitor-resistant 
tumors, Rho-mediated activation of cytoskeletal F-actin 
to G-actin increased the Hedgehog signaling pathway 
activity through activation of the transcription factor serum 
response factor (SRF) and its coactivator megakaryoblastic 
leukemia-1 (MKL1) [38]. This increase in cellular SRF/
MKL1 increased nuclear accumulation of SRF/MKL1 and 
potentiated GLI-mediated Hedgehog pathway activation. 
This SRF-MKL1 cytoskeletal signaling axis represents 
a therapeutic target for HHI-resistant BCCs. Most SMO 
inhibitor-resistant BCCs analyzed contained activated 
MKL1 in the nucleus, and MKL1 inhibitors had antitumor 
activity in explants of resistant BCCs [38].

Another mechanism of HHI resistance involves 
BCC switching between canonical and noncanonical 
Hedgehog pathways [33, 39–41]. One study found that 
residual BCCs initiated a different transcriptional program 
compared with untreated BCCs, and this identified switch 
was linked to Wnt pathway activation. When vismodegib 
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was combined with a Wnt pathway inhibitor, BCC tumor 
burden was reduced [40]. The Wnt pathway was observed 
as a mechanism for tumor cells to evade vismodegib 
and maintain a quiescent state independent of Hedgehog 
pathway signaling [40]. Further investigation of Wnt 
pathway-mediated evasion demonstrated that BCCs 
induced in a genetic mouse model of BCC expressed 
the leucine-rich repeat-containing G-protein coupled 
receptor Lgr5; upon drug withdrawal, the proliferation of 
these persistent, Lgr5-expressing cells promoted tumor 
regrowth [41]. Therefore, the Wnt-activated and Lgr5-
positive cells represent a type of resistance that may be 
considered tumor persistent rather than tumor progressive 
while patients are being treated with HHIs.

Switching Hedgehog inhibitors in clinical studies 
and practice

One approach to addressing HHI resistance in 
patients with BCC is switching agents after intrinsic or 
acquired resistance becomes apparent. Clinical study 
results and findings of case reports on switching HHIs are 
summarized in Table 1. 

A patient with laBCC and acquired resistance to 
vismodegib was ultimately administered combination 
therapy with two other SMO inhibitors that bind to 
SMO on different sites than vismodegib and from each 
other. In this patient, daily dosing of sonidegib 200 mg 
with concomitant pulse dosing of itraconazole 100 mg/
day caused substantial regression of BCC lesions after 3 
months, with a noted further improvement after 8 months, 
and the treatment was well tolerated. This shows that a 
positive response with other SMO inhibitors after one has 
failed is possible [42].

Because phosphoinositide-3-kinase (PI3K) is 
implicated in SMO inhibitor resistance, the efficacy 
and safety of combination therapy with 28-day cycles 
of sonidegib 200 mg/day and a pan-PI3K inhibitor, 
buparlisib, at a dose of 80 mg/day, were investigated in 
an open-label, single-arm clinical trial. After a total of 
eight grade 3 AEs in 50% of the safety population, the 
study was terminated early. Overall, seven patients were 
evaluated for efficacy, five with previous HHI failure. This 
combination achieved an overall response rate of 14.3% 
and a disease control rate of 71%; one patient had a partial 
response, and four patients remained with stable disease 
[43]. 

In contrast, nine patients with intrinsic or acquired 
resistance to vismodegib treatment received sonidegib 
800 mg/day. Overall, three patients had stable disease, 
one response was unknown, and five had PD, suggesting 
resistance to vismodegib conferred resistance to 
sonidegib [44]. This study was limited due to a relatively 
short treatment duration; of the nine patients in this 
trial, only one patient was treated beyond 14 weeks 
(total of 58 weeks), and some patients were treated for 

only 3 weeks. Therefore, this treatment period may not 
have been sufficient to achieve a measurable clinical 
response to sonidegib. In addition, this patient who had 
a D473H mutation in SMO was treated for 58 weeks and 
experienced disease progression. It has been shown in 
vitro that the affinity (pKi) of vismodegib and sonidegib 
for SMO decreased significantly compared with wild-
type, from 8.32 to 5.95 (>100-fold) and from 7.68 to 
6.91, respectively, in the presence of a D473A mutation 
[45]. In contrast, in the presence of the E518A mutation, 
the pKi for vismodegib decreased to 6.68 and increased 
somewhat for sonidegib. Consequently, if resistance 
to vismodegib is due to a E518A mutation, treatment 
with sonidegib may still be effective. The affinity of the 
SMO antagonist LY2940680, taladegib, was not affected 
by the D473H mutation, even though taladegib and 
vismodegib have 14 contact residues in common [45]. 
This supports the response to taladegib with a mutation 
rendering resistance to vismodegib [46]. Based on the 
SMO crystal structure, the computational docking of 
vismodegib onto SMO demonstrated that the locations of 
the SMO-W281, SMO-V321, SMO-I408 and SMO-C469 
mutations are near the drug-binding pocket [34, 47]. These 
mutations disrupt the hydrophobic pocket, interfere with 
the positioning of adjacent binding residues, change the 
conformation of the residues, and have steric effects on 
the binding pocket, respectively, to affect vismodegib 
binding [34]. Whether a patient who develops resistance 
to a specific HHI due to an SMO mutation will respond 
to a different HHI depends on the specific mutation, 
binding location, and whether a conformational change is 
generated to prevent drug binding in a direct or indirect 
manner. Along with patient sequencing data, these findings 
may help predict patient response to a subsequent HHI 
after failure of initial HHI treatment.

Vismodegib treatment in a patient diagnosed with 
Gorlin syndrome resulted in regression of cutaneous BCCs 
but disease progression of mBCCs in the lung, a response 
similar to that experienced with prior saridegib treatment. 
Consequently, since both HHIs produced a differential 
clinical response, with some tumors responding and 
others (metastatic) with no response, BCCs in patients 
with Gorlin syndrome may not be genetically identical 
[48]. Moreover, this patient’s previous exposure of 
chemotherapy to treat testicular cancer may have conferred 
resistance to SMO inhibitors [48]. 

Additional strategies for managing Hedgehog 
inhibitor resistance 

Combination therapy is a strategy to reduce the 
potential of acquired resistance. Use of combination 
therapy targeting different mechanisms of action may 
reduce the chance of acquired resistance while increasing 
efficacy. Several case reports and small analyses discuss 
the potential benefits of an HHI in combination with 
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radiotherapy, photodynamic therapy (PDT), or other 
HHIs [23, 49–55]. Administration of vismodegib 150 
mg/day in combination with radiotherapy resulted in a 
complete response and near-complete skin closure of 
multiple massive BCCs on the torso of a man in his 50s 
at 6 months following treatment [49]. In two patients who 
had recurrent advanced BCCs on the face, the combination 
of vismodegib 150 mg/day and radiotherapy showed no 
evidence of PD at last follow-up (9–12 months) [54]. In 

a retrospective analysis with a median follow-up of 12.5 
months, four patients with inoperable laBCC received 
vismodegib 150 mg/day along with radiotherapy. Of the 
four patients, three had a persistent complete response, 
one was progression-free for 6 months, and all tolerated 
therapy well [53]. In an open-label pilot study of four male 
patients with multiple BCCs, patients were treated with 
combination therapy consisting of 3 continuous months 
of vismodegib 150 mg/day in combination with three 

Table 1: Summary of clinical studies and case reports on switching Hedgehog inhibitors
Publication Type Patient characteristics Treatment Efficacy results Safety results

Yoon et al. [42] Case report • 87-year-old male
•  Inoperable laBCC of ethmoid 

sinus and brain
•  Treated with vismodegib 

150 mg/day 5 years earlier; 
acquired resistance after 
> 1 year, vismodegib was 
discontinued

• Radiation therapy
• Recurrence after 2 years
•  Progression on 6 months of 

vismodegib
•  Pembrolizumab (3 cycles) 

resulted in further progression

Sonidegib 200 mg/
day + itraconazole 
pulse dosed at 
100 mg/day for 2 
weeks/rest for 2 
weeks, repeated 
monthly

•  Significant improvement 
after 3 months

•  After 8 months, intracranial 
lesion no longer visible, 
intranasal and sinus lesions 
stable/slightly improved

No major AEs 

Tran et al. [43] Clinical 
study

• laBCC or mBCC
•  Median (range) age at 

enrollment, 61 (45–87) years
•  5 patients had received prior 

HHIs (vismodegib, taladegib)

Sonidegib 200 mg/
day + buparlisib 
80 mg/day, 28-day 
cycles

•  Median (range) follow-up, 8 
(0.5–20) months

•  7 evaluable patients
• ORR: 1/7 (14.3%)
•  PR/SD as best response: 5/7 

(71%)

Grade 3 TRAEs 50% 
patients led to early 
study termination

Zargari et al. 
Dermatol Ther. 
2017

Case report • 48-year-old male
•  Infiltrative BCC on the nose 

excised incompletely
•  Recurrence and appearance 

of new lesions treated with 
radiation therapy

•  Recurrent lesion improved with 
imiquimod treatment

•  Recurrent lesion infiltrated the 
whole nose, visual limitation 

•  Treated with itraconazole 
twice daily for 4 months with 
minimal effect

Vismodegib 150 
mg/day for 3 
consecutive 28-
day cycles

•  Significant decrease in size 
and signs of healing at 1 
month, improved visual 
movement

•  No signs of recurrence 8 
months after treatment

No significant AEs

Danial et al.[44] Clinical 
study

•  Advanced BCC with 
demonstrated intrinsic 
or acquired resistance to 
vismodegib

•  Mean (range) age, 57.4 (42–91) 
years

Sonidegib 800 mg/
day, 28-day cycles

•  Median (range) treatment 
duration, 6 (3–58) weeks

•  5/9 patients had PD within a 
median of 6 weeks

•  3/9 patients had SD within a 
median of 4 weeks

•  1 patient discontinued 
treatment for grade 3 
rhabdomyolysis

Grade 3 AEs: 
rhabdomyolysis, 
nausea, altered 
mental status

Zhu et al.[48] Case report • Male in his 50s
• Gorlin syndrome
•  Multiple BCCs on the 

head, neck, trunk, and all 4 
extremities

•  Cutaneous lesions shrank with 
saridegib 130 mg/day

•  Lung metastases were refractory 
to saridegib 130 mg/day

Vismodegib 150 
mg/day

•  Vismodegib 150 mg/day 
resulted in further shrinkage 
of cutaneous lesions 

•  After 4 months of treatment, 
lung metastases had 
progressed

Not reported

Abbreviations: AE: adverse event; BCC: basal cell carcinoma; laBCC: locally advanced BCC; mBCC: metastatic BCC; ORR: overall response rate; PD: 
progressive disease; PR: partial response; SD: stable disease; TRAE: treatment-related adverse event.
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consecutive sessions of PDT with topical application of 
20% 5-aminolevulinic acid; results demonstrated a 90% 
complete response rate, a 10% partial response rate, and 
the treatment was well tolerated [50]. Combination HHI 
therapy with vismodegib 150 mg/day and itraconazole 
100 mg/day for 4 months in a 71-year-old man with an 
invasive BCC led to a complete response and no clinical 
recurrence after treatment cessation at last follow-up 
of 18 months [51]. Five men with mBCC refractory to 
vismodegib or both vismodegib and sonidegib received 
arsenic trioxide 0.3 mg/kg daily for 5 days of a 28-day 
cycle and itraconazole 400 mg/day on non-arsenic trioxide 
days. Three evaluable patients had stable disease after 
three cycles of treatment and one patient had PD [23].

Another strategy to reduce the likelihood of 
developing acquired resistance is upfront shorter duration 
treatment prior to surgery, which may help reduce the 
time for acquired resistance to develop. HHIs are being 
studied as neoadjuvant therapy to reduce lesion size prior 
to surgery to optimize outcomes, as well as to enable the 
possibility of surgical excision in candidates previously 
unsuitable for surgery [56–66]. With this strategy, the 
development of HHI resistance may be less likely, as 
patients who respond to initial treatment will be able 
to have their tumors removed. In an open-label clinical 
study evaluating the use of vismodegib as neoadjuvant to 
surgery in high-risk patients with BCC, the study authors 
noted a mean decrease from baseline in target tumor 
surgical defect area of 27% in patients treated with at least 
3 months of vismodegib at 150 mg/day [66]. Among eight 
patients in the trial who participated in a 2-year follow-up, 
neoadjuvant vismodegib reduced the surgical defect area 
from baseline by 34.8% and allowed for surgical clearance 
of the tumor with no recurrence at a mean follow-up of 22 
months [62]. A retrospective chart review of patients who 
received HHI therapy for extensive BCC found reductions 
in tumor burden allowing for less extensive surgery than 
originally planned [65]. In addition, case studies report 
reductions in the size of BCCs prior to surgery with 
vismodegib therapy [58, 60, 64]: neoadjuvant vismodegib 
therapy decreased tumor size by at least 70% in patients 
with extensive BCCs [61, 63]. For patients with periocular 
tumors, neoadjuvant vismodegib treatment has enabled 
less radical, eye-sparing surgery [57, 59]. 

Targeting downstream effectors of the Hedgehog 
pathway is being studied in a clinical trial as a potential 
means to overcome or to prevent HHI resistance, as this 
approach directly interferes with multiple resistance 
pathways [67–72]. The GLI transcription factors are a 
logical target, as they are thought to regulate multiple 
pro-tumorigenic signaling pathways [67]. Another, more 
recently identified, target is the dual-specificity-tyrosine-
phosphorylation-regulated kinase 1B (DYRK1B), which 
positively regulates GLI activity and can be inhibited by a 
small molecule inhibitor, DYRKi, in both SMO inhibitor-
sensitive and -resistant cells [70]. Another small molecule 

inhibitor, 4SC-202, blocks Hedgehog/GLI signaling by 
targeting class 1 histone deacetylases (HDAC) in SMO 
inhibitor-sensitive and -resistant cells and is being studied 
clinically [69]. A new small molecule combinatorial 
SMO-HDAC antagonist that simultaneously inhibits 
SMO and GLI activity, IHR-SAHA, shows activity in 
SMO inhibitor-sensitive and -resistant cells. Epigenetic 
targeting is also being investigated, as bromo and extra 
C-terminal (BET) bromodomain proteins that regulate 
GLI transcription are inhibited by JQ1, a small molecule 
inhibitor of BRD4, in both SMO inhibitor-sensitive and 
-resistant cells [72]. 

Findings of a retrospective chart review and several 
case studies suggest targeting of programmed cell death 
protein 1 (PD-1) may be beneficial in patients with 
advanced BCC [73–78]. The chart review compared the 
incidence of BCC and squamous cell carcinoma among 
patients diagnosed with metastatic melanoma and treated 
with anti-PD-1 therapies, patients treated with other 
melanoma therapies, and patients with similar risk factors 
as a control group. The incidence of BCC was significantly 
lower among patients with melanoma receiving anti-PD-1 
therapies vs controls, suggesting anti-PD-1 therapies may 
suppress BCC [74]. Characterization of PD-1 and PD-
L1 expression patterns among BCC samples show PD-
L1 expression on 22% of tumor cells and 82% of tumor 
infiltrating lymphocytes and macrophages, suggesting 
that treatment with immune checkpoint inhibitors may 
be effective in BCC [77]. Notably, several case reports 
of patients with laBCC or mBCC and HHI resistance 
have shown dramatic responses to treatment with either 
pembrolizumab or nivolumab [73, 76–78]. Although in 
one case, the nivolumab response was accompanied by 
the appearance of new superficial BCCs that could be 
treated with excision [76]. As of June 2021, three ongoing 
clinical trials of PD-1 inhibitors in patients with advanced 
BCC were registered with https://www.clinicaltrials.gov/ 
(NCT03132636, NCT03521830, and NCT04323202). 
One of the trials uses the recently approved cemiplimab 
(Libtayo®, Regeneron Pharmaceuticals Inc., Tarrytown, 
NY), a PD-1 inhibitor indicated to treat patients with 
laBCC or mBCC previously treated with an HHI or for 
whom an HHI is not appropriate [79]. The phase 2 data 
from this single-arm, open-label trial of cemiplimab 
demonstrated clinically meaningful and durable responses 
in patients with laBCC who have experienced PD on HHI 
therapy or were intolerant of prior HHI therapy. The ORR 
for patients with laBCC was 31% (n = 84; 95% CI, 21.0%–
42.0%), with estimated duration of response exceeding 1 
year in 85% of responders (95% CI, 60.5%–95.0%), and 
an estimated PFS of 19.0 months (95% CI, 44.3%–67.0%) 
[80]. Consequently, in patients with advanced BCC and 
resistance to HHI treatment, cemiplimab may provide 
these patients with an alternative treatment option. 

Interestingly, in a study of three patients with 
laBCC who had complete response following treatment 

https://www.clinicaltrials.gov/
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with vismodegib that was clinically and histologically 
confirmed, and then relapsed after discontinuing treatment, 
mutational analysis of the coding regions of sequenced 
genes in relapsed tumors was not significantly changed 
compared with tumor analyses prior to vismodegib 
treatment [81]. These results demonstrate that tumor 
relapse following vismodegib discontinuation retains the 
same mutational pattern as the baseline tumor, suggesting 
these tumors may be eligible for treatment rechallenge [81]. 

Overall HHI resistance, either intrinsic or acquired, 
continues to be a challenge in a subset of patients with 
advanced BCC, despite HHIs efficacy and tolerability in 
most patients. Mechanisms of resistance to HHIs include 
mutations in SMO, noncanonical cell identity switching 
resulting in resistant tumor cells, and non-canonical 
pathway crosstalk that may activate the Hedgehog 
pathway. Management of patients with HHI resistance 
can include switching HHI agents, combination therapy 
of HHIs and radiotherapy, photodynamic therapy, and 
targeting specific downstream effectors of the Hedgehog 
signaling pathway. Although these approaches to HHI 
resistance may be effective in some patients, further 
identification of biomarkers of resistance is needed. 
Identification of biomarkers of resistance or response 
would have the potential to improve the therapeutic 
efficacy of HHIs by personalizing treatment, and should be 
a future research goal for the treatment of advanced BCC. 
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