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ABSTRACT
Tobacco smoke and red/processed meats are well-known risk factors for 

colorectal cancer (CRC). Most research has focused on studies of normal colon 
biopsies in epidemiologic studies or treatment of CRC cell lines in vitro. These studies 
are often constrained by challenges with accuracy of self-report data or, in the case 
of CRC cell lines, small sample sizes and lack of relationship to normal tissue at 
risk. In an attempt to address some of these limitations, we performed a 24-hour 
treatment of a representative carcinogens cocktail in 37 independent organoid lines 
derived from normal colon biopsies. Machine learning algorithms were applied to bulk 
RNA-sequencing and revealed cellular composition changes in colon organoids. We 
identified 738 differentially expressed genes in response to carcinogens exposure. 
Network analysis identified significantly different modules of co-expression, that 
included genes related to MSI-H tumor biology, and genes previously implicated in 
CRC through genome-wide association studies. Our study helps to better define the 
molecular effects of representative carcinogens from smoking and red/processed 
meat in normal colon epithelial cells and in the etiology of the MSI-H subtype of CRC, 
and suggests an overlap between molecular mechanisms involved in inherited and 
environmental CRC risk.

INTRODUCTION

Carcinogens in tobacco smoke and red/processed 
meat are known risk factors for colorectal cancer (CRC) 
and, tobacco smoke has been associated with tumors 

characterized by high microsatellite instability (MSI-H) 
[1, 2]. However, the molecular mechanisms underlying the 
relationship between these carcinogens and CRC are poorly 
understood. Elucidating these molecular mechanisms 
represents an important public health challenge. 
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Tobacco smoke and red/processed meat contain 
many known and potential carcinogens. Three important 
classes of carcinogens are commonly found: heterocyclic 
aromatic amines (HCA)s, polycyclic aromatic 
hydrocarbons (PCH)s, and nitrosamines. The genotoxic 
effects of the HCAs 2-amino-3, 8-dimethylimidazo [4, 
5-f] quinoxaline (MeIQx) and 2-amino-1-methyl-6-
phenylimidazo [4, 5-b] pyridine (PhIP), the PCH benzo(a)
pyrene (BaP), and the nitrosamine N-nitrosodiethylamine 
(NDEA) have been studied in a variety of model systems 
[3, 4]. These carcinogens may reach the colonic mucosa 
either through the lumen of the gastrointestinal tract or 
through the circulatory system. Studies in CRC cell lines 
[5–8] have demonstrated important relationships between 
MelQx, PhIP, BaP, NDEA and oncogenic pathways, but 
the impact of these carcinogens on normal colon epithelial 
cells is not known.

Transcriptomic profiling of human colon biopsies 
has previously revealed gene expression differences 
associated with smoking [9] and red/processed meat [10]; 
however, these studies rely on the accuracy of subject 
reporting or were performed in patients who had already 
developed colon cancer. Furthermore, colon biopsies 
contain extensive cellular heterogeneity that may mask 
gene expression changes occurring in the cells of the stem 
cell niche of the colon crypt, where neoplastic changes 
are expected to originate [11]. Three-dimensional (3D) 
normal human colon organoids are an important model 
for the study of the stem cell niche of the colon crypt 
[12], benefitting from an increased cellular heterogeneity 
relative to CRC cell lines [12, 13] and the ability to control 
dose administration relative to most data collected from 
biopsies. We have previously shown that exposure of 
colon organoids to ethanol [14] or aspirin [15] can reveal 
candidate genes implicated in CRC risk through the 
analysis of bulk RNA-sequencing (RNA-seq) followed 
by single cell deconvolution to adjust for cellular content.

We leveraged RNA-seq and machine learning 
algorithms to elucidate the early transcriptomic and 
cellular effects of these carcinogens on normal human 
colonic epithelial cells. We identified differences in 
gene expression following a 24hr exposure of colon 
organoids to a single dosing of a carcinogens cocktail that 
included MelQx, PhIP, BaP, and NDEA. We observed a 
robust transcriptomic response in carcinogens exposed 
colon organoids that revealed selective changes in cell 
composition. We replicated a number of these differences 
in transcription in normal mucosal biopsies derived 
from current and never smokers using the University of 
Barcelona and University of Virginia RNA sequencing 
(BarcUVa-Seq) cohort [16]. Finally, we performed the first 
weighted gene co-expression network analysis (WGCNA) 
of colon organoids treated with carcinogens. We identified 
significant modules related to drug treatment, MSI-H 
tumor biology as well as modules driven by genes 
mapping to known CRC genome-wide association studies 

(GWAS) risk loci. Our results therefore extend the current 
understanding of how these carcinogens may impact 
normal colon crypt epithelial cell biology, and impact 
not only CRC etiology, but more specifically, the MSI-H 
subtype of CRC.

RESULTS

Carcinogen treatment of colon organoids leads to 
consistent patterns of differential expression

A large colon organoid biorepository was generated 
from colon crypts of healthy individuals (Supplementary 
Table 1). RNA-seq was generated on 37 independent, 
subject-derived organoid lines treated with carcinogens 
or vehicle control (see Supplementary File 1 for quality 
control metrics). We performed hierarchical clustering 
on our dataset, where we found that all sample pairs 
fell within two large branches, except for one, which 
was subsequently removed from downstream analysis 
(Supplementary Figure 1). All subsequent analyses were 
performed on the remaining 36 organoid lines.

Note that previous studies involving colon organoids 
are often associated with much smaller sample sizes, 
typically ten or less [13, 17–20]. We performed differential 
expression analysis on pseudo-cohorts of multiples of 
five pairs generated by random sampling. We found that 
at five pairs, the lowest number of DEGs identified (24) 
was ~14.8-fold less than the maximum number of DEGs 
identified within that subset (Supplementary Table 2). This 
suggests that most published studies involving organoids 
may be too small to provide robust data.

In our dataset (n = 36) a mixed-effects regression 
[21] revealed that 2,649 DEGs were associated with 
carcinogen treatment, and identified expected findings for 
genes such as , cytochrome P450 family 1 subfamily A 
member 1 (CYP1A1; (PBonferroni = 3.75E−14)) and cytochrome 
P450 family 1 subfamily B member 1 (CYP1B1; (PBonferroni 
= 1.71E−17)) [22]. We observed no impact of colon location 
(right versus left colon) following stratified analysis (data 
not shown) in contrast to our previous study of ethanol 
exposure in colon organoids [14]. We technically validated 
a subset of these genes (n = 5/5) using qPCR in a subset (n 
= 4) of samples (Supplementary Table 3).

Carcinogen exposure of normal colon organoids 
leads to cellular composition changes

To estimate the effect of carcinogens on cell 
composition, we compared stemness scores in each 
organoid pair between conditions [23]. Analysis of these 
scores has previously shown that stemness indices in 
primary tumors are greater than those of normal tissue 
adjacent to the tumor, including in colon and rectal cohorts 
[24]. Surprisingly however, treatment with carcinogens led 
to an overall reduction of stemness in colon organoids (P 
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= 6.13E−14; 36 pairs). This was consistent across all 36 
carcinogen-treated organoid pairs (Figure 1A). To confirm 
the apparent relative increase in differentiated cells, we 
downloaded and processed scRNA-seq data derived from 
colon biopsies of healthy individuals [25] and used a 
machine learning approach to infer cell type composition 
in our dataset (Figure 1B) [26]. We previously applied a 
similar approach to study the effect of short term ethanol 
exposure on cellular composition in colon organoids [14]. 
We generated cell proportions for six epithelial cell types. 
Of note, the signature matrix generated here contained 
57.3% of the gene expression markers used for the 

generation of a high-throughput method for the assessment 
of cell composition recently developed for intestinal 
organoids [27]. We performed regression on cell score 
for each cell type and found that single-cell expression 
markers from Smillie et al., [25] were significantly 
overexpressed and enriched in our dataset (Figure 1C). 
Following this, we performed a mixed-effects regression 
analysis of cell score between treatment conditions 
(Figure 1D). We identified a significant reduction in 
transit amplifying (TA) (P = 2.98E−07; 28 pairs) and stem 
cells (P = 1.98E−03; 24 pairs), and a significant increase in 
colonocytes (P = 1.69E−05; 30 pairs), enteroendocrine (P = 

Figure 1: Regression analysis of cell composition differences in response to carcinogen exposure. (A) Carcinogens exposed 
organoids were associated with a reduced stemness index. (B) Heatmap of gene expression for signature matrix genes shows that selected 
genes are able to stratify cell types in single-cell data. (C) Enrichment analysis to determine overlap between DEGs identified by regression on 
cell score in colon organoids and known markers of cell types. Larger circles indicate a greater overlap between total number of marker genes 
and those identified as being significant in each regression. Increasing odds ratios generated from enrichment Fisher’s Exact tests is represented 
as a transition from light to dark blue. (D) Cell score regression analysis between treatment conditions: *P < 0.05; **P < 0.01; ***P < 0.001.
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1.29E−03; 24 pairs) and goblet cells (P = 0.016; 19 pairs). 
However, we were only able to replicate one of these 
findings following deconvolution of the BarcUVA-seq 
dataset after performing a regression for cell composition 
on smoking status. Analysis of this dataset revealed a 
significant increase in goblet cells (P = 0.039) in the colon 
of smokers (n = 60) versus non-smokers (n = 223), but not 
other cell composition differences that were identified in 
organoids.

Extensive gene expression differences in response 
to carcinogen exposure following cell type 
adjustment

We have previously shown that adjusting for cell 
composition enriches for biological signal and reduces 
the reporting of DEGs driven by cellular heterogeneity 
[28]. Thus, we incorporated cell scores into our regression 
model and measured the extent of variation in gene 
expression that could be attributed to cell composition 
(Figure 2A). We found a number of genes whose variance 
was mostly explained by carcinogen treatment, such 
as CYP1B1 (71.17%) and steroid 5 alpha-reductase 
1 (SRD5A1; (51.61%)), while variation attributed to 
cell markers were accurately reflected by changes 
in cell composition for that cell type. For example, 
70.42%, 66.28% and 64.22% of the variation in TA cell 
markers baculoviral IAP repeat containing 5 (BIRC5), 
centrosomal protein 55 (CEP55) and centrosomal protein 
I (CENPI) [25] could be explained by changes in TA cell 
composition. We performed a mixed-effects regression 
across all samples by modelling sample pair and cell 
scores as the random and fixed effects respectively, which 
led to the identification of 738 DEGs following Bonferroni 
correction (Supplementary File 2). Most (663/738) 
were also present prior to deconvolution, while 75 were 
only significant after adjustment for cell composition 
(Supplementary File 2; Figure 2B). Of these 738, 200 had 
not been previously reported as being affected by any of 
the carcinogens in our cocktail when compared to those 
collated in the Comparative Toxicogenomics Database 
[22]; the most significant of which was an increase in 
anomactin 10 (ANO10; (PBonferroni = 3.59E−11)), a gene 
which has been found to affect calcium signaling in mouse 
intestinal epithelial cells [29]. 

Replication of findings in CRC risk factors 
comprised of carcinogens

To contextualize the carcinogens-related DEGs 
we identified, we analyzed RNA-seq data from a large 
population-based cohort of normal colon mucosal 
biopsies (BarcUVa-Seq) cohort (Supplementary File 3). 
We have previously performed deconvolution analyses 
of this dataset [15] and used cell scores those cell scores 
to adjust for cell composition within our subsequent 

regression model. Given that our interest only lay 
within the 738 DEGs identified in colon organoids, we 
set a validation threshold at P < 0.05 for these genes. 
To the best of our knowledge, the BarcUVa-Seq cohort 
represents the largest dataset reported for smoking and 
red/processed meat consumption in normal colon biopsies 
taken at colonoscopy (Supplemental File 3). Following 
adjustment for cell composition we were able to replicate 
87 of 738 carcinogen DEGs at this validation threshold 
(Supplementary File 2; Figure 2C), of which 27 also 
passed multiple testing corrections (FDR = 0.1). One-way 
Fisher’s exact test determined that the extent of overlap 
for significant genes was greater than expected by chance 
(P = 4.86E−03). Of note, we were only able to replicate 30 
of our findings in a separate, combined analysis of red/
processed meat consumption in the BarcUVa-seq cohort 
(Supplementary File 2). 

Overlap between DEGs following carcinogens 
exposure and genes mapping to CRC GWAS loci

To determine if there was any potential relationship 
between molecular mechanisms underlying inherited 
and environmental risk for CRC, we intersected DEGs 
identified following carcinogens exposure with genes 
mapping to CRC GWAS loci. We downloaded index SNPs 
from the GWAS catalogue [30] and found that of the 738 
carcinogen-related DEGs, 61 genes mapped within 1Mb of 
the index SNP of 37 CRC GWAS loci (Odds Ratio = 1.27, 
P = 0.049) (Supplementary Table 4).

WGCNA reveals altered patterns of co-
expression following carcinogen treatment

Genes rarely act in isolation, and expression of 
genes within related pathways are usually coordinated in 
such a way that they can be identified using systems level 
approaches. We have previously found that WGCNA led to 
the identification of modules driven both by aspirin-related 
genes and CRC loci in a similarly sized cohort of aspirin 
treated colon organoids [15]. Here, we generated a network 
of gene co-expression in our colon organoid model using 
WGCNA [31] and determined whether modules comprised 
within this network were differentially associated with 
carcinogens exposure (Supplementary Figure 2).

In total, we identified 55 modules of co-expression. 
Of these, seven modules were considered for further 
analysis following additional quality control measures 
(see Methods). These seven modules contained a total 
of 28.32% of the 738 DEGs identified in our single-gene 
approach, despite comprising only 8.65% of all genes 
in the network. Module functionality was determined 
through enrichment analysis of Gene Ontology biological 
processes (Supplementary File 4). For each significant 
module, a node profile was generated by determining 
representative hub genes (Table 1). Gene hubs were 
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defined by a “fuzzy” measure of module membership. 
The greater the module membership, the greater the 
connectivity of the gene within the module.

Lightsteelblue was the most significant module 
associated with carcinogen treatment (PBonferroni = 
9.62E−26), containing fourteen of the top twenty most 
significant DEGs. Further, 40 of the 233 genes comprising 
lightsteelblue were associated with smoking in BarcUVa-
Seq (P = 0.05), including CYP1B1, TCDD inducible 
poly(ADP-Ribose) polymerase (TIPARP) and CYP1A1. 
Genes within this module were generally overexpressed 

following carcinogen treatment. We found that the 
most representative hub gene within lightsteelblue was 
phosphatidylinositol-5-phosphate 4-kinase gamma 
(PIP4K2C), which was in the vicinity of 12q13.3/
rs4759277, a known CRC GWAS region [32]. Similarly, 
we found that La ribonucleoprotein 4 (LARP4), one of 
the ten hub genes identified in the plum4, was also in 
the vicinity of 12q13.3/rs4759277 [32–34]. Pathway 
enrichment analysis revealed that changes in the module’s 
eigengene may have effects on various metabolic 
processes as well as others such as posttranscriptional 

Figure 2: Summary of analysis of carcinogen exposure of organoids following adjustment for cell composition. (A) Boxplot 
to show the proportion of gene-wise variance explained by each covariate within the mixed-effects regression model. (B) Volcano plot of 
carcinogen DEGs. ‘Prior’ and ‘Novel’ denote genes that were and were not previously identified in original analysis respectively (C) Volcano 
plot of BarcUVa-Seq analysis. DEGs only identified in BarcUVa-Seq are denoted light blue, while genes that were also present nominally 
(dark blue) and following Bonferroni correction (red) in carcinogen analysis are also shown. N.S denotes genes that were not significant.
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regulation of gene expression (FDR = 2.00E−03), regulation 
of translation (FDR = 3.5E−03) and regulation of cell cycle 
(FDR = 7.80E−03).

Of the other four modules considered, coral was 
determined to be of most interest, due to its potential 
biological relevance. Hub gene analysis of this module 
revealed a relevant, highly connected node at DNA 
polymerase delta 2, accessory subunit (POLD2). DNA 
polymerase epsilon, catalytic subunit (POLE) and DNA 
polymerase delta 1, catalytic subunit (POLD1) were 
also present within this module; germline and somatic 
mutations of these genes have been associated with 
CRC [35]. This module was negatively associated with 
carcinogen treatment (PBonferroni = 5.18E−15) and enriched for 
MSI-H related pathways such as cellular response to DNA 
damage stimulus (FDR = 1.47E−18), DNA repair (FDR = 
3.56E−15) and MMR (FDR = 8.42E−05). Coral contained 
numerous genes previously associated with MSI-H status. 
Many of these genes were only nominally associated with 
carcinogen exposure in our single gene analysis such as 
mutL homolog 1(MLH1), mutS homolog 2 (MSH2), mutS 
homolog 6 (MSH6), and replication factor C subunit 
3 (RFC3), highlighting the importance of WGCNA in 
helping to elucidate underlying biological mechanisms.

DISCUSSION

To our knowledge this is the first to study the 
impact of carcinogens from smoking and red/processed 
meats on normal epithelial cells of the colon crypt stem 
cell niche, the expected target cell population for the 
origin of neoplastic changes [11]. Previous studies aimed 
to determine the transcriptomic response of smoking/red 

meat in the colon using patients already presenting with 
CRC [9, 10], while studies of the individual chemical 
constituents of our carcinogen cocktail have been 
primarily performed in CRC cell lines [5–7, 36, 37]. These 
are unlikely to reflect the normal response of colon crypt 
epithelial cells to environmental factors. This, coupled 
with the large increase in power present within our study 
compared to other in vitro analysis of carcinogens may, in 
part, explain why 200 of the 738 DEGs identified in our 
dataset were deemed to be novel [22].

The use of single-cell deconvolution to estimate cell 
composition has become increasingly popular in recent 
years [26]. Recently, this has even led to the development 
of high-throughput methods based on targeted RNA-
seq primarily for the evaluation of cell composition in 
intestinal organoids [27]. Here, we used a well-established 
method for the estimation of cell composition [26], the 
signature matrix of which displayed considerable overlap 
with targeted approaches for intestinal organoids [27]. 
Our study was performed in a sample set of 36 patient-
derived normal colon organoids where we also observed 
significant differences in the abundance of stem, TA, 
goblet, colonocyte and enteroendocrine cell populations. 
Previous studies have reported increased goblet cell 
numbers in other epithelial tissues of smokers [38], 
and we were able to replicate the goblet cell finding in 
BarcUVa-Seq mucosal biopsies of smokers in BarcUVa-
Seq mucosal biopsies of smokers. That we were unable to 
replicate other cell composition changes in the BarcUVa-
Seq cohort may be due to challenges associated with 
self-report data, and limited in vitro exposure conditions 
versus lifetime exposure. These limitations may also partly 
explain why stronger replication of DEGs were not seen in 

Table 1: Summary of significant modules identified in WGCNA that passed quality control tests 
and were enriched for protein-protein interactions 

Module t-value PBonferroni Gene Significance and 
Module Membership

No. CRC 
GWAS Genes

PPI Hub Genes

lightsteelblue
31.949 9.62E-26 0.360

(P = 1.50E-08)+ 15 (233)* 1.00E-16
PIP4K2C, HGD, TMEM127, ITSN2, SUSD6, 
NUDT16,
CCRL2, CDX2, MUC13, CYP1A1

bisque4
–24.523 6.84E-22 0.430

(P = 1.80E-06) 11 (114) 0.046
THOC, TKFC, TMEM234, FBL, EXOSC7,
ZNF318, SMARCD2, COROA1, MAPK15,
KISS1R

coral1 –16.215 4.14E-16 0.150
(P = 1.80E-03) 37 (432) 1.00E-16 RPL35A, RPL32, RPS18, NACA, RPL5,

RPL11, RPL7A, RPL6, RPL39, ECI2

skyblue4 –15.882 7.86E-16 0.420
(P = 1.30E-03) 7 (56) 1.00E-16 FDPS, MVK, ACAT2, LSS, DHCR7, NSDHL,

FASN, ERG28, ETHE1, FDFT1

coral –14.934 5.18E-15 0.110
(P = 0.020) 39 (449) 1.00E-16 TCOF1, PFAS, MCM3, MCM7, GEMIN4,

MCM4, MCM6, PRMT1, POLD2, RRP1

darkolivegreen
–8.313 4.64E-08 0.220

(P = 9.30E-03) 14 (139) 6.29E-10
TNK2, PPP1R13L, RASSF7, PLEKHH3,
AGPAT2, UBE2C, LTBP4, TP53I11, PAK4,
BLVRB

plum4
5.249 4.15E-04 0.120

(P = 0.029) 21 (330) 1.00E-16
ORC5, EIF3J, FBXO45, ABHD13,
ZMPSTE24, CYCS, LEPROTL1, LARP4,
KPNA3, BAG5

+Significance of correlation between gene significance and module membership for genes within a module. *Total number of genes within a module.
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the BarcUVa-Seq cohort. Further independent studies are 
warranted to determine the effect of these carcinogens on 
cellular composition within the colon crypt. 

Increased expression of CYP1A1 and CYP1B1 were 
among the most significant transcriptomic differences 
identified in colon organoids in response to carcinogens 
exposure. These findings are consistent with published 
reports and underscore the role of these two genes in 
the cellular response to HCAs and PCHs [3]. Altered 
expression of these genes has previously been associated 
with smoking [3], and both genes also showed increased 
expression in relation to smoking use in our BarcUVa-
Seq mucosal biopsy study. However, not all findings were 
consistent with the literature. For example, increased 
expression of aryl-hydrocarbon receptor repressor (AHRR) 
among smokers is one of the most consistently reported 
in the literature [3] and was significantly overexpressed 
in BarcUVa-Seq subjects who smoked, however, it was 
only nominally increased in colon organoids exposed to 
carcinogens. Importantly AHRR is highly expressed in T 
cells of the colon [39], but only expressed at low levels 
in colon organoids which consist only of epithelial cells, 
which may help to explain this inconsistency. Our studies 
highlight the impact of carcinogens on epithelial cells of 
the stem cell niche of colon crypts directly. Advances in 
organoid co-culturing methods, may help clarify effects on 
other cells of the colon.

Our study highlights a potential mechanistic overlap 
between genes implicated in inherited and environmental 
risk of CRC. We observed a large number of DEGs 
responsive to these carcinogens with genes mapping 
within CRC GWAS loci. Of note, we also observed an 
overlap between genes responsive to ethanol/alcohol 
exposure in organoids and genes mapping within GWAS 
loci [14]. CRC GWAS have led to the identification of 
>140 genomic loci [32]; however, relevant target genes 
have been identified for only a few of these loci [40–42]. 
This is in part due to the fact that the vast majority of 
GWAS variants are believed to influence disease through 
modulation of enhancer activity, subsequently impacting 
gene expression. As these variants rarely fall within 
coding regions, interpretation of the gene target has often 
proven challenging. Our comparison of genes identified 
through both our single-gene approach and WGCNA 
with genes that mapped to CRC GWAS loci revealed a 
considerable overlap implying a potential relationship 
between molecular mechanisms underlying inherited 
and environmental risk for CRC. In our single-gene 
analysis, we identified 61 genes from 37 GWAS loci that 
overlapped carcinogens-related DEGs. Network analyses 
have been used in research into other complex genetic 
traits to identify candidate genes involved in GWAS [43]. 
We have also previously made use of WGCNA to unravel 
the relationship between aspirin and CRC risk loci in 
colon organoids [15]. From our WGCNA, we identified 
candidate GWAS-related genes LARP4 and PIP4K2C 

as respective hub genes for the plum4 and lightsteelblue 
modules. In other model systems, LARP4 has been 
implicated in mRNA stabilization [44]. Consistent with 
this, the plum4 module was enriched for numerous 
regulatory processes including posttranscriptional 
regulation of gene expression. Elucidating how LARP4 
may increase mRNA stability within the colon, as well as 
which targets may be most affected LARP4 overexpression 
may provide further insight into its potential role in 
CRC, particularly given the important role for mRNA 
stabilization in the shaping of the cancer transcriptome 
[45]. With regards to PIP4K2C, our single-gene 
analysis also reveals that it was significantly increased 
in carcinogen exposed organoids. A strong link between 
PIP4K2C and CRC has yet to be defined; however, 
inhibition of PIP4K2C has been shown to increase 
immune system activation, making it a potential target 
for cancer immunotherapy [46]. WGCNA also led to the 
identification of a highly connected node at POLD2 in the 
coral module. POLE and POLD1 were also present within 
this module, and both inherited variants and somatic 
mutations of these genes have been associated with CRC 
[35]. Further studies are warranted to determine whether 
the comparative approaches we describe can be used 
to interrogate the function of GWAS risk variants and 
accelerate discovery of GWAS-related biology. 

The coral module was enriched for a number of 
genes associated with MMR. Increasing evidence has 
demonstrated a strong association between smoking and 
MSI-H CRC tumor development [1, 2]. MSI-H tumors 
are driven by reduced expression of specific DNA MMR 
genes [28], and the average expression of genes within the 
coral module were reduced in colon organoids exposed to 
carcinogens. The coral module also contains MLH1, MSH2 
and MSH6, inherited pathogenic variants for which are 
well known to be causal in Lynch syndrome. Importantly, 
somatic hypermethylation and downregulation of MLH1 
is associated with the majority of MSI-H tumors. We 
recognize that while these findings are of interest, we do 
not know if the observed effects on gene expression by 
these carcinogens are maintained over longer time periods, 
or are causal for MSI-H CRC tumors. 

These results may also have important implications 
for red meat and processed meat consumption and CRC 
risk [47, 48]. While some studies have supported an 
association between red meat consumption and increased 
CRC risk [47, 49], this result is not consistent [50, 51]. 
The relationship between red/processed meats and CRC 
subtypes also remains controversial with some studies 
suggesting a positive relationship between red meat 
consumption and MSI-H tumors (12), while others do 
not [52, 53]. If confirmed, our study may provide some 
insight into the molecular mechanisms underlying the 
relationship between carcinogens present in tobacco 
smoke and red/processed meat and MSI-H CRC 
tumors. However, here we performed an analysis of red/
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processed meat and found somewhat limited overlap 
with carcinogen DEGs. This may be due to a number of 
reasons. For example, while dietary questionnaires are a 
powerful tool, accurate reporting is often challenging as 
dietary habits change over time and in some cases, are 
based on recall. 

Our study is not without limitations. With regards 
to the experimental design: a single time point/dose 
was used to model the effect of carcinogens. In this 
way, our study does not model the infrequent dosing 
of carcinogens likely observed through smoking or 
dietary intake. The selection of dose for each compound 
was similar to doses chosen across numerous previous 
studies in different cell lines [5, 7, 36, 37, 54–57]. 
However, we note that the carcinogens doses chosen 
for this study are likely orders of magnitude greater 
than would be expected to be found in the colon from 
tobacco smoke inhalation and/or daily consumption of 
red/processed meats. Future studies would greatly be 
improved by conducting pharmacodynamic experiments 
to determine the concentration of these compounds that 
enter the large intestine [6, 58]. A single-dose approach 
was chosen to allow for more sophisticated analysis and 
improved confidence in reporting of results owing to an 
increased power to detect differential expression. We 
highlight the importance of such a study design through 
permutation analysis, which shows that DEG reporting 
in common sized organoid designs are highly variable. 
We note that this may create a constraint on the broad 
applicability of our analysis. Further, the use of a cocktail 
of carcinogens may lead to potential synergism and/or 
negation of the effects of individual genes or pathways 
associated with each component. It is worth noting that 
these combinatorial effects would also occur in the setting 
of smoking and diet. In addition, we assume here that 
metabolism of each component within the carcinogen 
cocktail occurs similarly to that occurring within other 
cell lines with high CYP1A1 and CYP1B1 expression [59]; 
however metabolomic screening was not performed on 
these colon organoids. Changes in compound metabolism 
may affect the overall gene expression response, and 
such considerations should be made in future studies. 
Finally, with regards to the choice of validation: our use 
of BarcUVA-seq to replicate our findings is not ideal. 
BarcUVA-seq is the largest RNA-seq colon biopsy cohort 
with smoking and dietary information available, and we 
were able to use it to replicate a number of the observed 
differences in our organoid treatment. However, only a 
limited number of DEGs were replicated in our analysis. 
This could be driven by limitations discussed earlier. 
However, despite these limitations, we did observe an 
enrichment for DEGs between colon organoids exposed 
to these carcinogens and those seen in smokers of a large 
colon biopsy dataset.

In conclusion, we identified extensive gene 
expression and cellular composition differences following 

exposure of normal colon organoids to carcinogens 
commonly found in tobacco smoke and/or red/processed 
meat. We provide data suggesting an overlap between 
genes implicated in inherited and environmental CRC 
risk, that may help accelerate discovery of biological 
mechanisms underlying risk. Through WGCNA, we also 
identified a potential molecular mechanism underlying 
the relationship between these carcinogens and MSI-H 
CRC etiology. These discoveries provide novel insights 
into CRC etiology and reveal several avenues for future 
research.

MATERIALS AND METHODS

Subject recruitment and exclusion criteria

Subjects scheduled for screening or surveillance 
colonoscopies who agreed to voluntary participation in 
this study were enrolled after providing informed consent 
under an approved Institutional Review Board protocol at 
the University of Virginia (IRB-HSR #19439 and IRB-
HSR #15274). Subjects were recruited between July 2017 
and March 2019 and agreed to donate biopsies from both 
right and left colon. Subjects were excluded from this 
study if they had a personal or family history of CRC, a 
personal history of inflammatory bowel disease, or high-
risk polyps at the time of colonoscopy. Most (26 of 37) 
subjects had no polyps at the time of colonoscopy, and 
the remainder had three or fewer tubular adenomas each 
less than 10 mm in largest dimension. All procedures were 
performed in accordance with relevant guidelines and 
regulations and were consistent with those required by 
both the National Institutes of Health and the University 
of Virginia.

Epidemiologic data collection for BarcUVa-Seq

BarcUVa-Seq data was processed as in the original 
study [16]. For the purpose of this study, additional 
epidemiologic data were collected. To collect information 
on red and processed meat, a self-administered food 
frequency questionnaire was adapted from one previously 
validated [60]. This questionnaire was used to asses 
dietary intake at the time of subject recruitment. The 
questionnaire collected information on the consumption 
of multiple dietary variables from the preceding year. 
For the purpose of this study, red meat (grams/day) was 
taken as the sum of duck, veal, ox, cow, beef, pork and 
lamb. Processed meat (grams/day) was taken as the sum 
of sausages, hamburgers, hot dogs, pâté, liver and the 
percentage of meat present in mixed dishes. For smoking: 
“never smokers” were defined as those who have smoked 
less than 100 cigarettes or 360g tobacco within their 
lifetime; “current smokers” answered yes to a question 
regarding whether they currently smoked either now, or 
within the past month; “former smokers” had exceeded the 
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limits for “never smokers”, were not defined as “current 
smokers” and had also smoked at least one cigarette 
regularly for a period of at least six months. 

Establishment and passaging of colon organoids

Normal 3D colon organoids included in this study 
were developed from biopsies of either right or left colon 
using a modification of the method described by Sato, et 
al. [12]. Biopsies were obtained immediately distal to the 
hepatic flexure (right colon) or immediately distal to the 
splenic flexure (left colon). Whole crypts were isolated by 
gentle mechanical disruption and embedded in Matrigel 
[12]. Growth media included advanced DMEM/F12, 100 
U/ml penicillin, 100 μg/ml streptomycin, 10 mM Hepes, 
1x N2, 1x B27, 1x GlutaMAX, 1.25 mM N-acetylcysteine, 
10 nM gastrin, 50% L-WRN conditioned media, 500 nM 
A83-01, 10 uM SB202190, 10 mM nicotinamide, 50ng/
ml EGF, and 10 μM Y27632. Colon organoids were 
grown and passaged as needed in 48-well culture plates, 
as previously described [12–14].

Exposure of colon organoids to carcinogens

Three days prior to the initial exposure, organoids 
were passaged. One set of wells for each organoid line 
was exposed to the carcinogen cocktail (5 μM MelQx, 5 
μM PhIP, 1 μM BaP, and 10 mM NDEA), and a matching 
set of wells for each organoid line was exposed to a 
vehicle control (1.5 μL DMSO and 2.52 μL acetone per 
10 mL growth media). Previous studies have found similar 
concentrations of PhIP in human colon after a single 
dosing of 70–84 µg [61], though this dose is much greater 
than the expected concentrations of PhIP in red/processed 
meat and smoking. Similar concentrations of MeIQx 
have previously been considered for pharmacodynamic 
studies of the intestine [54]. The dose for BaP was also 
within range of those previously considered [55–57]. 
Doses of PhIP, MeIQx and BaP chosen here are lower 
than the cytotoxic range previously indicated for these 
compounds in other cell lines [56, 62], while the dose 
of NDEA was below the range previously considered as 
genotoxic for investigations into CRC cell lines [7, 37].  
However, we note that the doses chosen for this study are 
orders of magnitude higher than would be expected to be 
found in the colon from tobacco smoke inhalation and/
or daily consumption of red/processed meats. The 24 hr 
time period was chosen because a longer period >48 hrs 
began to impact cell growth (data not shown). After 24 
hours of growth, residual media was removed, Matrigel 
was mechanically disrupted, and 200 μL of RNA Lysis 
Solution RA1 (without TCEP) (Clontech/Machery-Nagel 
RNA XS Kit) was added to each well. The contents of 
each well were then collected in a sterile Eppendorf tube. 
Tubes were briefly vortexed and cell pellets stored at 
–80°C prior to RNA extraction.

RNA extraction and sequencing

Total RNA was extracted using NucleoSpin RNA 
XS Kit. All samples used for library preparation had RNA 
integrity numbers above 9.8, as measured by Agilent 4200 
Tapestation. Library preparation and RNA-seq was carried 
out according to Illumina protocols at the Northwest 
Genomics Center of the University of Washington. Paired-
end, 100 bp sequencing was performed using the Illumina 
NovaSeq 6000. Reads were trimmed and aligned to 
GENCODE v29 reference genome using STAR [63]. On 
average 75% of reads uniquely mapped, yielding a median 
of 33.5 million reads per sample. Genes were quantified 
using HTSeq [64]. Data is available under accession 
number GSE174650.

qPCR of colon organoids

RNA for qPCR was isolated as described above. 
RNA concentration was determined on a Qubit fluorometer 
(Thermo-Fisher). A minimum of 2000 ng of Total RNA 
was reverse transcribed to first-strand cDNA using the 
High-Capacity cDNA Reverse Transcription Kit (Thermo-
Fisher). First-Strand cDNA was used for Taq-Man qPCR 
monitored on a QuantStudio Real-Time PCR analyzer 
(Thermo Fisher). Pre-Designed TaqMan Gene Expression 
Assays (Thermo Fisher) were used for quantification of 
several genes. Glucuronidase beta (GUSB) was used as a 
control gene to determine delta-CT values, which were then 
used as input for a paired empirical Bayes regression [65].

Calculation of cell type composition scores

For colon organoids, raw unique molecular identifier 
count data from the epithelial cell subset of a single cell 
RNA-seq dataset of healthy colon biopsies was downloaded 
[25]. Count matrices were imported into Seurat V3 [66], 
and processed as previously described [14]. The dataset 
was down sampled to reduce computational burden. When 
available, mature cell populations were selected to increase 
the variation observed between cell populations. The cell 
identities defined by the original study authors were used, 
except that “Best4+enterocytes” and “enterocytes” were 
merged and labeled “colonocytes”. A total of 2,593 cells 
remained across six populations (colonocytes, cycling 
transit-amplifying (TA), enteroendocrine, goblet, stem 
and tuft cells). Transcripts per million were generated for 
each cell and uploaded into CIBERSORTx [26]. Analysis 
parameters are reported in Supplementary Table 5. BarcUVa-
Seq data was deconvoluted for use as validation in a previous 
study [15], and the same cell scores were used here. 

Mapping genes to CRC GWAS loci

CRC GWAS index SNPs were downloaded from the 
GWAS catalog [30]. Genes with at least one nucleotide 



Oncotarget1872www.oncotarget.com

of one exon overlapping a 1 MB interval centered on the 
index SNP were included in the analysis. The genomic 
location of SNPs was based on their hg38 coordinates. 
BiomaRt [67, 68] was used to determine GrCH38 gene 
coordinates of nearby genes.

Statistical analysis

All statistical analysis was carried out in R, version 
4.03 [69]. A mixed-effects model was used for differential 
expression analysis [70, 71]. For identification of DEGs 
in the organoid model, a strict Bonferroni correction was 
set (PBonferroni< 0.05). As Dream and variancePartition 
incorporate precision weights from limma/voom [65, 72], 
differential expression analysis for BarcUVa-Seq was 
performed using the voom method and an empirical Bayes 
regression on moderated t-statistics [65]. For replication of 
main findings in BarcUVa-Seq a validation threshold was 
set at (P < 0.05). Benjamini-Hochberg corrected Q-values 
were also generated based on the full regression model. 
The following regression models were used in the analysis 
of (1) colon organoids, (2) BarcUVa-Seq smoking (never 
versus current), (3) BarcUVa-Seq meat: 

 1. Expr ~ Pair + Scores + Treatment
 2.  Expr ~ Sex + Scores + Age + Batch + Location + 

Treatment
 3.  Expr ~ Sex + Scores + Age + Batch + Location + 

Smoking + Meat

where Expr = gene count, Pair = sample ID, Scores = 
cell composition, Sex = sex, Batch = sequencing batch, 
Location = colon location (right/left/transverse), Treatment 
= condition, Age = age at biopsy, Smoking = factor variable 
(current, former, never), Meat = 4th versus 1st quartile of 
the average of processed and red meat consumption.

Stemness scores were generated using an approach 
outlined previously [24]. Cell score and stemness 
regression analyses were performed using mixed-effect 
models in the lme4 package [73]. For cell composition 
analysis in BarcUVa-Seq, a linear regression was used 
with sex, batch, age and location as adjustment covariates. 

For analysis of sample size considerations, sample 
pairs were randomly split into factors of five. A total of 20 
permutations of sample pairs were considered for each set of 
five. Given the large differences in performance with regards 
to processing time, limma/voom was preferred to Dream. 

WGCNA of colon organoids

Prior to voom transformation, the colon organoid 
RNA-seq dataset was filtered to only include genes 
present in our single gene analysis (20,255). Genes 
were then converted to trimmed mean of M-values. 
Adjustment for cell score was carried out using the 
RemoveBatchEffect function in limma [65]. WGCNA 

was performed across all samples under default settings 
[31], with a few notable exceptions: bi-midweight 
correlation was used; the network was raised to a soft 
thresholding power of five; signed-hybrid parameters 
were specified throughout; module size was set to 20; a 
deep split of four was used and resulting modules with 
correlation greater than 0.8 were merged. Given the 
paired nature of the study design, significant differences 
in module eigengenes across treatment conditions were 
calculated using a linear mixed-effects model in lme4 
[73]. Only modules where gene significance and module 
membership were significantly correlated were considered 
for further investigation. Given our paired design, gene 
significance was calculated by using the absolute value of 
the test-statistic generated in our Dream analysis. These 
adaptations to WGCNA have previously been defined 
[74]. Module gene lists were analyzed in STRING, 
where PPI networks were constructed [22]. Interactions 
for PPI were sourced across using all available evidence, 
under default settings. Modules that displayed significant 
enrichment for PPI and passed other quality control 
measures were considered for functional annotation by 
calculating enrichment of Gene Ontology terms [75] in 
STRING [22].

Transcript profiling

Raw data generated for this manuscript has been 
uploaded to Gene Expression Omnibus and is available for 
download using accession number: GSE174650. Details 
for access for BarcUVa-Seq can be found in the original 
manuscript publication [16].
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