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Role of microRNAs in glioblastoma
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ABSTRACT
Glioblastoma is the most common and aggressive primary human brain cancer. 

MicroRNAs (miRNAs) are a set of small endogenous non-coding RNA molecules which 
play critical roles in different biological processes including cancer. The realization 
of miRNA regulatory functions in GBM has demonstrated that these molecules play a 
critical role in its initiation, progression and response to therapy. In this review we 
discuss the studies related to miRNA discovery and function in glioblastoma. We first 
summarize the typical miRNAs and their roles in GBM. Then we debate the potential 
for miRNA-based therapy for glioblastoma, including various delivery strategies. 
We surmise that future directions identified by these studies will point towards the 
necessity for therapeutic development and optimization to improve the outcomes for 
patients with glioblastoma.

INTRODUCTION

Glioblastoma (also known as glioblastoma 
multiforme, GBM) is the most aggressive primary brain 
cancer in humans [1] with a median survival time of 15 
months and a 5-year survival rate of only 10% [2–4]. 
Traditional treatments such as surgery, chemotherapy, 
and radiation therapy do not work well for GBM. Surgery 
cannot completely remove GBM tumors because of the 
complex structure of the brain and infiltration of tumor 
cells into brain tissues. Furthermore, radiation therapy and 
chemotherapy are not very effective over the long term due 
to radio- and chemoresistance. GBM may initially respond 
to radiotherapy and chemotherapy, however, subsequent 
local recurrence is very common. Therefore, GBM is 
considered incurable and traditional treatments can only 
extend survival time by months to years depending on 
age, performance status, extent of resection and molecular 
features [5].

In the last several decades, scientists have had a 
great interest in improving treatment outcomes and, as 
a result, extensive progress has been made. However, 
there are still some significant biological issues that 
need to be overcome in order to achieve tangible clinical 

success. These basic biologic difficulties include GBM 
tumor location, tumor heterogeneity, and the blood-
brain barrier (BBB). Tumor location is critical when 
considering surgical resection. Due to the brain stem, 
eloquent cortex, and the infiltration of the tumor into 
surrounding tissue, total surgical removal of a tumor 
mass represents a significant risk. Tumor heterogeneity 
is also a characteristic feature of glioblastoma, which 
has been thoroughly investigated. Extensive cellular and 
genetic heterogeneity in GBM has been found not only 
between patients (inter-tumoral), but also at an intra-
tumoral level [6–8]. Recent studies demonstrated that 
multiple factors contribute to this heterogeneity including 
multiple subtypes of glioblastoma stem cells (GSC) some 
of which are highly invasive and could contribute to 
disease’s rapid progression [9]. A recent study published 
in Cell [10] applied a single-cell transcriptome analysis 
of patient samples and revealed significant cell-type 
heterogeneity in their molecular signatures. Glioblastoma 
3D organoids generated in this study can recapitulate 
inter- and intra-tumoral heterogeneity and retain many 
key features of their corresponding parental tumors, 
which will help in devising new therapies on a clinically 
relevant timescale [10].
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All of these features are critical determinants of 
chemotherapeutic efficacy. For example, temozolomide 
(TMZ), an FDA approved chemotherapeutic for GBM, can 
generate drug-resistant clones under long-term exposure 
due to the cellular heterogeneity of the tumor. 

The BBB is also a major feature of brain cancer. 
It is formed by brain microvascular endothelial cells that 
are sealed by tight junctions. Most chemotherapeutics 
are not able to cross the blood brain barrier and reach the 
tumor site [11]. There are multiple reasons contributing 
to inability of chemotherapeutics to reach the tumor. 
The BBB has a number of highly selective mechanisms 
for transporting substances into the brain [12–18]. Brain 
endothelial cells are closely connected to form tight 
junctions. Only some very small lipophilic molecules 
or small gas molecules (such as CO2, or O2) can freely 
and passively diffuse through the BBB via paracellular 
(between cells) trafficking in between the endothelial 
cells [19]. Active transport happens through protein 
carriers (transporters) with specific binding sites that 
undergo a change in affinity. Active transport requires 
ATP hydrolysis which generates energy and conducts 
movement against the concentration gradient. For 
example, GLUT-1, large neutral amino acid transporters 
(LAT), nucleoside transporters and also organic cation and 
anion transporters have been shown to play a key role for 
maintaining the high metabolic needs of the brain [20–
23]. Another significant transport mechanism at the BBB 
is carrier-mediated efflux. ATP-binding cassette (ABC) 
transporters are ATP-driven drug efflux pumps which 
excrete neurotoxic substances such as P-glycoprotein, 
breast cancer resistance proteins (BCRP/ABCG2) and 
members of the multidrug resistance related proteins 
(MRP1, 2, 4 and 5, ABCC) in BBB [20, 24–27]. Because 
of their ability to transport a broad range of compounds, 
these efflux proteins cause a major obstacle for therapeutic 
delivery to brain tumors [28].

Recent studies have also shown that aberrant 
gene expression in glioblastoma is associated with 
tumorigenesis and progression not only in tumor cells 
but also in endothelial cells. Hupe et al. used translational 
profiling to identify factors that are involved in BBB 
development and found that expression of Foxf2 and Zic3 
gene in human umbilical vein endothelial cells induced the 
production of BBB differentiation markers and affected 
the maturation of the BBB [29]. Urich et al. showed that 
the expression of claudin-5, occludin and JAM2 genes 
in human brain endothelial cell lines relate to their low 
transcellular electric resistance and paracellular leakiness, 
low levels of unique brain endothelial transporters such as 
Glut1 and Pgp, and cell surface receptors such as LRP1, 
RAGE and the insulin receptor [30].

Due to these limitations and BBB complex 
physiology, the prognosis of GBM patients is poor 
representing an unmet clinical need in novel therapeutic 
approaches, such as stem cell therapy, gene therapy, 

immunotherapy, and miRNA therapy, which may have 
the potential to overcome these issues and lead to better 
treatment. 

MicroRNAs (miRNAs) are a set of small (19–
22 nucleotide long), endogenous, non-coding RNA 
molecules. While miRNAs cannot be translated into 
protein, they bind to the 3’ untranslated region (UTR) of 
target mRNAs and inhibit mRNA stability or translation. 
Biogenesis and clinical implications of microRNAs 
are shown in Figure 1 [31]. miRNAs regulate cell 
functions by either repressing transcription or inducing 
mRNA degradation. miRNAs have proven involvement 
in different cellular functions, such as proliferation, 
migration, differentiation, and apoptosis [32]. miRNAs 
have also been shown to relate to tumorigenesis, including 
invasiveness, DNA repair, and acquired resistance among 
others. These functions of miRNAs have a potential to 
advance this class of molecules as not only biomarkers 
but also therapeutic targets in GBM [33]. Depending 
on miRNA expression level, there is a need to either 
downregulate them by delivering RNA inhibitors or 
upregulate them by delivering miRNA mimics. Either 
way, an RNA molecule needs to be delivered to the cell 
of interest. Challenges that surround this delivery include 
but not limited to degradation by nucleases in biological 
environment [34, 35], poor ability to penetrate cell 
membrane because of the negative charge [36], entrapment 
in the endosome compartment [37], poor binding affinity 
for complementary sequences [38], poor delivery efficacy 
to target tissues [37], off-target and toxic effects and 
activation of immune responses [39].

In this review, we summarize general aspects of 
miRNAs in GBM focusing on their role in carcinogenesis 
and the potential for miRNA-based therapy including 
delivery strategies.

GBM-related microRNAs

In the past two decades, scientists have shown 
that miRNAs play critical roles in human cancer. The 
realization of miRNA’s regulatory functions in GBM 
has stimulated significant body of research. In 2005, 
Ciafrè et al. used the microarray technique to screen 
the expression levels of 245 miRNAs in GBM [40]. 
Later, after investigating 256 miRNAs in GBM Møller 
et al. found that miRNAs could be either overexpressed 
or underexpressed [41]. Downregulation of miRNA 
expression was also observed in GBM tissues and cell 
lines in another study [31]. Concurrently, miRNAs were 
proven to be important regulators of gene expression and 
actively involved in modulating many cellular processes 
including apoptosis, proliferation, invasion, angiogenesis, 
and chemoresistance [2]. According to the roles that 
miRNAs play in tumorigenesis, they are classified into 
either tumor suppressor or oncogenic miRNAs. However, 
there are some miRNAs which can act both as tumor 
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suppressors and as oncogenes depending on the tissue and 
tumor types [42]. The typical miRNAs found in GBM are 
listed in Table 1.

Tumor suppressor microRNAs

There are several miRNAs that target oncogenes 
and play tumor suppressive roles in GBM. When these 
tumor suppressor miRNAs are overexpressed, they inhibit 
tumorigenesis and tumor progression. The well-studied 
tumor suppressor microRNAs miR-7, miR-34a and miR-
128 are discussed below.

miR-7

miR-7 is downregulated in GBM [43–48]. It is one 
of the most potent tumor suppressors in glioblastoma 
and has been shown to regulate proliferation, migration/
invasion, and metastasis. Liu et al. showed that miR-7 can 
target multiple oncogenes (such as PI3K and Raf-1) via 
the EGFR pathway, providing mechanistic insight into the 
role of this miRNA in tumor cell proliferation and viability 
[49]. These effects translated into a significant inhibition 
of glioblastoma xenograft growth in vivo [49]. In another 
study, Kefas et al. found that miR-7 inhibited the EGFR 
and Akt pathways in GBM, and transfection with miR-7 
decreased GBM cell viability and invasiveness [48]. 

Recently, Wu et al. found a relationship between miR-7 
and targeting focal adhesion kinase (FAK). They showed 
that by targeting FAK, miR-7 reduced the expression 
of MMP2 and MMP9 and inhibited the ability of GBM 
cells to migrate through the extracellular matrix (ECM) 
[46]. In addition, miR-7 targets c-KIT, TGFβ2, CDK6, 
AKT2, LRRC4, YBX1, CD24, and MTDH, and may also 
regulate neuronal differentiation and brain tumorigenesis 
[50]. All of this evidence implies that miR-7 may be a key 
factor and a potential therapeutic target in GBM.

miR-34a

miR-34a is another tumor suppressor miRNA 
which is downregulated in GBM [51, 52]. miR-34a is 
one of the p53 target genes and forms a positive feedback 
loop with p53. Luan et al. found a connection between 
the level of miR-34a and the status of p53, and that miR-
34a regulated p53 expression by targeting SIRT1 [53]. Li 
et al. showed that miR-34a inhibited brain tumor growth 
by downregulating c-Met and Notch [51]. In addition, 
Guessous et al. demonstrated that overexpression of 
miR-34a promoted glioma stem cell differentiation and 
apoptosis in vivo [54]. Overexpression of miR-34a also 
induced apoptosis in other GBM cell lines [55, 56]. Yin 
et al. showed that increasing the level of miR-34a in 

Figure 1: Biogenesis and clinical implications of microRNAs (miRNAs). (A) miRNA genes are typically transcribed by RNA 
polymerase-II and produce long primary miRNA (pri-miRNA), which are recognized and cleaved in the nucleus by the RNA polymerase III 
enzyme Drosha. (B) Next, pri-miRNA is processed to precursor miRNA (pre-miRNA) hairpin like structure in the nucleus by the Drosha/
Pasha complex, are then transported into the cytoplasm by Exportin 5 and further is processed by another RNase enzyme called Dicer, 
produce miRNA duplexes. (C) The miRNA duplexes (miRNA:miRNA* duplexes shown in blue color) are then unwound and the guide 
strands are selected by Argonaute for integration into the RNA induced silencing complex (RISC). (D) The mature miRNA leads RISC to 
cleave the mRNA or induce translational repression depending on the degree of the miRNA and its target genes. Figure was reproduced 
with permission of Dr. Ahir [31].
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GBM cells inhibited their migration, proliferation, and 
angiogenesis. These researchers also found that miR-34a 
decreased the expression of EGFR and lowered the levels 
of proteins related to cell proliferation [52]. Rathod et al. 
demonstrated that miR-34a regulated glioma stem cell 
proliferation, invasion, apoptosis, and cell cycle arrest 
through the Akt and Wnt pathways [57]. Fan et al. showed 
that miR-34a mimics could trigger cell death in p53 
mutant and chemoresistant GBM cell lines [58]. Recently, 
additional new miR-34a targets (such as Musashi1 and 
platelet-derived growth factor receptor-α) have been 
identified in GBM [59, 60]. All of these findings indicate 
that miR-34a could be a potential therapeutic agent for 
GBM. 

miR-128

Like other tumor suppressor microRNAs, miR-128 
expression is also downregulated in GBM [61]. It has 
been reported that miR-128 inhibits tumor growth through 
multiple targets in many GBM cell lines. Godlewski 
et al. found that high levels of miR-128 inhibited 
glioma cell proliferation in vitro and xenograft tumor 
growth in vivo via direct regulation of the Bmi-1 gene 
[62]. Mechanistically, this effect of miR-128 in GBM 
was linked to inhibition of self-renewal of glioma stem 
cells (GSCs) via the Bmi-1 pathway. This was the first 
demonstration of a strong connection between miRNA 
and stem cell properties in GBM. Furthermore, miR-128 
was found to reduce glioma cell proliferation by targeting 
E2F3a [63, 64]. Shan et al. also proved that miR-128 
inhibited GBM and glioma stem-like cell proliferation, 
invasion, and self-renewal via the BMI1 and E2F3 

pathways [65]. Papagiannakopoulos et al. found that miR-
128 decreased gliomagenesis by downregulating growth 
factor receptors EGFR and PDGFRA [66]. Besides EGFR 
and PDGFRA [66] miR-128 was found to inhibit GBM 
cell proliferation via targets such as WEE1 [43], MSI1, 
and E2F3A [63]. Bhaskaran et al. further demonstrated 
that survival was significantly increased in intracranial 
GBM murine models by co-administration of miR-128 
and the other miRNAs [67]. miR-128 was also found 
to regulate angiogenesis by inhibiting P70S6K1 kinase 
[68]. Shi et al. found that upregulation of miR-128 
attenuated the effects of cell proliferation, tumor growth 
and angiogenesis [68]. These data support the notion that 
miR-128 plays a critical role in repressing GBM growth 
and invasion.

OncomiRs

Although most miRNAs have tumor suppressive 
roles in GBM, there are some miRNAs (oncomiRs) which 
are upregulated in GBM and target the expression of tumor 
suppressor genes to promote oncogenesis. Here, the most 
important oncomiRs in GBM including miR-10b, miR-21 
and miR-93 are discussed.

miR-10b

miR-10b has been extensively studied in GBM 
[40, 43, 69–72]. Overexpression of miR-10b has been 
observed in higher grade gliomas, providing evidence 
of its relevance to clinical GBM [70, 71]. miR-10b has 
multiple targets. It was found that RhoC and uPAR were 
directly proportional to the level of miR-10b, thereby 
enhancing the invasive capabilities of high-grade glioma 

Table 1: Abundant miRNAs and their functions in GBM
miRNA Role in GBM Functions Targets Reference
miR-7 Tumor 

suppressor 
Survival, proliferation, 
apoptosis, invasion, 
angiogenesis

FAK, EGFR, Akt, c-KIT, TGFβ2, 
CDK6, AKT2, LRRC4, YBX1, 
CD24, and MTDH

[43–48, 50, 173]

miR-34a Tumor 
suppressor 

Survival, proliferation, 
apoptosis, migration, 
invasion, stemness

SIRT1, c-Met, Notch1/2, 
PDGFRA, Msi1, Akt and Wnt

[51–60]

miR-128 Tumor 
suppressor 

Proliferation, apoptosis, 
angiogenesis, stemness, 
radioresistance

P70S6K1, SUZ12, BMI1, 
PDGFRα, EGFR, E2F3a, WEE1 
and Msi1

[43, 61–68]

miR-10b oncomiR Proliferation, apoptosis, 
migration, invasion,  
stemness

HOXD10, uPAR, RhoC, PTEN, 
BCL2L11, TFAP2C, CDKN1A 
and CDKN2A

[40, 43, 69–74]

miR-21 oncomiR Survival, proliferation, 
apoptosis, migration, 
invasion, chemoresistance

HNRPK, TAp63, PDCD4, P53, 
TGF-β, MMPs, Ras/Raf, ERK, 
ANP32A, SMARCA4, PTEN, 
SPRY2, and LRRFIP1

[40, 44, 75–91, 
93–95]

miR-93 oncomiR Survival, proliferation, 
angiogenesis, stemness

Integrin b8 [69, 96–102]
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[70]. In addition to uPAR and RhoC, HOXD10 has also 
been identified as a direct miR-10b target [71]. Sun et al. 
showed that by its influence on these targets, inhibition 
of miR-10b resulted in reducing cell growth, invasion, 
and angiogenesis, as well as increasing apoptosis in GBM 
[71]. It was found that the direct targets of miR-10b related 
to cell growth were BCL2L11, TFAP2C, CDKN1A, 
CDKN2A, etc. [72]. Inhibition of miR-10b restored the 
expression of these gene targets and decreased the growth 
of glioma cells through apoptosis and/or cell cycle arrest. 
Teplyuk et al. found that the effects of miR-10b were cell 
line dependent. miR-10b repressed E2F1 and caused cell 
cycle arrest in p21-high cell lines, but not in p21-low 
cell lines [73]. Guessous et al. showed that miR-10b was 
upregulated in both human GBM and GMB stem cell lines 
and inhibition of miR-10b by using the antisense approach 
significantly reduced the proliferation and decreased their 
invasion and migration. Moreover, in vivo studies also 
confirmed the inhibitory effect on the growth of stem 
cell-derived orthotopic GBM xenografts [74]. Overall, 
miR-10b is highly oncogenic in GBM suggesting that it 
may regulate tumorigenesis and serve as a useful target in 
GBM therapy. 

miR-21

The function of miR-21 in GBM has been widely 
investigated. miR-21 has been shown to influence cell 
invasion, metastasis, and resistance to chemotherapeutics 
[40, 44, 75–87]. Numerous studies have identified miR-21 
as an apoptotic regulator. Chan et al. found that miR-21 is 
highly expressed in GBM cells. Knockdown of miR-21 
promoted cell apoptosis via caspase activation [75]. Since 
then, many researchers found that the apoptosis caused by 
miR-21 inhibition was regulated by targeting HNRPK, 
TAp63, and PDCD4 [82, 84, 88]. Additional targets 
include P53, TGF-β, and the mitochondrial apoptotic 
pathways [78, 89, 90]. miR-21 has also been shown to 
regulate apoptosis via FASL [91]. Other oncogenic 
effects of miR-21, such as proliferation, invasiveness, and 
chemoresistance in a variety of GBM cell lines have also 
been reported [79, 81, 84]. ANP32A, SMARCA4, PTEN, 
SPRY2, and LRRFIP1 have been identified as direct target 
genes of miR-21 related to cell proliferation [79, 83, 85, 
87]. Zhou et al. showed that inhibition of miR-21 reduced 
EGFR and Akt activities in GBM [83]. GBM cell growth 
inhibition was partially dependent on the PTEN status. By 
targeting MMPs, Ras/Raf, and ERK, miR-21 increases the 
invasive potential of GBM cells [77, 85, 87]. Treatment 
with antisense miR-21 oligonucleotides decreased the 
expression of RECK and TIMP3, thereby inhibiting the 
migration and invasion of GBM cells [77]. miR-21 also 
acts as a critical agent in drug resistance. Shi et al. showed 
that high expression of miR-21 reduced the effects of TMZ 
in U87MG cells by inhibiting the expression of Bax/Bcl-
2 and caspase-3 [81]. In other studies, researchers found 
that inhibition of miR-21 sensitized human GBM cells to 

chemotherapy drugs including paclitaxel, doxorubicin, 
sunitinib, VM-26, and TMZ [79, 80, 92–95]. These broad 
effects of miR-21 on cell proliferation, apoptosis, and 
invasion suggest a rationale for targeting this miRNA in 
the treatment of GBM.

miR-93

There is evidence that miR-93 is also a critical 
target in GBM. miR-93 was found to be upregulated 
in GBM by many research groups [69, 96–100]. miR-
93 regulates different glioma cell functions such as 
proliferation, migration, invasion, cell cycle arrest, and 
chemoresistance by targeting P21 [101]. Studies by Huang 
et al. demonstrated that miR-93 controlled autophagic 
activities in GSCs by inhibiting BECN1/Beclin 1, ATG5, 
ATG4B, and SQSTM1/p62 [97]. Fang et al. showed that 
miR-93 regulates GBM cell viability, tumor growth, and 
vasculogenesis [102]. In particular, miR-93 enhanced 
blood vessel formation by targeting integrin-β8 [102]. 
Overexpression of miR-93 enhanced vasculogenesis in a 
coculture of human glioblastoma U87 cells and endothelial 
cells. The coculture promoted endothelial cell proliferation 
and blood tube formation in vitro and significantly induced 
blood vessel formation in vivo [102]. Integrin-β8 was also 
identified as one of the miR-93 direct targets. The same 
group also showed that miR-93 promoted blood vessel 
formation in GBM xenograft tumors [102]. These aspects 
of miR-93 function make this miRNA of particular interest 
for the treatment of neoangiogenesis in GBM.

Other miRNA targets in GBM 

In addition to the miRNAs discussed above there 
are additional targets with roles in apoptosis, angiogenesis, 
drug resistance, and stemness.

Apoptosis

miR-221/222 are targets overexpressed in GBM, 
which regulate apoptosis by targeting PUMA. PUMA 
binds to Bcl-2 and Bcl-x and causes cell death. Consistent 
with this mechanism, miR-221/222 inhibition has been 
found to promote apoptosis and inhibit tumor growth 
[103, 104]. miR-221/222 also directly targets P27 and 
P57 [105]. When treated with antagomirs against miR-
221/222, U251 GBM cells underwent G1/S cell cycle 
arrest [106]. Treatment with antagomirs against miR-
221/222 has been found to induce apoptosis and sensitize 
human glioblastoma cells to TMZ and to radiotherapy 
[104, 107]. Another microRNA with an oncogenic role 
in GBM is miR-335. Inhibition of miR-335 significantly 
promoted astrocytoma apoptosis both in vitro and in 
vivo. Shu et al. demonstrated that when C6 cells were 
treated with a miR-335 antagonist, the cells underwent 
growth arrest, apoptosis, and invasion both in vitro and 
in vivo [108]. These researchers further showed that miR-
335 could directly target Daam1 [108]. miRNAs with 
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tumor-suppressive functions include miR-218 and miR-
451. miR-218 was reported to reduce the expression of 
CDK6, therefore decreasing glioma cell proliferation and 
promoting apoptosis [109]. It was also found that miR-
218 stimulates apoptosis via regulating EGFR and ECOP, 
which inhibits NFκB, thus inducing cell death [110]. With 
regard to miR-451, exogenous administration of miR-451 
reduced cell proliferation, decreased invasion, induced cell 
cycle arrest, and promoted apoptosis of GBM cells [111].

Angiogenesis

There is a class of miRNAs defined as angiomiRs. 
AngiomiRs have important functions in GBM 
neovascularization [112]. miR-125b is a key angiomiR 
downregulated in GBM-related endothelial cells. Smits 
et al. demonstrated that downregulation of miR-125b in 
GBM cells induced tumor vascularization [113]. miR-
296 is another angiomiR which is highly expression 
in endothelial cells [114]. Würdinger et al. showed that 
high expression of miR-296 promoted endothelial cell 
tube formation and induced vascularization of tumors, 
while low expression of miR-296 decreased angiogenesis 
[114]. Within GBM tumors, hypoxia can also induce 
angiogenesis by modulating miRNA expression. For 
example, hypoxia regulates the level of miR-210-3p. 
By targeting HIF3A, overexpression of miR-210-3p 
stimulates HIF, VEGF, and CA9 activity, inducing 
vasculogenesis [115].

Drug resistance

By using miRNA microarrays, Ujifuku et al. 
screened the expression of miRNAs in GBM cell lines and 
reported that miR-195, miR-455-3p, and miR-10a∗ were 
the three highly expressed miRNAs in temozolomide-
resistant cells [116]. Additionally, they showed that 
downregulation of miR-195 can significantly increase the 
sensitivity to TMZ [116]. Slaby et al. also demonstrated 
that miR-181b and miR-181c sensitized glioblastoma 
cells to a radio/chemotherapy by regulating MGMT levels 
[117]. ABCG2 is a target gene for miRNA-328 in GBM. 
miR-328 inhibits the expression of ABCG2 and sensitizes 
glioblastoma cells to the anticancer drugs (including 
mitoxantrone and doxorubicin) [118]. Thus, combination 
of miR-328 therapy with radiation or chemotherapy may 
be an effective strategy for GBM treatment [119].

Stemness

Several miRNAs including miR-128, miR-124, 
miR-137 [120], miR-34a [51, 54], and miR-326 [121] 
play important roles in glioblastoma stem cells. By 
analyzing differential miRNA expression in GBM stem 
(CD133+) and non-stem (CD133−) cells, Gal et al. 
found that co-administration of miR-451 and imatinib 
mesylate inhibited tumor development of GSCs by 
decreasing Myc expression only in CD133+ cells 

[122]. Furthermore, Yang et al. showed that miR-29a 
inhibits GSCs cell proliferation and tumor growth via 
the PDGF pathway [123]. Bier et al. identified RTVP-
1 as a direct target of miR-137 and demonstrated that 
miR-137 inhibited the self-renewal of GSCs [124]. 
Yang et al. also showed that PU-PEI-mediated miR145 
delivery to GBM CD133(+) cells repressed their 
tumorigenic and GSC-like abilities and promoted their 
differentiation into CD133(−)-non-GSCs [125]. These 
studies support the idea that miRNAs may distinctively 
and concertedly act together to modulate key GSC 
properties.

MicroRNA-based therapies for GBM

Due to their ability to target multiple genes, 
miRNAs have evolved as promising therapeutic targets. As 
detailed above, miRNAs work as either tumor suppressors 
or oncomiRs and play critical roles in cell differentiation, 
proliferation, and apoptosis. According to their cellular 
functions, two fundamental strategies for miRNA-based 
therapy have been proposed. We can either restore the 
downregulated tumor suppressor miRNAs by using 
microRNA mimics or inhibit the overexpressed oncomiRs 
by using microRNA inhibitors. miRNA modulation 
strategies for therapeutic intervention are illustrated in 
Figure 2 [2].

microRNA mimic therapy

Tumor suppressor miRNAs are always 
downregulated in GBM. To normalize their expression 
profile, the miRNA-based replacement therapy can 
be used to increase the expression of a given tumor 
suppressor molecule. The exogenous oligonucleotides 
(also known as miRNA mimics) which have the 
same sequence as the corresponding endogenous 
miRNAs are synthesized and delivered to GBM cells. 
The restoration of the tumor suppressive actions of 
these miRNAs inhibits cancer progression. Several 
preclinical trials have shown that miRNA mimics 
strongly inhibit GBM growth. For example, miR-
34a is a well-defined tumor suppressor miRNA 
and is downregulated in GBM [58]. Cell death was 
induced by using miR-34a mimics in p53-mutant, 
chemoresistant GBM cells. This suggested that miR-
34a mimics can be used as a novel therapeutic agent 
[58]. Chen et al. showed that miR-203 mimics, when 
transfected into U251 cells, significantly decreased 
the level of phospholipase D2, which is a target of 
miR-203. This led to the inhibition of the proliferation 
and invasion of U251 cells, underscoring the benefits 
of these miRNA mimics as therapeutics [126]. By 
using a polyethylenimine (PEI)-mediated delivery 
method, Ibrahim et al. successfully delivered miR-145 
and miR-33a mimics into mouse xenograft tumors and 
demonstrated their antitumor effects [127]. Another 
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delivery method known as liposome-mediated delivery 
of miR-34a mimic (MRX34) has been used to treat 
liver cancer and began phase I clinical trials in 2013 
[128, 129]. However, this clinical trial was terminated 
in 2016 due to serious immune responses [130]. It has 
not been used for treatment of GBM.

microRNA inhibitor therapy

miRNA inhibition therapy is used to inhibit tumor-
promoting oncomiRs in GBM. Multiple mechanisms have 
been investigated recently. All have the potential to be 
translated into clinical practice. Each has unique pros and 
cons discussed below.

Antisense oligonucleotides

Antisense oligonucleotides (termed antagomiRs or 
antimiRs) are synthetically produced oligonucleotides that 
inhibit the level of upregulated miRNAs by blocking the 
interaction between miRNA and its target mRNAs. Song 
et al. used R3V6 peptide-coupled antagomirs to inhibit 
miR-21. The peptide protected the oligonucleotides from 
cleavage by nucleases and also enhanced delivery. The 
conjugate was found to reduce the expression of miR-

21 and promote apoptosis in GBM cells. This implies 
that the R3V6 peptide may serve as a powerful tool for 
delivery of antisense oligonucleotides [131]. Oh et al. 
showed that anti-miR-21 antisense oligodeoxynucleotides 
were delivered by R3V6 peptide in vivo. Apoptosis 
of tumor cells was strongly promoted, resulting in the 
effective suppression of tumor growth [132]. By using 
2′-O-methyl (OMe) antisense oligonucleotide, Zhou et al. 
successfully induced apoptosis in GBM by inhibiting the 
expression level of miR-21 [82]. The LNA against miR-
122 (Miraversen), a locked nucleic acid-modified DNA 
phosphorothioate antisense oligonucleotide, has started 
phase II clinical trials displaying encouraging results in 
patients with hepatitis C [133], however, studies in GBM 
have not been conducted yet.

miRNA sponges

Similar to miRNA inhibitors, miRNA sponges 
are longer nucleic acids, such as DNA plasmids or 
transcribed RNA. miRNA sponges inhibit miRNA 
function by blocking a whole family of related miRNAs 
[134]. The miRNA sponges are transcribed from 
expression vectors delivered into tumor cells [134]. Chen 

Figure 2: miRNA modulation strategies for therapeutic intervention. (A). miRNA inhibition. (1) Antagomirs are synthetic, 
single-stranded RNA-based oligonucleotides that are complementary to mature endogenous miRNAs, allowing for binding and silencing 
of their targets. (2) miRNA sponges contain multiple binding sites to an miRNA of interest, competitively inhibiting it from binding to 
its target mRNA. As the binding sites are specific to an miRNA’s seed region, sponges can inhibit an entire family of related miRNAs. 
(B) miRNA mimics are synthetic, double-stranded RNA molecules that have identical sequences to their naturally occurring equivalents, 
allowing for restoration or amplification of the activity of a target miRNA. Figure was reproduced with permission of Dr. Kumar [2].
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et al. showed that a miR-23b sponge in GBM inhibited 
migration, invasion, and tumor progression in vivo [135]. 
Circular RNAs (circRNA) are natural miRNA sponges. 
There are large quantities of these RNAs in mammals. 
Hansen et al. showed that ciRS-7 and miR-7 were both 
overexpressed in the brain. The ciRS-7 sponge strongly 
inhibited the expression of miR-7, which led to enhanced 
expression of miR-7 targeted transcripts. The same 
researchers showed that circRNA acting as a miRNA 
sponge was also a very common phenomenon [136]. 
miRNA sponges reduce the downstream effects of its 
targeted miRNA. This property makes them a powerful 
tool for researching miRNA function in vitro. However, 
highly abundant exogenous nucleic acids may cause 
toxicity and off-target effects. These safety concerns 
make it less likely for miRNA sponges to succeed as 
therapeutic agents [129].

microRNA-based drug delivery to GBM

There are several challenges to deliver active 
miRNA-based therapeutic agents to GBM. In order to get 
efficient delivery, new strategies have been developed. 
These include viral and non-viral delivery systems.

Viral delivery

Viruses are widely used to effectively deliver 
miRNAs into tumor cells [137]. For example, Dong et 
al. using lentiviral vectors to deliver miR-7-3 to U251 
cells, demonstrated significant inhibition of proliferation 
and cell cycle arrest [138]. In order to downregulate 
the expression of miR-10, Fatimy et al. successfully 
delivered CRISPR/cas9 construct in vitro and in vivo 
using a lentiviral vector [139]. Due to its safe and high 
transduction efficiency, adeno-associated viruses (AAVs) 
have become an attractive candidate for miRNA delivery. 
In a pioneering study by Kota et al., miR-26a carried 
by AAVs was systemically delivered to hepatocellular 
carcinoma (HCC) cells, resulting in cell cycle arrest, 
increased apoptosis and reduced tumor growth [140] 
representing a potential for other cancers such as 
GBM. Recombinant AAVs (rAAVs) are another class 
of promising viral vectors for delivery of therapeutic 
miRNAs in GBM because of low risk of triggering the 
host immune response [141]. However, there are still many 
drawbacks limiting the clinical application of viral miRNA 
delivery. Unfavorable side effects and challenging scale-
up processes are the two critical concerns. The side effects 
include immunotoxicity, inflammatory response and tissue 
degeneration induced by immunogenicity, and mutations 
due to the inserted sequence [142]. Compared with non-
viral delivery systems, viral miRNA delivery systems are 
more difficult to scale up hindering manufacturing and 
quality control. Therefore, non-viral-based systems may 
be more suitable for clinical development [143–145].

Non-viral delivery 

Recently, non-viral delivery systems have become 
more attractive due to their safety, low toxicity, suitability 
for repeat administration, and ease of scale up and 
manufacture. Polymer and lipid nanoparticle-based 
delivery systems are the two most successful platforms. 
Other nanoparticle systems such as magnetic nanoparticles 
have been used as well.

Polymer nanoparticle platform

Polymer nanoparticles, such as Poly (lactic-co-
glycolic acid) or PLGA and Polyethyleneimine (PEI), 
have been widely used as miRNA delivery vehicles in 
GBM. PLGA-nanoparticles have been used to deliver 
antimiR-21 and antimiR-10b into GBM cells, which led 
to enhanced TMZ chemosensitivity both in vitro and in 
vivo [146–148]. Many research reports from different 
groups have shown that miRNAs can be successfully 
delivered by PEI nanoparticles [127, 149]. By using 
magnetic resonance (MR)-guided focused ultrasound 
(FUS), miR-34a encapsulated in PEI nanoparticles 
was delivered across the blood brain barrier as a 
treatment modality for GBM [150]. By using cationic 
polyurethane-short branch polyethylenimine (PU-PEI), 
miR-145 was delivered to GBM cells in a CD133(+) 
immunocompromised mouse model, which cause 
the loss of stem cell-like properties and reduction in 
chemoradioresistance [125].

Lipid nanoparticle platform

Lipid nanoparticle delivery systems have great 
advantages in ensuring the stability of miRNAs 
under physiological conditions. This property makes 
lipid nanoparticles a very useful carrier for miRNAs 
for clinical applications. Because of electrostatic 
interactions, positively charged lipids formulated with 
negatively charged miRNAs result in easy to form 
complexes. These complexes improve the absorption 
rates of miRNAs [137]. Co-delivery of pemetrexed 
and miR-21 antisense oligonucleotide to glioblastoma 
cells by cationic solid lipid nanoparticles showed high 
cellular uptake efficiency with low toxicity [151, 152]. 
By using chlorotoxin-coupled stable nucleic acid lipid 
particles (CTX coupled SNALPs), Costa et al. showed 
that systemic delivery of anti-miR-21 resulted in the 
reduction of proliferation, repression of tumor growth, 
and the enhancement of apoptosis in a GBM mouse 
model [92]. Further, Yaghi et al. demonstrated that lipid 
nanoparticles containing miR-124 prolonged survival, 
prevented tumor recurrence, and induced immune 
memory in a murine model [153]. Overall, lipid-based 
nanoparticle carriers have become a powerful tool for the 
delivery of miRNA and are likely to find broad clinical 
application.
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Challenges for nanoparticle delivery to glioblastoma 

In order to increase drug delivery ability to GBM, 
most nanoparticle are designed to cross the BBB through 
transcytosis pathway. The nanoparticle size is one of the 
very important aspects that can influence their penetration 
into the brain. Smaller nanoparticles (<15 nm) can cross 
the BBB more easily through the transmembrane or the 
paracellular pathway [154–156]. Bigger nanoparticles 
(<100 nm), can cross the BBB by cell endocytosis since 
it is size-dependent [157–159]. Larger nanoparticles 
(>100 nm), if correctly designed and functionalized, are 
still able to cross the BBB, although to a slightly lower 
extent [28]. However, even if the larger size nanoparticles 
successfully cross the BBB, they would still have 
difficulty getting to tumor cells through the diffusion 
barrier formed by the brain extracellular space (ECS) 
which is a foam-like structure that connects the interstitial 
space between neural cells 40 nm to 700 nm in size [160–
162]. Small nanoparticles are able to diffuse through the 
ECS providing for more efficient drug delivery. Thus, 
the optimal nanoparticle size is the key for drug delivery 
to the brain. On the other hand, nanoparticle surface can 
be conjugated with related ligands such as transferrin 
[163, 164], insulin [165, 166], glutathione [167, 168] and 
others to support the BBB crossing by receptor-mediated 
transcytosis. Furthermore, pegylation of nanoparticles 
extends their half-life time thus increasing their residence 
time in cerebral circulation and increasing their chances 
for delivery to the brain [169]. Recently, by combining 
microbubble-enhanced ultrasound technique and cationic 
nanoparticles, researchers temporary disrupted BBB non-
invasively and effectively delivered RNA-based drugs 
to brain tumors [170]. Based on these examples, many 
promising, well-designed nanoparticle systems, capable 
of BBB crossing are being tested in preclinical studies. 
However, more studies are needed for translation of these 
approaches to clinical trials.

CONCLUSIONS

Recent studies have proven the importance of 
miRNA and its therapeutic benefits in GBM. Because one 
miRNA can target multiple genes and each gene can be 
regulated by different miRNAs, the effects of this kind of 
therapy are likely to be very potent. However, thorough 
and careful studies need to establish the potential for off-
target effects of these multipronged therapeutic agents. 
With time an increasing number of miRNAs and their 
corresponding targets are being identified and vetted for 
therapy. Therefore, we are beginning to see the emergence 
of this new class of molecular therapy as a novel and 
powerful treatment against multiple cancers, including 
GBM. Promisingly, recent reports show that miRNAs 
not only reactivate the immune system [171] but also 
overcome drug resistance [172]. In addition, miRNA-
based therapies are being increasingly used in combination 

with conventional therapies. These advancements in our 
understanding of miRNA biology, together with the 
growth of the field of nanotechnology poised to address 
the critical issue of delivery, have moved us closer to the 
possibility for successful miRNA-based treatment for 
GBM.
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