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Anti-aging: senolytics or gerostatics (unconventional view)
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ABSTRACT
Senolytics are basically anti-cancer drugs, repurposed to kill senescent cells 

selectively. It is even more difficult to selectively kill senescent cells than to kill 
cancer cells. Based on lessons of cancer therapy, here I suggest how to exploit 
oncogene-addiction and to combine drugs to achieve selectivity. However, even if 
selective senolytic combinations will be developed, there is little evidence that a 
few senescent cells are responsible for organismal aging. I also discuss gerostatics, 
such as rapamycin and other rapalogs, pan-mTOR inhibitors, dual PI3K/mTOR 
inhibitors, which inhibit growth- and aging-promoting pathways. Unlike senolytics, 
gerostatics do not kill cells but slow down cellular geroconversion to senescence. 
Numerous studies demonstrated that inhibition of the mTOR pathways by any means 
(genetic, pharmacological and dietary) extends lifespan. Currently, only two studies 
demonstrated that senolytics (fisetin and a combination Dasatinib plus Quercetin) 
extend lifespan in mice. These senolytics slightly inhibit the mTOR pathway. Thus, 
life extension by these senolytics can be explained by their slight rapamycin-like 
(gerostatic) effects.

INTRODUCTION

Spiced up with words like “emerging” and 
“promising” [1–4], numerous excellent reviews on 
senolytics can be friendly parodied in one sentence: 
‘New promising strategies to fight devastating diseases 
are rapidly emerging, fueling new hopes and promising 
healthier lifespan with potential benefits to win the war 
on aging by using emergent senomorphics and promising 
senolytics’.

Despite these promises, only two studies showed 
lifespan extension by senolytics in mammals. Namely, 
fisetin extended lifespan in a small mouse study [5]. A 
combination of Dasatinib plus Quercetin (D+Q) increased 
median lifespan from 937 days to 996 days (by 6.3%) in 
mice (see Figure 6I in ref. [6]). As we will discuss, this 
modest increase in lifespan can be explained not only by 
killing of senescent cells, but also by off-target effects 
such as mTOR inhibition. These senolytics are available 
for human use and, for reasons discussed elsewhere [7], 
can be used for life extension in humans without the need 
for lifelong clinical trials.

Senolytics

The term senolytics, drugs that selectively kill 
senescent cells, was introduced by Kirkland and Tchkonia 
in 2015 [8]. Senolytics must extend lifespan by killing 
senescent cells, not by off-target mechanisms [8]. Kirkland 
and co-workers attempted to develop senolytics using 
bioinformatics followed by screening for siRNAs that kill 
senescent cells, followed by screening of potential drugs 
that may target these pathways [8]. They hypothesized 
that senescent cells can be selectively targeted, because 
they express pro-survival pathways, making them resistant 
to death [8–10]. While it seems paradoxical to kill cells, 
because they are resistant to killing there is a relevant 
analogy in oncology known as oncogene-addiction.

Crossroad of oncology and geroscience

The field of senolytics is at a crossroads of two 
disciplines: oncology and gerontology. Development of 
drugs that kills senescent cells selectively is an oncology-
like task. All potential senolytics are either approved for 
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cancer therapy (dasatinib, venetoclax) or experimental 
anti-cancer drugs (Fisetin and Quercetin), including failed 
drugs (the Hsp-90 inhibitor geldanamycin). But whether 
killing of senescent cells is the goal of anti-aging therapy 
is the realm of gerontology.

Lessons from cancer therapy

If cancer cells could be killed selectively without 
killing normal cells, then cancer would be curable. For 
almost a century, millions of scientists worldwide have 
worked on the cure for cancer, spending hundreds of 
billions of research dollars. Still, most common cancers 
remain incurable by chemotherapy. So, similarly, we 
cannot expect miracle from senolytics in such short time. 
Especially given that the cancer cell is an easier target than 
the senescent cell. In cancer therapy, some selectivity can 
be achieved by targeting cell proliferation. For example, 
microtubule active drugs such as paclitaxel and vinblastine 
kill cells entering mitosis. But targeting proliferation 
cannot be possibly exploited for killing senescent cells.

A second way to achieve selectivity in cancer 
therapy is targeting the tissue of cancer origin [11]. For 
example, targeting all prostate cells (normal and cancer) 
by anti-androgen deprivation or breast epithelial cells by 
anti-estrogens. This approach is not applicable for anti-
aging therapy.

The third approach is targeting oncogenes that 
support the survival of cancer cells. For example, the Bcr-
Abl oncoprotein, an anti-apoptotic kinase, drives chronic 
myelogenous leukemia [12]. Dasatinib, an inhibitor of 
Bcr-Abl, is approved for treatment of the BCR-ABL-
driven leukemias [13].

Oncogene addiction and matching targets 
(technical description)

Inhibitors of Bcr-Abl (imatinib and dasatinib) 
induce apoptosis in Bcr-Abl-expressing cells [12]. The 

paradox is that Bcr-Abl is not necessary for cell survival, 
if cells do not have it, but it becomes necessary, if cells 
do have it. Normally, no cell has Bcr-Abl. For example, 
HL60 leukemia cells do not have and do not need Bcr-Abl. 
Inhibitors of Bcr-Abl exert no effect on HL60 cells [14]. 
But once HL60 cells are transfected with Bcr-Abl, they 
become Bcr-Abl-addicted. Inhibitors of Bcr-Abl induce 
apoptosis in BCR-Abl-transfected HL60 cells, while they 
have no effect on parental HL60 cells [14]. And this is 
even more surprising because Bcr-Abl renders HL60 
resistant to standard chemotherapy. Oncogene addiction 
can be explained by the dam model [15]. Because Bcr-
Abl blocks the apoptotic cascade, another pro-survival 
mechanism (for example, Bcl-2) may become dispensable. 
Specifically, whereas parental HL60 cells express high 
levels of Bcl-2, Bcr-Abl-expressing cells have no Bcl-2 
[16]. Due to loss of Bcl-2, caspase-9 is activated (Figure 
2 in ref. [17]). However, this activation does not cause 
apoptosis due to the Bcr-Abl dam. When the Bcr-Abl dam 
is inactivated by dasatinib or degraded by geldanamycin, 
then the stream overflows, killing the cell [15].  Combined 
targeting of BCL-2 and BCR-ABL eradicates chronic 
myeloid leukemia stem cells [18].

Noticeably, these anti-cancer drugs developed 
for oncogene-addicted cancers were re-discovered as 
senolytics: the Bcr-Abl kinase inhibitor dasatinib, the Bcl-
2/BclxL inhibitors Venetoclax (ABT-199) and Navitoclax 
(ABT-263) and Hsp-90 inhibitors (geldanamycin). 

Another side of the same coin is synthetic lethality 
[19, 20]. In 1997, Synthetic lethality was defined as a 
condition when “the loss of either of two genes is viable 
for the cell, but the simultaneous inactivation of both 
genes is lethal” [21]. In other words, loss of one target 
renders cell sensitive to inhibition of its matching target.

Let us take this one step further: combinations aimed 
at both targets (Figure 1). Matching drug combinations 
can selectively kill cells with known genetic/epigenetic 
background, while sparing other cells [22, 23]. I discussed 
anti-cancer combinations previously [23, 24]. And it is 

Figure 1: Oncogene addiction/synthetic lethality and matching targets. (A) In oncogene addiction, expression of an anti-
apoptotic oncoprotein (Target, T) eventually leads to deactivation of matching (M) survival pathway. For example, T is Bcr-Abl and M is 
Bcl-2. Drug 1 kills such cells selectively. In synthetic lethality, loss of M renders cells sensitive to drug 1. (B) Matching drug combination. 
Targeting M by drug 2 renders cells sensitive to drug 1. And vice versa.
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remarkable that out of two senolytic modalities that extend 
lifespan in mice, one is an empirical drug combination. 
Also, remarkably, one drug in this combination is the 
Bcr-Abl inhibitor that is used for oncogene-addicted 
leukemias. The next step would be designing mechanism-
based combinations aimed toward matching and well-
defined targets.

Senolytics: from oncology back to gerontology

The main problem in cancer therapy is how to 
kill cells selectively. Senolytics face a similar problem. 
Venetoclax (ABT-199) and Navitoclax (ABT-263), 
inhibitors of Bcl-2 and BclxL, are approved as anti-
leukemia drugs [25]. These drugs have serious side effects 
due to damage of neutrophils and blood platelets. HSP-
90 inhibitors (e.g., geldanamycin), which target multiple 
oncogene-addiction [14, 26] were tested for cancer 
treatment but have not be approved because of their 
toxicity even at intermittent doses typical for cancer therapy.

But toxicity is not the only problem. In oncology, a 
cancer cell is the undisputed target, which must be killed 
or at least permanently arrested. But is a senescent cell the 
correct target to slow down organismal aging? [27, 28]. 
Do senescent cells drive aging, or they are just markers 
of aging? Is it feasible to kill senescent cells instead of 
rejuvenating them? And more fundamental questions: 
What is cellular senescence? Is it a loss of function? If 
yes, why then do we choose to decrease their functioning 
further by killing these cells? Or in contrast, is senescence 
a hyperfunction, such as the Senescence-Associated 
Secretory Phenotype (SASP), in which case it makes 
sense to kill these cells? Is senescence caused by damage? 
And if yes, some senolytics are damaging drugs and may 
cause senescence by themselves [29]. Or senescence is 
not functional decline due to accumulation of molecular 
damage? Then what causes cellular senescence and 
organismal aging?

Senescence in cell culture

The program of cellular senescence consists 
of two steps: cell cycle arrest followed by gerogenic 
conversion from initially reversible arrest to senescence 
(geroconversion) [30, 31]. The cell cycle arrest can be 
induced by a variety of means: DNA damaging and 
anticancer drugs, telomere shortening, hyperactivation of 
oncogenic pathways (Ras, Raf, Akt) and ectopic expression 
of p21 and p16. In all these cases, arrest is ultimately 
mediated by p21 and p16, which inhibit CDK [30, 31].

When the cell cycle is arrested by p16 or p21, 
then growth-promoting pathways such as mTOR and 
MAPK convert this arrest to irreversible senescence 
(geroconversion). Cellular senescence is caused by 
geroconversion, not by cell cycle arrest. Geroconversion 
is a continuation of cellular growth, when actual 

growth is limited because of the cell cycle arrest [32]. 
Geroconversion is associated with the proliferation-like 
activity of mTOR and MAPK pathways. Geroconversion 
is a proliferative state of non-proliferating cells [30, 
31]. Hyperfunctional growth-promoting pathways lead 
to cellular hypertrophy (large flat morphology), hyper-
secretion (senescence-associated secretory phenotype, 
SASP) and lysosomal hyperfunction (senescence 
associated beta-galactosidase, SA-β-gal), accumulation 
of lipids (red-O-staining), overexpression of cyclin D1, 
hyperproduction of lactate, as well as secondary growth 
factor- and insulin-resistance [30, 31]. These are hallmarks 
of cellular senescence, predictable by the model that 
cellular senescence is a continuation of cellular growth 
[33]. When the cell gets arrested in the presence of 
rapamycin, geroconversion is decelerated [34]. Rapamycin 
maintain reversible quiescence (or G0), by delaying 
senescence. Rapamycin inhibits cellular growth in size and 
thus slows down geroconversion, which is a continuation 
of growth [30, 31]. 

Geroconversion in vivo

In G0/quiescent cells, mTOR is inactive. Then 
activation of mTOR leads either to proliferation or to 
geroconversion [35]. In the organism, mTOR activation 
may lead to partial geroconversion such as the transition 
of stem cells from G0 to GAlert, associated with cell size 
growth [36]. Prolonged GAlert leads to stem cell depletion 
[37]. Alternatively, quiescent stem cells may undergo 
geroconversion to senescence [38, 39]. mTOR is involved 
in stem cell senescence, and inhibition of mTOR maintains 
stem cell quiescence [37, 40–42].

Senescent and gerogenic cells in the organism

According to mainstream theories of aging, 
cellular senescence is a permanent growth arrest caused 
by DNA damage and other stresses. SASP promotes 
organismal aging and its diseases (Figure 2A). By killing 
senescent cells, senolytics delay diseases and/or aging 
[43–45].

According to hyperfunction theory, cellular 
senescence is a continuation of cellular growth and 
cellular functions, leading to hyperfunctions [46]. SASP 
is only one of numerous hyperfunctions, which are tissue-
specific (cells of different tissues have different functions). 
Although noticeable, fully senescent cells are rare in the 
organism. According to hyperfunction theory (Figure 2B), 
most cells undergo partial geroconversion, but only some 
cells (mostly of connective tissue and macrophages) 
acquire classically senescent morphology. Most cells 
undergo partial geroconversion (or no geroconversion at 
all). According to hyperfunction theory, the key feature 
of senescent cells is hyperfunction caused by higher 
than optimal activity of signaling pathways such as 
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mTOR. These pathways drive development and growth 
but are not deactivated enough in post-development 
[46]. Hyperfunctional cells are gerogenic, producing age-
related diseases. Senescent cells with p16 and SA-β-gal 
expression are a subgroup of gerogenic cells. 

P16 is a marker of cell cycle arrest, but cell cycle 
arrest is not yet senescence. SA-β-gal is a hallmark of 
hyperfunctional lysosomes [47–49]. Cells arrested by 
serum-starvation and by contact-inhibition are also SA-β-
gal-positive [47], (Figure 4 in [50]). 

Hyperfunction theory is based on the cell culture 
model of proliferation-like level of signaling pathways in 
non-proliferating cells. This is the simplest hyperfunction. 
Quasi-programmed nature of aging is not an absolutely 
essential element of hyperfunction theory.  

Non-senescent cells in organismal aging

According to hyperfunction theory, phenotypically-
senescent cells are a subgroup of gerogenic cells. The 
fully senescent phenotype develops when growth-
promoting pathways (for example, mTOR, MAPK) are 
active in acutely arrested (by DNA damage, for instance) 
cells [31]. Some other gerogenic cells are the product 
of partial geroconversion. And some gerogenic cells are 
not necessarily different from young, normal cells; it is 
enough that their function is not sufficiently decreased, 
when it becomes unnecessary in post-development. For 

example, cells that facilitate collagen cross-linking (an 
important function in development), should not do that 
in post-development (except in special cases, such as 
wound healing [51]. Or, the nematode Caenorhabditis 
elegans senesces without senescent cells. Simply, cells 
continue their developmental and reproductive functions 
in post-development and thus drive quasi-programmed 
(age-related) diseases [52, 53]. For example, they 
continue to produce yolk when it is not needed anymore, 
leading to intestinal atrophy and ectopic yolk deposition 
[54]. As another example, teratoma-like tumors develop 
from unfertilized oocytes which enter the uterus and 
become hypertrophic after exhaustion of sperm stocks 
[55, 56].

I believe that phenotypically-senescent cells 
contribute to some age-related diseases in some (but not 
all) organisms. Aging is driven by all gerogenic cells 
combined (Figure 2B).

Gerostatics in life extension

A decade ago, I introduced the term gerostatic 
or gero-suppressant (see for references [30, 31]). The 
immuno-suppressant rapamycin is a prototypical 
gero-suppresssant (gerostatic). The term gerostatic 
emphasizes static effects of rapamycin on both 
proliferation and geroconversion. At low doses, 
inhibitors of the mTOR kinase [57–59], PI3K and MEK 

Figure 2: Senolytics versus gerostatics. (A) Senolytics: Standard model. Molecular damage causes functional decline associated with 
p16 expression, SA-β-gal-staining and SASP (a large green cell). SASP is involved in some diseases of aging. Senolytics kill senescent 
cells. (B) Gerostatics: simplified hyperfunction model. In arrested cells, growth-promoting and nutrient-sensing signaling pathways drive 
geroconversion instead of growth, rendering them gerogenic. Only a few cells (green) become phenotypically senescent. Most gerogenic 
cells are just slightly hyperfunctional (hyper 1, 2, 3). SASP is one of numerous hyperfunctions. Activated p16-positive macrophages are an 
example of gerogenic cells. Hyperfunctional cells drive age-related disease and aging is a sum of all diseases.
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[60, 61], S6K [61], PDK1 [62] and mdm-2, such as 
nutlin-3B [63, 64] are gerostatics. Deep hypoxia [65] 
and contact inhibition [50] are physiological gerostatics. 
In contrast, metformin is not gerostatic because it does 
not affect geroconversion and cellular senescence. 
Gerostatics should not be confused with senostatics. The 
term gerostatic has precise meaning: a drug that slows 
down geroconversion.

Like cellular senescence is a continuation of cellular 
mass growth [46], organismal aging is a continuation 
of developmental growth, driven in part by growth-
promoting pathways [46, 52, 53, 55, 56, 66, 67]. Signal 
pathways that drive geroconversion in cell culture also 
promote aging in animals. Inhibition of the IGF-1/PI3K/
mTOR/S6K pathway delays senescence and increases 
lifespan in animals including mammals. For example, 
mice with reduced mTOR expression [68], low mTORC1 
activity due to growth hormone resistance [69, 70] are 
small and live longer [68–70].

As a gerostatic, rapamycin suppresses growth and 
senescence in yeast [71] and mammalian cells [32, 40–42, 
72–82]. Rapamycin slows aging, stem cell exhaustion 
and extends lifespan in the simplest organism: Hydra 
[83]. Rapamycin extends lifespan in C. elegans [84] and 
Drosophila [85, 86]. Rapamycin increases lifespan and 
healthspan in mice [42, 87–121].

Fisetin inhibits the PI3K/mTOR pathway

Fisetin (3, 7, 3ʹ ,4ʹ-tetrahydroxyflavone) inhibits 
multiple signaling kinases, including the PI3K/mTOR 
pathway and is considered a natural dual inhibitor of 
PI3K/Akt and mTOR signaling [122–131]. Fisetin inhibits 
the mTOR pathway both indirectly and directly by binding 
to mTOR and its downstream target, p70S6K [129]. 
Fisetin causes death of cancer cells, which is associated 
with mTOR inhibition [124–129]. Fisetin exerts multiple 
rapamycin-like effects in animals. It prevents cardiac 
hypertrophy by inhibiting mTOR [131]. Fisetin inhibits 
Akt, S6K1 and mTORC1, S6K1 in adipose tissue and 
prevents adipocyte differentiation and obesity in HFD-fed 
mice [130].

Quercetin inhibits multiple kinases 

In numerous studies, quercetin inhibited the PI3K/
Akt/mTOR pathway by multiple mechanisms in cell 
culture and animals [132–143]. At concentrations that also 
inhibit the PI3K/Akt/mTOR-signaling pathway, quercetin 
suppresses cancer cell growth [137–138]. Quercetin 
inhibits multiple kinases including ABL1, Aurora-A, -B, 
-C, CLK1, FLT3, JAK3, MET, NEK4, NEK9, PAK3, 
PIM1, RET, FGF-R2, PDGF and may kill cells in mitosis 
[144]. Inhibition of multiple targets, when only one is 
an intended target, may increase side effects without 
increasing therapeutic effect.

Dasatinib and Quercetin (D+Q) combination 

Quercetin alone does not extend lifespan in mice 
[145], but a Dasatinib and Quercetin (D+Q) combination 
extended lifespan. The first empirical senolytic 
combination includes D, originally developed to target 
oncogene-addiction in leukemia, and Q, which inhibits the 
mTOR pathway, among numerous others.  Dasatinib is an 
inhibitor of multiple tyrosine kinases including Bcr-Abl, 
ABL, SRC, c-KIT, PDGFR and ephrin receptor. Due to its 
inhibition of multiple kinases, it suppresses bone marrow, 
resulting in pancytopenia [13] and causing pulmonary 
endothelial cell apoptosis, lung vascular toxicity, pleural 
effusions and predisposition to pulmonary hypertension 
[146]. As a long-term side effect, Dasatinib increases 
mortality from ischemic heart disease [147, 148].

In humans, D 100 mg and Q 1000 mg given for three 
days decreased the number of p16- and SA-β-gal-positive 
cells in adipose tissue [9]. In patients with idiopathic 
pulmonary fibrosis, the senolytics effect of this treatment 
on relevant markers was inconclusive [149].

However, Kovacovicova et al. found that D+Q was 
ineffective in clearing chemotherapy-induced senescent 
cells. Furthermore, D+Q exerted acute pro-tumorigenic 
effects [150]. And furthermore, dasatinib plus quercetin 
treatment led to exacerbation of obesity- and age-
dependent liver disease progression [151].

Do senolytics exist?

By the strict definition given by Kirkland [8], the 
existence of senolytics has not yet been proven. Although F 
and D+Q decrease the number of SA-β-gal and p16-positive 
cells in some tissues, there is no proof that this decrease 
is due to the killing of senescent cells in the organism. It 
could be due to reduction of these markers per cell, or even 
cell rejuvenation. In fact, rapamycin, which does not kill 
senescent cells, decreases expression of SA-β-gal and p16 
[73, 74, 152]. In the organism, low doses of rapamycin 
decrease levels of p16 and tend to decrease SA-β-gal activity 
[153]. Given that current senolytics (F, D+Q) can inhibit 
mTOR, this scenario is possible.  In order to demonstrate 
that senolytics work as senolytics, it is necessary to detect 
dead and apoptotic senescent cells, rather than only a 
decrease in SA-β-gal and p16. This is exactly how cytotoxic 
therapy is validated in oncology [154–156].

One may argue that because senolytics can be 
administered intermittently—a ‘hit-and-run’ approach, 
rather than continuously (daily)—this proves that they 
kill cells. This argument is not compelling. For example, 
rapamycin (a gerostatic, which does not kill cells) 
nevertheless can be given intermittently and transiently to 
extends lifespan and prevent cancer [88, 104, 111, 112, 
157–160]. Even a single dose has long lasting effects. For 
example, a single administration decreases weight gain 
for at least 10 weeks, by shifting the set point long-term 
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[161]. Rapamycin treatment for 2 weeks in young mice 
results in long-term preservation of primordial follicles 
and prolongation of ovarian lifespan in old mice [162].

Hyperfunctional senescent cells over-secrete 
cytokines and growth factors that may drive senescence 
of other cells and make them hyperfunctional too. Mutual 
overstimulation establishes self-maintained positive 
feedback loops. I suggest that disruption of such loops, 
even by a single (but high) dose of rapamycin, can have 
prolonged effects without killing cells.

SA-β-gal-positive/p16-expressing cells are not 
always senescent [163–166]. SA-β-gal and p16 can be 
reversibly induced in macrophages by physiological 
stimuli [163–166]. In groundbreaking studies, Gudkov and 
co-workers found that “significant proportion of p16/βGal-
positive cells in aging mice are activated macrophages” 
[163–165]. Given that activated (hyperfunctional) 
macrophages and macrophage-derived foam cells are 
involved in age-related diseases, this may explain why the 
elimination of p16/ SA-β-gal-positive positive cells can 
be beneficial.

Although hyperfunction is a characteristic of 
senescent phenotype, p16/ SA-β-gal-positive macrophages 
are different from senescent cells used to screen for 
senolytics in cell culture [163–165].

Activated macrophages are gerogenic. Oxidized 
Low-Density Lipoprotein (ox-LDL) activates 
macrophages and induces formation of foam senescent 
cells characterized with SA-β-gal and p16 expression 
[167]. Remarkably, Quercetin [167] and Fisetin [168] 
inhibit formation of foam cells, prevent SA-β-gal and p16 
induction and delay senescence [168].

Given that current senolytics may work as 
gerostatics, the significance of killing of senescent cells is 
unclear, even if it occurs (Figure 3). Is it the mechanism 
of life-extension or an unwanted side effect? Detrimental 
killing of senescent cells has been discussed in ref. [169].

Two gerostatics as one senolytic

At low concentrations, inhibitors of MEK, PI3K, 
the mTOR kinase are gerostatics. At high concentrations, 
they may become cytotoxic, probably due to inhibition 

of multiple kinases (an off-target effect). (In contrast, 
rapamycin and other rapalogs are not cytotoxic at any 
achievable doses. Still, everolimus and rapamycin 
potentiate cytotoxicity of dasatinib against cancer cells 
[170, 171]). A combination of two gerostatics can act 
as a senolytic. For example, MEK inhibitors especially 
combined with pan-mTOR inhibitors are cytotoxic to 
some senescent cells [172, 173]. It would be important 
to investigate life-extension in mice by combinations of 
MEK and pan-TOR inhibitors, pan-mTOR inhibitors and 
rapamycin, MEK inhibitors and rapamycin. 

CONCLUSIONS

Rapamycin and other gerostatics do not kill 
senescent cells but slow down cell growth, gerogenesis 
and oncogenesis. Gerostatics mostly act on non-senescent 
cells, decreasing their hyperfunction and decelerating 
their geroconversion to senescence. Rapamycin robustly 
extends lifespan and tumor-free survival in mice. It is 
also effective, when used intermittently and transiently. In 
theory, inhibition of the mTOR pathway can explain life 
extension by current senolytics such as F, D+Q. However, 
it is not clear whether these senolytics inhibit mTOR 
sufficiently to slow aging at doses that are achievable in 
humans.

It is expected that rapamycin-like effect may be 
responsible for the therapeutic effects of senolytics in 
disease. Some senolytics are investigated for treatment 
of diseases such as idiopathic pulmonary fibrosis [10, 45, 
149, 174]. Although the treatment of specific diseases is 
very important, it is a different story entirely. For example, 
DNA damaging drugs such as doxorubicin are successfully 
used for cancer therapy; insulin is a life-saving drug in 
terminal diabetes; glucocorticoids are useful for arthritis; 
antibiotics cure bacterial infections common in the 
elderly. And these conditions are common age-related 
diseases. But doxorubicin, insulin, corticosteroids and 
penicillin are not anti-aging drugs. And they do not 
extend lifespan in mice. Unless drugs extend lifespan, 
they are not drugs to treat aging as a common cause of 
age-related diseases. Life extension in mice by D+Q and 
F was shown in one study for each of these modalities [5, 

Figure 3: Potential mechanisms of life-extensions by fisetin and D+Q. (A) Life extension is purely through their senolytic 
effects. (B) Senolytic and gerostatic (off target) effects are additive (C) Senolytic effect is either absent or irrelevant. Life extension 
is purely through gerostatic (off target) mechanism. (D) Senolytic effect is detrimental and antagonizes life extension. Green arrows - 
stimulation; red symbol - inhibition.
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6]. It is desirably to reproduce these results, preferably in 
a variety of mouse models, in order to advocate their use 
(alone or in combination with rapamycin) in humans for 
longer and healthier life. Given that these senolytics are 
available for human use and well-tolerated, they could be 
used under doctor supervision without life-long clinical 
trials [7]. But first it must be shown reproducibly that they 
extend lifespan consistently in animals.
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