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Mdm2 is a major cellular inhibitor of p53. Small 
molecules designed to block the Mdm2-p53 interaction 
have been developed as an approach for the treatment of 
cancer with wild-type p53 [1]. In light of this therapeutic 
interest continued study of mechanisms that control the 
Mdm2-p53 signal loop is therefore of central importance.

The β-arrestins (β-arrs) are two scaffold proteins 
initially appreciated for their roles in the desensitization 
and endocytosis of G protein-coupled receptors [2, 3]. 
They also dynamically regulate the activity and/or 

subcellular distribution of key intracellular signalling 
partners including Mdm2 [4–6]. Despite strong sequence 
homology, β-arr 1 and β-arr 2 present differential 
subcellular distributions. While β-arr 1 is found distributed 
both in the nucleus and cytoplasm, β-arr 2 displays 
an apparent cytoplasmic localization. This is due to 
constitutive ejection of β-arr 2 from the nucleus through 
a leptomycin B-sensitive pathway, directed via a nuclear 
export signal (NES) harboured by β-arr 2 (Figure 1A) that 
is absent in β-arr 1 [7, 8]. In addition, β-arr 2 is actively 
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Figure 1: Model outlining the nucleocytoplasmic function of β-arr 2. (A) Schematic diagram indicating the SIM, SUMOylation 
site and NES in β-arr 2, and the ∆SIM and ∆SUMOylation site mutants used in the study. (B) Nucleocytoplasmic shuttling function of 
β-arr 2 with active import and export events results in displacement of Mdm2. (C) Defective nuclear import with the β-arr 2∆SIM mutant 
results in loss of Mdm2 displacement.
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imported into the nucleus indicating that it undergoes 
continual nucleocytoplasmic trafficking. This shuttle 
function of β-arr 2 results in the displacement of Mdm2 
from the nucleus to the cytoplasm, with an associated 
increase in p53 signalling and cell cycle arrest [5, 6]. 

Contrasting with the well characterized nuclear 
export mechanism of β-arr 2, knowledge on its 
entry mechanism(s) into the nucleus and functional 
impact on Mdm2-p53 signalling remains incomplete. 
SUMOylation is a post-translational modification that 
regulates the activity and localization of protein targets 
including nuclear targeting. β-arr 2 can be SUMOylated 
[9–11], but no information was available on how small 
ubiquitin-like modifier (SUMO) might regulate β-arr 
2 nucleocytoplasmic shuttling. We therefore explored 
if SUMO could participate in controlling β-arr 2 
nucleocytoplasmic shuttling function. In addition to 
SUMOylation sites for covalent conjugation of SUMO 
on a lysine residue, SUMO interaction motifs (SIMs) 
composed of a short stretch of hydrophobic residues 
can mediate non-covalent interaction with SUMO 
resulting in targeting of SIM-containing proteins to 
SUMOylated protein partners [12, 13]. Using a variety 
of in vitro, in silico and cell-based approaches we 
characterized both a SUMOylation site and SIM in β-arr 
2 [14] (Figure 1A). Fusion of SUMO to β-arr 2 was 
recently found to increase its targeting to the nuclear rim 
[11]. We found, however, that SUMOylation was not 
required for nuclear import but that the SIM contained 
in β-arr 2 was [14]. We also found that the β-arr 2 SIM 
promotes association with the multimolecular RanBP2/
RanGAP1-SUMO nucleocytoplasmic transport hub that 
resides on the cytoplasmic filaments of the nuclear pore 
complex. RanBP2 has been shown to act as a platform 
for nuclear import of a subset of import cargos [15]. We 
therefore tested the effect of depletion of the RanBP2/
RanGAP1-SUMO complex on β-arr 2 nuclear import and 
indeed found it to be required, indicating its functional 
importance in β-arr 2 cytonuclear trafficking. RanBP2 
has been proposed to enhance nuclear import by at least 
two mechanisms. Firstly, import receptor-independent 
interaction of selected cargos with RanBP2 can increase 
efficiency of nuclear import [15]. Secondly, it serves as a 
binding site for importin β1 retaining the transport receptor 
in association with the nuclear pore complex and reducing 
the active concentration of import receptors required for 
efficient transport [16, 17]. Interestingly, in this context, 
a recent study identified a nuclear localization signal in 
β-arr 2 and importin β1-dependent nuclear import [18] 
indicating that β-arr 2 nuclear import probably involves 
multiple steps coordinated by RanBP2. In summary, our 
findings demonstrate that the β-arr 2 SIM targets it to the 
RanBP2/RanGAP1-SUMO complex, which gates β-arr 2 
nuclear entry (Figure 1B). 

We next analyzed the function of the β-arr 2 SIM 
on the downstream Mdm2-p53 signal loop. Due to the 
defective nuclear import of a β-arr 2∆SIM mutant it lost 
the capacity to titrate Mdm2 from the nucleus to the 
cytoplasm observed with wild-type β-arr 2 (Figure 1B 
and 1C). Using non-small cell lung carcinoma and breast 
tumour cell lines we also found the enhancing effect of 
β-arr 2 on p53 signalling was lost with the β-arr 2∆SIM 
mutant. The ∆SIM mutant therefore gives rise to the 
same defective p53 signalling effect as a β-arr 2∆NES 
mutant, which also fails to displace Mdm2 from the 
nucleus. Our study [14] uncovering the role of a β-arr 
2 SIM nuclear entry checkpoint, coupled with its active 
nuclear export provide an emerging picture of regulatory 
points that influence β-arr 2-mediated regulation of the 
Mdm2-p53 axis (Figure 1B). Further studies will be 
required to determine the full role of the SIM in β-arr 2 
compartmentalization and if β-arr 2 cytonuclear function 
is disrupted in cancer settings.
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