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ABSTRACT
Lymphovascular invasion (LVI) is an important prognostic indicator of lymph 

node metastasis and disease aggressiveness but clear molecular mechanisms 
mediating this in head and neck cancers (HNSC) remain undefined. To identify 
important microRNAs (miRNAs) in HNSC that associate with and are also predictive 
of increased risk of LVI, we used a combination of clustering algorithms, multiple 
regression analyses and machine learning approaches and analyzed miRNA expression 
profiles in the TCGA HNSC database. As the first step, we identified miRNAs with 
increased association with LVI as a binary variable. In order to determine whether 
the identified miRNAs would show functional clusters that are also indicative of 
increased risk for LVI, we carried out unsupervised as well as supervised clustering. 
Our results identified distinct clusters of miRNAs that are predictive of increased LVI. 
We further refined these findings using a Random forest approach, and miR-203a-
3p, mir-10a-5p, and miR-194-5p to be most strongly associated with LVI. Pathway 
enrichment analysis showed these miRNAs targeted genes involved in Hippo signaling 
and fatty acid oxidation pathways that are mediators of lymph node metastasis. 
Specific association was also identified between the miRNAs associated with LVI and 
expression of several lymphangiogenic genes that could be critical for determination 
of therapeutic strategies.

INTRODUCTION

Recurrent or metastatic head and neck cancer 
(HNSC) that includes tumors of oral cavity, paranasal 
sinuses, nasal cavity, pharynx, and larynx is associated 
with poor patient outcome, tumor aggressiveness and is 
characterized by early metastasis to the regional lymph 
nodes [1]. It is the 6th most common cancer worldwide 
and has a 5-year survival rate of less than 50% which is 
one of the lowest among major cancers [2]. Recurrence 
of HNSC is the primary clinical event limiting success of 
therapeutic interventions after surgical tumor resection 
[3]. Additionally, patients with HNSC often have limited 
options therapy as tumors in this region show profound 
drug and chemoresistance warranting development of new 
therapies [4]. Integrated analysis of multi-dimensional 

transcriptomic data is important to our understanding of 
cancer metastasis and could provide valuable clues to 
tumor stage progression, dysregulated cellular pathways 
and survival outcome [4]. A high proportion of patients 
who do not respond to standard treatment could get a 
benefit from personalized therapy based on the molecular 
diagnostics or targeted therapies to a particular tumor 
grade or stage and specific patterns of dissemination 
[5]. Studies have established several risk factors such 
as tobacco use and HPV status as primary risk agents 
for HNSC [6]. In HNSC, metastatic dissemination to 
regional lymph nodes has been shown to be a major 
prognostic indicator for disease progression, and positive 
lymph node association reduces survival by 50% [7]. 
Lymphovascular invasion (LVI) (defined as the presence 
of tumor cells within a definite endothelial-lined space 
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(lymphatics or blood vessels), is a key predictor of 
metastatic spread [8]. LVI of tumor cells is a prerequisite 
for the dissemination via the lymphatic or blood vascular 
system and increased lymphatic vessels density (or 
lymphangiogenesis) near tumor cells are more likely to 
promote tumor spread to lymph nodes and to distant sites 
[9, 10]. LVI is a histopathological feature that established 
as an independent predictor of poor prognosis and 
lymph node metastasis (LNM) in several solid tumors. 
Although different molecular signatures are associated 
with HNSCC, most studies have typically overlooked the 
association of any molecular, genetic or clinical features 
with LVI and the factors contributing to LVI remain very 
poorly understood [11–13]. 

Large scale genome sequencing projects by The 
Cancer Genome Atlas (TCGA) have established extensive 
patient datasets of HNSC with detailed information of 
molecular characteristics of the tumor [14]. As cancer cell 
behavior is governed by multiple, nonlinear, interacting 
pathways, integrated analysis of multidimensional 
transcriptomic data provides valuable clues to tumor 
stage progression, cell signaling and survival outcome 
[15]. Several biomarkers for HNSC have been defined 
but most of these have failed to have prognostic value 
for recurrent disease, possibly because of any lack 
of association with lymph node metastasis. Recently 
miRNAs, that are small non-coding RNA about 18–22 
nucleotides long have emerged as significant predictors 
of different disease outcomes and have established 
their efficacy as therapeutic biomarkers [16]. miRNAs 
modulate specific gene expression by inhibiting specific 
genes or gene networks and thereby affect an entire 
biological pathway. Several studies have identified 
various miRNAs to be dysregulated in HNSC, and are 
shown to be involved in regulation of various molecular 
pathways and cellular processes that contribute to tumor 
progression and metastasis in HNSC [17–19]. However, 
the correlation between miRNA expression and regulation 
of genes involved in promoting LVI and subsequently 
metastatic disease, in particular lymph node metastasis, 
remains grossly understudied. There is thus a considerable 
knowledge gap in the application of miRNAs as potential 
biomarkers or prognostic indicators for LVI and thus 
eludes development of targeted therapeutic strategies. 
Further, since miRNAs target several groups of genes 
during cancer progression [20], identification of miRNA 
clusters that are closely predictive or associated with LVI 
maybe more clinically relevant than identifying single 
miRNA as they would provide critical information about 
specific pathways that are dysregulated during progression 
of LVI and subsequent metastasis. 

Hence, in this paper, we address this critical gap 
and use sophisticated machine learning and clustering 
approaches to systematically identify specific clusters 
of miRNAs that are predictive of and show significant 
association with LVI and thus could be further evaluated 

as prognostic indicators of tumor spread in HNSCC. 
Further, a novel aspect of these studies was that as 
lymphangiogenesis or growth of new lymphatic vessels 
is a critical event that promotes LVI and subsequently 
lymph node metastasis (LNM), we also evaluated 
whether these miRNAs showed correlation with specific 
lymphangiogenic genes.

RESULTS 

Based on the 5% significance level criteria, we 
have selected 61 out of 496 miRNAs that are strongly 
associated with the LVI status. The odds ratio estimate and 
the 95% confidence interval for the association between 
LVI and the 61 miRNAs are given in Table 1. 

Identification of important miRNAs by 
univariate logistic regression analysis

For the purpose of illustration here we explain the 
odds ratio of the most significant miRNA, hsa-miR-203a-
3p, in terms of the association between the miRNA and the 
LVI status. The result implies that the odds of having LVI 
decreases by 40% for one unit increase of the scaled hsa-
miR-203a-3p. This is indicated in the side-by-side boxplot 
as shown in Figure 1, where the distribution of hsa-miR-
203a-3p for the LVI = 1 group is shifted downward 
compared to that for group LVI = 0. 

Pairwise correlation identifies pairs of highly 
correlated miRNA that associate with LVI

The pairwise correlation matrix of the 61 miRNAs 
reveals that hsa-miR-31-5p is highly correlated with hsa-
miR-31-3p with a correlation of 0.96, hsa-miR-9-5p is 
highly correlated with hsa-miR-31-3p with a correlation 
of 0.91, hsa-miR-194-5p is highly correlated with hsa-
miR-192-5p with a correlation of 0.90, and hsa-miR-
30a-3p is highly correlated with hsa-miR-30c-2-3p with 
a correlation of 0.87. As this high correlation can cause 
interference to our next multiple regression analysis, 
we decided to remove hsa-miR-31-3p, hsa-miR-9-3p, 
hsa-miR-192-5p, and hsa-miR-30c-2-3p from the list of 
61, resulting in 57 distinct miRNAs in the next step of 
analysis (data not shown). 

Identification of predictive miRNAs using 
logistic LASSO screening and multiple logistic 
regression

For identifying a predictive model for LVI, next 
we regressed LVI on the 57 miRNAs (after eliminating 
the 4 miRNAs that showed high correlation as described 
above). We used a multiple logistic regression method, 
and used the LASSO (Least Absolute Shrinkage and 
Selection Operator) approach to obtain regularized 
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Table 1: The odds ratio estimate and the 95%Wald’s confidence interval from the univariate 
logistic regression analyses, for all 61 miRNAs
mimiRNA.Name OR Lower limit (95% CI) Upper limit (95% CI)
hsa-miR-203a-3p 0.60 0.47 0.76
hsa-miR-30a-5p 1.60 1.25 2.04
hsa-miR-30a-3p 1.58 1.25 2.01
hsa-miR-10a-5p 1.59 1.25 2.03
hsa-miR-1293 0.65 0.51 0.83
hsa-miR-30c-2-3p 1.52 1.19 1.92
hsa-let-7d-5p 1.52 1.19 1.94
hsa-miR-28-5p 1.50 1.18 1.91
hsa-miR-128-3p 1.48 1.16 1.88
hsa-miR-3913-5p 1.49 1.17 1.90
hsa-miR-1266-5p 1.46 1.16 1.84
hsa-miR-194-5p 1.44 1.14 1.82
hsa-miR-9-5p 1.42 1.13 1.79
hsa-miR-106b-5p 1.42 1.12 1.80
hsa-miR-25-3p 1.43 1.12 1.81
hsa-miR-204-5p 1.41 1.11 1.77
hsa-miR-218-5p 1.40 1.11 1.77
hsa-miR-101-3p 1.40 1.11 1.78
hsa-miR-92b-3p 1.39 1.10 1.76
hsa-miR-181c-3p 1.39 1.10 1.76
hsa-miR-31-3p 0.73 0.58 0.91
hsa-miR-192-5p 1.39 1.10 1.75
hsa-miR-1287-5p 1.39 1.10 1.76
hsa-miR-584-5p 0.72 0.57 0.91
hsa-miR-181d-5p 1.37 1.09 1.73
hsa-miR-30d-3p 1.38 1.09 1.76
hsa-miR-95-3p 1.36 1.08 1.72
hsa-miR-9-3p 1.34 1.07 1.68
hsa-miR-101-5p 1.36 1.07 1.71
hsa-miR-187-3p 0.75 0.59 0.94
hsa-miR-497-5p 1.35 1.06 1.70
hsa-miR-217-5p 1.33 1.06 1.68
hsa-miR-1910-5p 0.74 0.58 0.95
hsa-miR-130b-3p 1.33 1.05 1.68
hsa-miR-141-5p 1.33 1.05 1.69
hsa-miR-455-3p 0.75 0.60 0.95
hsa-miR-31-5p 0.76 0.61 0.95
hsa-miR-193b-5p 0.75 0.60 0.95
hsa-miR-340-5p 1.32 1.04 1.66
hsa-miR-20b-5p 1.31 1.04 1.64
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parameter estimates [21]. The LASSO method helps 
to select important features among many while sets the 
coefficients corresponding to unimportant features to zero. 
For the HNSC data, only 20 miRNAs got selected. These 

include hsa-let-7d-5p, hsa-miR-30a-5p, hsa-miR-30a-3p, 
hsa-miR-95-3p, hsa-miR-10a-5p, hsa-miR-187-3p, hsa-
miR-203a-3p, hsa-miR-128-3p, hsa-miR-92b-3p, hsa-let-
7f-1-3p, hsa-miR-30d-3p, hsa-miR-141-5p, hsa-miR-194-

hsa-miR-592 1.31 1.04 1.65
hsa-miR-28-3p 1.31 1.04 1.66
hsa-miR-374a-3p 1.32 1.04 1.68
hsa-miR-374b-5p 1.30 1.03 1.65
hsa-miR-378c 1.30 1.03 1.63
hsa-miR-34a-5p 1.30 1.03 1.64
hsa-miR-370-5p 1.29 1.03 1.63
hsa-miR-6720-3p 1.29 1.03 1.63
hsa-miR-194-3p 1.29 1.02 1.62
hsa-miR-769-5p 1.29 1.02 1.62
hsa-miR-6892-5p 0.76 0.60 0.98
hsa-miR-1304-3p 0.75 0.58 0.97
hsa-miR-374b-3p 1.28 1.01 1.61
hsa-miR-30b-5p 1.27 1.01 1.61
hsa-let-7d-3p 1.28 1.01 1.62
hsa-miR-195-3p 1.27 1.01 1.60
hsa-miR-151a-3p 1.27 1.01 1.60
hsa-miR-215-5p 1.26 1.00 1.59
hsa-miR-4677-3p 1.26 1.00 1.59
hsa-miR-1468-5p 1.26 1.00 1.59
hsa-let-7f-1-3p 1.26 1.00 1.59

Figure 1: Side-by-side boxplots (distribution) of the scaled expression of hsa-mir-203a-3p against lymphovascular 
invasion (LVI) status. LVI value 1 and 0 indicate groups having and not having lymphovascular invasion respectively. 
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3p, hsa-miR-455-3p, hsa-miR-1910-5p, hsa-miR-3913-5p, 
hsa-miR-1304-3p, hsa-miR-6720-3p, hsa-miR-370-5p, 
hsa-miR-6892-5p. Based on these selected 20 miRNAs we 
ran a multiple logistic regression with LVI as the response 
variable. The predictive power of this multiple logistic 
model is presented through the ROC curve (Figure 2) with 
the area under the curve 77%. 

Clustering of the selected miRNAs reveals three 
distinct miRNA clusters that associate with LVI 
in HNSC

Using the gap statistic, we found that the optimal 
number of clusters is three. Table 2 shows all the 
miRNAs in three unsupervised individual clusters. We 
then used 3 as the number of clusters in the supervised 
clustering method Wilma. Among the 57 miRNAs, Wilma 
recognized 35 miRNAs as significant for prediction of 

LVI status and clustered them into three different and 
distinct clusters. Figure 3 shows the univariate logistic 
regression coefficients of the miRNAs grouped into 
three clusters. A positive value (grey bar) of a regression 
coefficient indicates that the chance of LVI increases 
with the expression value of the corresponding miRNAs. 
Similarly, a negative coefficient (black bar) indicates 
that the chance of LVI decreases as the expression of the 
corresponding miRNAs increases. Cluster 1 has seventeen 
miRNAs, cluster 2 has eight, and cluster 3 has ten miRNAs 
(Figure 4). The Wilma results suggest that 35 out of 57 
miRNAs are important for predicting the risk of LVI. 

For comparing the prediction power of each of 
the three supervised clusters, we fit a multiple logistic 
regression model for LVI on the miRNAs of each of the 
clusters separately. This resulted in three multiple logistic 
regression models and corresponding to each model we 
calculated the area under the ROC curve (Figure 5A–5C). 

Table 2: Table of the miRNA clusters based on the K-means unsupervised approach
Cluster 1 Cluster 2 Cluster 3
hsa-let-7d-5p hsa-miR-31-5p hsa-miR-28-5p
hsa-miR-25-3p hsa-miR-187-3p hsa-miR-30a-5p
hsa-miR-34a-5p hsa-miR-203a-3p hsa-miR-30a-3p
hsa-miR-30b-5p hsa-miR-584-5p hsa-miR-95-3p
hsa-miR-9-5p hsa-miR-193b-5p hsa-miR-101-3p
hsa-miR-106b-5p hsa-miR-455-3p hsa-miR-10a-5p
hsa-miR-130b-3p hsa-miR-1293 hsa-miR-204-5p
hsa-miR-20b-5p hsa-miR-1910-5p hsa-miR-215-5p
hsa-miR-592 hsa-miR-1304-3p hsa-miR-217-5p
hsa-let-7d-3p hsa-miR-6892-5p hsa-miR-218-5p
hsa-miR-28-3p  hsa-miR-128-3p
hsa-miR-30d-3p  hsa-miR-194-5p 
hsa-miR-141-5p  hsa-miR-151a-3p
hsa-miR-194-3p  hsa-miR-497-5p
hsa-miR-374a-3p  hsa-miR-181d-5p
hsa-miR-374b-5p  hsa-miR-92b-3p
hsa-miR-374b-3p  hsa-miR-769-5p
hsa-miR-1266-5p  hsa-let-7f-1-3p
hsa-miR-4677-3p  hsa-miR-101-5p
  hsa-miR-181c-3p
  hsa-miR-195-3p
  hsa-miR-340-5p
  hsa-miR-1287-5p
  hsa-miR-1468-5p
  hsa-miR-378c
  hsa-miR-3913-5p
  hsa-miR-6720-3p
  hsa-miR-370-5p
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Our results showed that miRNAs belonging to Cluster 1 
have the highest predictive power (77%) while miRNAs in 
cluster 2 have the second highest predictive power (70%). 
It is important to note that despite a smaller size of cluster 
2 compared to cluster 3, cluster 2 shows a much higher 
predictive performance than that of cluster 3. Further, it is 
important to note that the predictive power of cluster 1 is 
the same as the predictive power of the multiple logistic 
regression model where all 57 miRNAs were included as 
predictors (Figure 2). 

Further, an unsupervised hierarchical clustering 
of the 57 miRNAs were also represented as a heatmap 
along with the LVI status (Yes or No) (Figure 4). Both the 
k-means and hierarchical clustering seem to indicate that 
there are three major clusters (Figures 4 and 9). 

Random forest analysis identifies hsa-miR-
203a-3p, hsa-mir-10a-5p, hsa-miR-194-5p to be 
strongly associated with LVI 

Further, to determine the most important miRNAs 
out of these 35 miRNAs that are identified by the Wilma 
cluster, we performed a random forest (RF) analysis as 
described earlier [22]. In the RF analysis, we used LVI 
as the binary response variable and used all 35 miRNAs 
as potential predictors. We first randomly split the data of 
324 subjects into training and test sets consisting of 80% 

and 20% data, respectively. This resulted in 259 and 65 
subjects in the training and test data. Then RF analysis 
was applied on the training data, and the resulting output 
contains the importance table of the miRNAs. The Mean 
Decrease Accuracy for a predictor measures how much the 
average prediction accuracy is decreased if the predictor 
is dropped from the model. Obviously, the predictor 
with a higher value of mean decrease of accuracy is 
more important than a lower value in terms of prediction 
performance. The mean decrease in Gini coefficient 
is another measure to rank predictors based on their 
prediction power. A predictor with a higher value of the 
Mean Decrease Gini represents a higher prediction power, 
consequently, a predictor with the least mean decrease 
of Gini possesses the lowest prediction power [23]. The 
miRNA that appears in the first row of the importance table 
has the highest importance in prediction of LVI. Similarly, 
the miRNA appearing in the second row of the table is the 
second most important in the prediction (Table 3). This 
importance table revealed that hsa-miR-203a-3p, hsa-miR-
30a-3p, hsa-miR-10a-5p, hsa-miR-28-5p, hsa-miR-1266-
5p, hsa-miR-187-3p, hsa-miR-584-5p, hsa-miR-194-5p, 
hsa-miR-30a-5p and hsa-miR-3913-5p are the 10 most 
important miRNAs. However, due to the random selection 
of the training set, the output results are altered between 
individual runs. Hence, to ensure robustness of our data, 
we have re-analyzed our data five times using the RF 

Figure 2: ROC-curve for predicting lymphovascular invasion status for the multiple logistic regression with the set 
of miRNAs as predictors that are selected via the LASSO method. Abbreviations: AUC: Area under the curve; GLMNET: 
Regularized Generalized Linear Model.
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method. We record the top 10 important miRNAs from 
each of the analysis, and found that three miRNAs, hsa-
miR-203a-3p, hsa-mir-10a-5p, hsa-miR-194-5p, appear 
consistently among the 10 most important miRNAs in all 
5 analyses. Interestingly all of these 3 miRNAs belong to 
Wilma cluster 1 as shown in Figure 3. 

Besides the association between the miRNAs and 
LVI, we also wanted to figure out the dependence among 

the miRNAs. For that we calculated partial correlation 
among the 35 miRNAs selected by the supervised 
clustering method. The partial correlation between 
two generic miRNAs, x and y, signifies the correlation 
between the two after eliminating out the effect of the 
rest 33 miRNAs. Thus, high partial correlations can be 
indicators of a possible causal link. It is important to 
note that partial correlation provides better evidence for 

Table 3: Random forest analysis importance Table 5

miRNA name X0 X1 MeanDecrease
Accuracy

MeanDecrease
Gini

hsa-miR-203a-3p 13.26 14.30 18.93 7.94
hsa-miR-30a-3p 11.88 5.30 12.16 5.35
hsa-miR-10a-5p 7.10 5.04 8.76 4.48
hsa-miR-28-5p 5.40 6.08 8.15 4.40
hsa-miR-1266-5p 7.43 2.86 7.49 3.56
hsa-miR-187-3p 2.49 5.88 5.81 3.96
hsa-miR-584-5p 8.15 –1.93 5.42 3.19
hsa-miR-194-5p 7.24 –0.59 5.40 3.83
hsa-miR-30a-5p 4.03 3.28 5.26 3.60
hsa-miR-3913-5p 4.91 2.08 5.24 3.71
hsa-miR-1293 5.59 1.09 5.20 3.11
hsa-miR-370-5p 1.01 6.16 4.78 3.64
hsa-miR-101-3p 0.91 6.09 4.77 3.91
hsa-let-7d-5p 3.57 2.96 4.47 3.71
hsa-miR-95-3p 3.63 2.34 4.08 3.28
hsa-miR-181c-3p 5.39 –0.67 4.07 3.15
hsa-miR-455-3p 3.67 1.44 3.74 3.40
hsa-miR-34a-5p 3.26 1.46 3.21 2.73
hsa-miR-9-5p 2.13 2.34 2.97 3.08
hsa-miR-378c 2.89 0.39 2.61 3.46
hsa-miR-128-3p 0.67 2.64 2.19 3.24
hsa-miR-30d-3p 2.31 0.59 2.17 3.11
hsa-miR-1910-5p 2.78 –0.44 1.86 2.61
hsa-miR-141-5p 5.52 –4.55 1.63 2.95
hsa-miR-374a-3p 3.17 –1.81 1.56 2.66
hsa-miR-151a-3p 0.53 1.28 1.14 2.47
hsa-miR-204-5p 0.49 0.55 0.80 2.28
hsa-miR-92b-3p 0.59 0.01 0.59 3.03
hsa-miR-6720-3p 0.37 0.27 0.54 2.63
hsa-miR-106b-5p 1.46 –1.42 0.44 2.40
hsa-miR-181d-5p 0.14 –0.63 –0.20 2.51
hsa-miR-6892-5p –0.15 –0.47 –0.31 2.36
hsa-miR-194-3p 0.35 –1.73 –0.75 2.35
hsa-let-7f-1-3p –1.95 –0.40 –1.89 2.45
hsa-miR-1304-3p –2.85 –0.91 –2.84 2.37
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regulatory genetic links than the pairwise correlation [24]. 
Based on the partial correlation matrix we found that hsa-
miR-194-5p and hsa-miR-194-3p, hsa-miR-181c-3p and 
hsa-miR-181d-5p, and hsa-miR-30a-5p are hsa-miR-30a-
3p are very highly dependent with the partial correlation 
of 0.69, 0.72, and 0.88 respectively. 

miRNAs showing increased association with 
LVI also show increased correlation with 
lymphangiogenic genes

Since miRNAs directly regulate gene expressions 
by inhibiting the expression of specific mRNAs, in 
the next step we wanted to examine if there was any 
correlation between the 57 shortlisted miRNAs and some 
of the genes that play an important role in new lymphatic 
vessel formation or lymphangiogenesis [25] that could be 
predictive of LVI. To achieve the above-mentioned goal 
an association study was performed between the selected 
57 miRNAs and the following six lymphangiogenic genes, 
Ephrin B2 (EFNB2), Fibroblast Growth Factor 2 (FGF2), 
Lymphatic Vessel Endothelial Hyaluronan Receptor 1 
(LYVE1), notch receptor 1 (NOTCH1), Neuropilin-2 
(NRP2), and Prospero Homeobox 1 (PROX1). To 
determine the above-mentioned association, we considered 

each gene and regressed its standardized expression 
on the 57 miRNAs using the multiple linear regression 
method. As shown in Figure 6, the top-left plot shows 
the estimated regression coefficients for the statistically 
significant miRNAs for EFNB2. Similarly, the other plots 
of this figure correspond to the genes FGF2, LYVE1, 
NOTCH1, NRP2, and PROX1 respectively. From this 
analysis it emerged that hsa-miR-203a-3p has a negative 
effect on the gene expression values of FGF2 and NRP2. 
Also, hsa-miR-204-5p has a positive effect on the gene 
expression values of FGF2 and PROX1. Both hsa-miR-
141-5p and hsa-miR-34a-5p have a negative effect on the 
gene expression values of LYVE1 and PROX1.

Pathway analysis and target prediction identified 
several cellular pathways associated with tumor 
progression and lymph node metastasis

The miRNAs in cluster 1 show highest association 
with LVI and are likely to regulate multiple genes and 
cellular pathways. Hence pathway analysis was carried out 
for the miRNAs in Wilma cluster 1 that showed highest 
association with LVI using the DIANA tools mirPath V3 
[26]. The miRNAs that showed a positive correlation 
with LVI were found to be involved in TGF-β signalling 

Figure 3: Plot of the estimated regression parameter of the univariate logistic regression for lymphovascular invasion 
against corresponding to each of the miRNAs that are selected by the supervised clustering method. (A–C) A positive 
value (grey bar) of a regression coefficient indicates that the chance of LVI increases with the expression value of the corresponding 
miRNAs. Similarly, a negative coefficient (black bar) indicates that the chance of LVI decreases as the expression of the corresponding 
miRNAs increases.
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pathway, ECM-receptor interaction, cyclic AMP (cAMP) 
signaling pathway among the top regulated pathways 
and the 6 miRNA that has a negative association with 
LVI in cluster 1 were found to be involved in fatty acid 
biosynthesis and metabolism, viral carcinogenesis as 
shown in Supplementary Table 1. Pathway analysis of the 
two miRNAs hsa-mir-10a-5p, hsa-miR-194-5p that was 
consistently shown by random forest to be significantly 
associated with LVI and also identified as positively 
regulated with LVI in Wilma cluster 1 were found to 

be involved in regulation of several important cancer 
associated pathways such as Hippo signaling, adherens 
junction, fatty acid metabolism, circadian rhythm, TGF-β 
and p53 signaling pathways (Table 4). Gene target 
analysis for miR 203a-3p, mir-10a-5p, miR-194-5p was 
also carried out using the target prediction databases, 
miRTarBase (https://bio.tools/mirtarbase), and miRDB 
(http://www.mirdb.org/) [27] and the top 15 target genes 
for each miRNA showed that the genes are involved in 
multiple cellular mechanisms (Supplementary Table 2). 

Figure 5: ROC-curve for predicting lymphovascular invasion status for the multiple logistic model with the set of miRNAs as predictors 
that are in (A) supervised cluster 1 (B) supervised cluster 2 and (C) supervised cluster 3. 

Figure 4: Heatmap of miRNA expressions for 324 patients showing unsupervised clustering of miRNAs. miRNAs are 
represented across rows while patients are represented across columns. The dendrogram depicting unsupervised clustering of miRNAs is 
shown on the left column of the heatmap. The LVI status of patients is shown on the top of the rows. Blue represents patients not having 
invasion while red represents patients that do report LVI.

https://bio.tools/mirtarbase
http://www.mirdb.org/
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Further, overlapping interactions of these three miRNAs 
with multiple genes was also analyzed using miRNet 2.0 
(https://www.mirnet.ca) [28] and the total interactive gene 
regulatory network is shown in Figure 7A. The shortest 
path network filter was applied to visualize the minimum 
critical interaction network for these miRNAs and their 
target genes (Figure 7B).

DISCUSSION

LVI has been established as an important indicator 
of disease outcome and treatment modalities in several 
cancers [8, 29]. In HNSC, LVI is a well-known clinic-

pathological feature that tends to adversely influence 
disease prognosis and negatively affect patient survival 
and is the primary indicator of lymph node metastasis 
[11, 13]. Increased lymphangiogenesis is closely related 
with enhanced LVI and subsequent distant dissemination 
[10]. Recently, miRNA expression signatures related to 
prognosis have been found in a number of malignancies 
[30]. Several miRNAs have been associated with 
onset, progression and metastasis of HNSC [19, 31]. 
However, only few studies have evaluated the prognostic 
significance of dysregulated miRNA expression with 
increased LNM [32–34]. To the best of our knowledge 
this is the first study associating the miRNAs that show 

Figure 6: Plot of the regression coefficient of statistically significant miRNAs in the linear regression of the 
lymphangiogenic genes. The height of the bars represents the estimated regression parameter. Six lymphangiogenic genes EFNB2, 
FGF2, LYVE1, NOTCH1, NRP2, and PROX1 were considered and regressed its standardized expression on the 57 miRNAs using the 
multiple linear regression method. (A) The top-left plot shows the estimated regression coefficients for the statistically significant miRNAs 
for EFNB2. Similarly, the other plots of this figure correspond to the genes (B) FGF2, (C) LYVE1, (D) NOTCH1, (E) NRP2, and (F) 
PROX1 respectively. Black bars depict a negative association while the grey bars depict a positive association of individual miRNA with 
the gene.

Table 4: Cellular pathways regulated by miR-194-5p and miR-10a-3p
KEGG pathway (Tarbase) p-value #genes #miRNAs
Fatty acid biosynthesis 1.73E-23 1 1
Ubiquitin mediated proteolysis 1.26E-06 25 2
Hippo signaling pathway 6.29E-05 18 2
Adherens junction 7.94E-05 13 2
Fatty acid metabolism 0.001 2 2
Circadian rhythm 0.003 9 2
Endocytosis 0.009 24 2
Steroid biosynthesis 0.010 2 2
TGF-beta signaling pathway 0.035 13 2
p53 signaling pathway 0.036 11 2
Bacterial invasion of epithelial cells 0.036 9 2

https://www.mirnet.ca
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high correlation with LVI to also be associated with key 
lymphangiogenic genes. Previous characterization of 
molecular features in HNSC particularly with the aid 
of large-scale cancer genomics initiatives such as The 
Cancer Genome Atlas (TCGA) [14, 35] have generated 
important insights for stratifying HNSCs and delineating 
tumor subtypes. However, these studies have typically 
overlooked association with lymph node or LVI. 

It is important to note that metastasis is a complex 
process involving alterations in several cellular signaling 
pathways, dysregulation of multiple genes and involves 
a number of sequential steps not all of which are clearly 
defined. LVI is an important indicator of metastatic 
progression and in this study, our primary goal was to 
delineate the association between miRNA expression 
and LVI status and identify whether these important 
miRNAs grouped together in functional clusters that were 
associated with LVI. The supervised clustering technique 
is a novel way to achieve both goals. This method allows 
identification of groups of miRNAs that associate with 
LVI and likely regulate similar pathways thereby defining 
biologically relevant pathways that could be targeted to 
suppress LVI and thereby metastasis.

In our analysis, the preprocessing step obtained 
by discarding lowly expressed miRNAs followed by 
step two pruning using the univariate logistic regression 
to reduce the noise as well as increase the power of 
detecting significant association. Thus, we obtain the 
probability of the presence of LVI for a new HNSC cancer 
patient based on the expression level of their preselected 
miRNA. Further downstream analysis involved supervised 
clustering to group miRNAs based on how the miRNAs 
are affecting the LVI status. The clustering function 
wilma makes use of the Wilcoxon sign-rank test statistic, 
adjusted by a well-defined margin function [36]. It is 
critical to note that Wilma does supervised clustering and 
clusters only those features that are important with respect 
to the response, LVI [36]. The unsupervised clustering 
approach used in this study provided an indication of 
the optimal number of clusters which was then used in 
the supervised clustering method that clustered miRNAs 
incorporating their link with the LVI status. Therefore, 
our discussion is concentrated on the supervised clusters 
(Wilma clusters 1, 2, and 3), and the miRNAs within these 
clusters. Wilma cluster 1 showed the highest predictive 
power and association with LVI status. The robustness 
and predictive power of our analyses is revealed by the 
fact that in addition to the three miRNAs showing the 
highest correlation with LVI in HNSCC, several of the 
seventeen miRNAs identified in cluster 1 of the Wilma 
clustering have been previously associated with HNSCC 
[37]. For example, miR-30a has been associated as a 
tumor suppressor in HNSCC [38], high let-7d influences 
HNSCC growth [39], miR-3913 and miR-6892 have 
been associated with immune signature and candidate 
prognostic marker in HNSCC [40], miR-181d is shown to 

be predictive of risk in HNSCC [41], miR-141 suppresses 
growth and metastatic potential [42]; miR-370 has been 
shown to regulate insulin sensitivity and modulate tumor 
growth [43], miR-378 [44], miR-1910 and miR-187 
are shown to be induced in HNSCC [10, 45]. However, 
we also noted that three of the miRNAs, miR-6720, 
miR-584, and miR-1304-3p have not been shown to be 
associated with HNSCC as a prognostic indicator. This is 
an interesting finding as it also underscores the power of 
these predictive models to identify novel miRNAs that are 
associated with LVI in HNSCC. 

Hence, for the purpose of analyzing the cellular 
pathways affected we focused on that cluster. According 
to the functional pathway analysis of the miRNAs in 
Wilma cluster 1, we found that the target genes of these 
miRNAs that were positively associated with LVI were 
associated with several important tumor enhancing 
processes, including TGF-β signaling pathway and ECM-
receptor interaction mechanisms. This is significant as the 
TGF-β signaling pathway plays an important role in tumor 
metastasis and is involved in mediating early lymph node 
metastasis in multiple cancers [46, 47]. TGF-β exerts a 
complex dual regulation of the lymphangiogenic processes 
[48]. Tumor cells, can promote tumor lymphangiogenesis 
and lymph node metastasis by activating mechanisms 
through TGF-β to increase the expression of 
lymphangiogenic molecules as Vascular Endothelial 
Growth Factor C (VEGF-C) [49] while direct effects of 
TGF-β on lymphangiogenesis is inhibitory [49]. Alteration 
in the extracellular matrix components significantly 
modulate the tumor microenvironment and contributes to 
metastasis and has been associated with increased LVI in 
several other cancers [50, 51]. Our heatmap also pointed 
to 3 main clusters of the miRNAs.

Using RF approach, we identified several miRNAs 
that strongly correlated to LVI. Interestingly, almost 
all of the miRNAs that were identified by our random 
forest analysis to be significantly associated with LVI 
have also been independently identified in a number of 
studies in HNSC giving further credibility to our RF 
model. We focus our discussion here on the three miRNA 
(miR-203a-3p, hsa-miR-194-5p, miR-10a-5p,) that were 
consistently identified by the multiple iterations of RF 
analysis and also belong to Wilma cluster 1 that shows 
highest predictive association with LVI. These miRNAs 
were chosen based on the fact that they were validated 
as the highest predictors across multiple analyses. We 
want to point out that our main three important miRNAs 
hsa-miR-203a-3p, hsa-mir-10a-5p, hsa-miR-194-5p fell 
in two different clusters based on the heatmap- hsa-mir-
203-3p and hsa-mir-10a-5p in one cluster and hsa-mir-
194-5p in other. This is not a surprise as the heatmap 
(for hierarchical clustering) did unsupervised clustering 
whereas Wilma provided supervised clustering. Secondly, 
the heatmap was based on the unscaled expression values 
whereas the k-means clustering and the Wilma clustering 
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were applied on the scaled expression values. Our analysis 
showed that miR-203a-3p was negatively associated with 
LVI. This fits well with other studies where miR-203a-3p 
has been reported as a tumor suppressor and dysregulated 
in many malignancies including nasopharyngeal 
carcinoma [52], gastric cancer [53] and bladder cancer 
[54]. miR-203 has also been shown to be downregulated 
in animal models of oral cancer-a subtype of HNSCC 
[37]. However, it also functions as an oncomiR in breast 
cancer [55] and hepatocellular cancers [56] depending on 
the genes targeted. Significantly, miR-203a-3p suppresses 
expression of SOCS3 that has been shown to be closely 
associated with lymph node metastasis in breast cancers 
[57]. One of the predicted targets of miR-203a in our 
analysis was Semaphorin 5a that is associated with lymph 
node metastasis and adverse prognosis [58]. Integrative 
Analysis of miRNAs in HNSCC has previously identified 
miR-194 to be associated with the epithelial sub-type of 
HNSCC [59]. However, to the best of our knowledge 
no study has shown the role of miR-203, miR-194 and 
miR-10a as a prognostic indicator of LVI in HNSCC. 
miR-194 has been proved as a tumor promoting factor 
in various cancers and regulates the EMT mechanisms 
promoting cancer growth [60]. It has been reported to be 
significantly elevated in lymph node metastatic tissues 
from colorectal cancer patients [60]. miR-10a-5p has been 
reported to be overexpressed and to act as an important 
mediator of metastasis formation in PDAC [61]. Aberrant 
expression of miR-10a has been reported in head and neck 
cancers [62] and increased expression of miR-10a-5p has 
been shown to be associated with clinicopathological 

characteristics such as age and gender in laryngeal cancer 
[63]. In gastric cancer, miR-10a has been shown to have 
an important role in the metastasis from primary GC to 
lymph nodes [64]. Also, one of the top 20 miRNAs that 
showed strong correlation with survival as well as showed 
a significant positive correlation with LVI was miR-9 
that we have previously demonstrated to be an important 
regulator of lymphangiogenesis and lymphatic tube 
formation, which is the first step to promote tumor spread 
through lymphatics [65]. Further, overexpression of miR-9 
has been associated with poor prognosis in several cancers 
[66] and it has also been associated with increased lymph 
node metastasis in breast cancers [67]. KEGG pathway 
analysis of miR-194 and miR-10 which are positively 
corelated with LVI, revealed several pathways such as 
Fatty Acid synthesis, Hippo signaling, p53 pathways, 
TGF-β pathways and others. Aberrant production of fatty 
acids is associated with poor prognosis in human cancers 
and inhibition of this pathway has been associated with 
decreased LNM [68]. The Hippo signaling pathway 
is particularly significant as it is involved in control of 
tumorigenesis, and has recently been linked to metabolic 
reprogramming in metastatic lymph nodes [69–71]. Thus, 
regulation of these pathways could have significant impact 
on LVI and subsequent lymph node metastasis and patient 
outcome. In one study, weighted gene co-expression 
network analysis was used to construct gene co-expression 
networks and investigate the relationship between key 
modules and the LVI clinical phenotype and identified 24 
genes in the metabolic and immune reprogramming [13]. 
This is interesting all the miRNAs (miR-194, miR-10a and 

Figure 7: miRNAs and associated interaction with target genes. Network of regulatory genes interacting with miR-194, miR-
203a and miR 10a-5p were constructed using miRNET. (A) Target genes (3420) interacting with these miRNAs are depicted. (B) The 
minimum gene regulatory network interacting with these three miRNAs are shown. The nodes highlighted in blue represent the miRNAs 
and the genes are represented by red circles.
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miR 203a) that show significant association with LVI in 
our study also regulate metabolic pathways and alteration 
of immune cell response that are known to remodel the 
metastatic lymph node [72–74].

Tumor cells express high amounts of angiogenic 
molecules (that promote growth of new blood 
vessels) or lymphangiogenic molecules (that promote 
growth of new lymphatic vessels) that are critical 
for metastasis [75]. However, existing work in this 
area often does not take into account the dynamics of 
these interactions between miRNAs and regulators of 
angiogenic or lymphangiogenic pathways that promote 
lymph node invasion and hence makes therapeutic 
targeting of metastatic cancers a critical challenge. Our 
miRNA correlation data with lymphangiogenic genes 
corroborates with other independent studies with miRNA 
target validation in literature. FGF2 has been validated as 
a direct target of miR-203. It has been shown that miR 
203 inhibits renal cancer cell proliferation, migration and 
invasion by targeting of FGF2 [76]. Although studies 
have not directly established LYVE1 as a target for either 
miR-141 or miR-34a, increased LYVE1 expression has 
been shown to be associated with increased rate of LNM 
in oral cancer [77]. Hence therapeutic targeting of LYVE 
1 may suppress LNM in oral and HNSC. Both miR-
141 and miR-34 are actively involved in regulation of 
epithelial-mesenchymal transition (EMT) mechanisms 
and recent studies suggest that LYVE and PROX1 are 
also involved in EMT that promotes LNM [78]. The 
association of miR-141 with both LYVE1 and PROX1 
could potentially be a novel axis unraveled by our 
analysis that could provide new mechanistic links in EMT 
pathways in LNM progression. However, further studies 
are warranted. Our data shows that specific miRNAs 
(i.e., miR-141, miR-34a) show a negative association 
with two key lymphangiogenic genes PROX1 and LYVE. 
On the other hand, some specific miRNAs show positive 
association with LYVE1 (miR-30a, miR-25, miR-101) vs 
PROX1 (miR-181, miR-204). These are critical findings 
as it suggests that these miRNAs suppress expression of 
genes that maybe novel regulators that could positively 
or negatively regulate these lymphangiogenic genes in 
a context dependent manner. Interestingly, miR-203 
expression was negatively associated with three of the 
six lymphangiogenic genes studied (EFNB2, NRP2 
and FGF) suggesting that downregulation of miR-203 
potentiates lymphangiogenic mechanisms. Further, our 
data showed that miR-204-5p is positively co-related 
with FGF-2 and PROX1. It has been shown that miR-
204-5p promotes tumor angiogenesis through regulation 
of thrombospondin 1 [79] and similar mechanisms 
could be at play in the regulation of lymphangiogenesis. 
Further analysis is warranted to identify some of these 
mechanisms and could lead to some novel new targets.

In conclusion, our results showed that specific 
miRNA clusters significantly associate with LVI. The 

identified miRNA clusters regulate multiple biological 
pathways that are involved in progression of LNM and 
could be potential predictors of metastatic disease. 
In addition, RF analysis revealed three miRNAs hsa-
miR-203a-3p, hsa-mir-10a-5p, hsa-miR-194-5p to be 
most strongly associated with LVI and can be used as 
important prognostic indicators. Further, we also find that 
each of these miRNAs have association with significant 
molecular pathways as cell proliferation, metabolism 
and lymphangiogenesis that further promotes tumor 
progression. In addition, all of the identified miRNAs are 
associated with metabolic pathways as well as immune 
cell responses that define alterations in a metastatic lymph 
node so it also potentiates development of specific targeted 
interventions to these pathways that may distinguish a 
metastatic from a naïve lymph node. Different miRNAs 
regulate different aspects of metastatic progression 
and identification of specific miRNA linked with LVI, 
lymphangiogenesis and subsequent nodal metastasis 
may help in identification of patients at early stages of 
disease progression. Specific miRNA agonists (mimics) 
or antagonists (inhibitors) can be evaluated further in 
pre-clinical trials to evaluate their efficacy in inhibition 
of HNSCC progression when detected in earlier stages. 
Further studies are warranted to determine the functional 
relevance of these findings and evaluate the downstream 
targets in tumor models of HNSCC metastasis. 

MATERIALS AND METHODS

TCGA data retrieval

We used the Head and Neck squamous cell 
carcinoma (HNSC) cohort of the TCGA data portal. 
The overall steps of the workflow are depicted in Figure 
8. To download and integrate the clinical and genomic 
data from TCGA we have used the web-based platform, 
University of California Santa Cruz Xena Browser (https://
xenabrowser.net/). We obtained mature miRNA sequences 
(IlluminaHiseq) referenced with a miMAT accession 
number. Particularly, the sequences are level-3 data, and 
log2(total RPM+1), where total RPM represents the total of 
all isoform expressions for the same miRNA mature strand. 
The clinical data on subjects are also obtained through 
UCSC Xena, with the major focus on lymphovascular 
invasion status among many other phenotypic 
variables and in the downloaded data it was named as 
lymphovascular_invasion_present. This variable is referred 
to as LVI. Although the clinical data had information on 
604 subjects, after removing subjects without any LVI 
information we were left with only 411 patients. Matching 
the miRNA sequence data with their corresponding clinical 
data, we obtained a total of 351 patients. The TCGA 
consortium contains data from five different sample types 
[80]. Out of these patients’ samples, we considered only 
the primary solid tumor tissue, and that left us with 324 

https://xenabrowser.net/
https://xenabrowser.net/
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Table 5: Clinico-pathological features of HNSC patients grouped by the lymphovascular invasion 
status (LVI) in TCGA study cohort

LVI- No (211) LVI-Yes (113) p-value
Gender Female 68 23 0.033

Male 143 90
Age of initial diagnosis Minimum 24 years 26 years 0.061

Maximum 87 years 87 years
Median 61 years 59 years
Average 61.5 years 59.1 years

Alcohol history documented No 70 31 0.304
Yes 136 81
NA 5  1

Alcohol consumption per day 0 34 15 0.001
1 10 11
(1, 3) 22 11
more than 3 25 22
NA 120 54

Tobacco smoking history indicator 1 60 22 0.002
2 61 44
3 33 8
4 51 35
5 1 1
NA 5 3

Clinical stage Stage I 12 4 0.109
Stage II 46 10
Stage III 51 22
Stage IVA 89 72
Stage IVB 4 1
Stage IVC 2 0
NA 7 4

Anatomical neoplasm subdivision Alveolar ridge 9 5 0.119
Base of tongue 6 5
Buccal mucosa 10 6
Floor of mouth 32 18
Hard palate 4 0
Hypopharynx 3 1
Larynx 35 34
Lip 1 0
Oral cavity 29 10
Oral tongue 70 25
Oropharynx 4 2
Tonsil 8 7

#The numerals used in tobacco smoking history signify the following: 1- Lifelong Non-smoker (less than 100 cigarettes 
smoked in Lifetime), 2-Current smoker (daily smokers, non-daily smokers or occasionalsmokers), 3-Current reformed smoker 
for > 15 years (greater than 15 years), 4-Current reformed smoker for  ≤15 years, 5-Current reformed smoker, duration not 
specified, NA-Smoking History not documented.
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patients. After the analysis, we retrieved the information 
of mature miRNA corresponding to the miMAT accession 
number using the R package miRBaseConverter available 
from https://www.bioconductor.org [81]. The HNSC data 
contains expression data of 2246 miRNAs. The variable 
of interest LVI is a binary variable. Value zero indicates 
that the tumor cell doesn’t invade through the lymphatic 
vessels yet while value one indicates the invasion of cancer 
to lymphatic vessels. Among 324 patients, 211 patients did 
not have LVI (LVI) while 113 patients show LVI. Table 
5 summarizes clinical information including gender, age, 
race, LVI, clinical stages, alcohol and tobacco smoking 
history, and anatomical site information of the patients. 
Association of the demographic and clinical information 
with LVI was also calculated.

Statistical analysis and preprocessing of miRNA

For the statistical analyses, R software, version 3.6.2 
was used. As a first step of pre-processing the data, we 
only considered miRNAs whose mean value across the 
patients were greater than one to avoid miRNAs with 
very low expression. After this exclusion, 496 miRNAs 
fit the criteria for further association studies. Finally, we 
standardized each miRNA expression to have zero mean 

and unit variance. Standardized values of every miRNA 
were obtained by subtracting the mean and then dividing 
by the standard deviation of the respective miRNA. The 
primary goal of our analysis was to identify the important 
miRNAs based on their association with LVI, or predictive 
power of the LVI status using statistical methods, and 
investigate their biological role in this context. At the very 
first stage, instead of working with all available miRNAs, 
we performed a second level of preprocessing to preselect 
a subset of miRNAs that are significantly associated with 
the binary LVI status based on the univariate logistic 
regression model. Specifically, we used the glm function 
to run the logistic regression. Based on the 5% significance 
level, we screened out important miRNAs that will be 
used for downstream analyses. Next, we computed the 
pairwise correlation among the miRNAs, and removed a 
handful of miRNAs that are highly correlated with others. 
Then, to find a best predictive model we fitted a multiple 
logistic regression model to LVI on all the miRNAs that 
were selected in the previous step. Since a large number 
of miRNAs are included simultaneously as predictors we 
used the penalized estimation method, the least absolute 
shrinkage and selection operator (LASSO) technique [21], 
to select the important miRNAs for the best predictive 
model. 

Figure 8: Flow chart showing the overall workflow describing the steps used to develop the prognostic model and 
identification of miRNAs that are predictive of LVI. Abbreviations: TCGA: The Cancer Genome Atlas; HNSCC: head and neck 
squamous cell carcinoma; OS: overall survival; ROC: receiver operating characteristic; LASSO: least absolute shrinkage and selection 
operator regression.

https://www.bioconductor.org
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Supervised and unsupervised clustering of 
miRNA

Besides finding a good predictive model, we 
wanted to examine if these miRNAs would show more 
connection with others and show functional clusters that 
are indicative of increased risk for LVI. Hence, clustering 
of miRNAs is a novel component of our analyses. Most 
of the supervised techniques rely on prior knowledge on 
the number of clusters [82]. Therefore, we first implement 
unsupervised K-means clustering with the gap statistic 
(using the clusGap function) to determine the optimal 
number of clusters. K-means uses a distance measurement 
to calculate the similarity between miRNAs. The gap 
statistic compares the total within-cluster variation for 
different values of k with their expected values under a null 
reference distribution of the data. The reference dataset is 
generated using Monte Carlo simulations of the sampling 
process. Figure 9 shows the gap statistic corresponding to 
different values of the number of clusters. Next, we used 
the Wilma function of the supclust package of R [83] to do 
supervised clustering using the miRNAs that were selected 
based on the 5% significance level of the univariate 
logistic regression and after eliminating the miRNAs 
that were highly correlated with others. The clustering 
function Wilma makes use of the Wilcoxon sign-rank 
test statistic, adjusted by a well-defined margin function 
to implement the above-mentioned algorithm [36]. The 
optimal number of clusters of the unsupervised method 

was used in the Wilma function. We used Bioconductor 
package supclust to perform supervised clustering [36]. 
The mentioned package needs a user-specified cluster 
number that was three in our case as indicated by K-means 
clustering with the Gap statistic as shown in Figure 9. The 
supervised algorithm tries to find miRNAs clusters, so that 
the average expression profile of each cluster has a great 
potential for explaining the LVI status. At the initial step, 
the algorithm starts out with the best single miRNAs in 
explaining invasion status and then adds one after another 
to the existing cluster. We then compared the predictive 
power of each of the Wilma clusters of miRNAs through 
the multiple logistic regression analysis and the ROC 
curve. Following the request of a reviewer, a hierarchical 
clustering of the non-standardized log2 transformed 
miRNAs expression in correlation to LVI status was 
created. For this we used the pheatmap function of R 
Package Version 1.0.12. (https://CRAN.R-project.org/
package=pheatmap) [84]. 

Random forest analysis

To determine the most important miRNAs from 
the set of miRNAs identified by the Wilma cluster, 
we performed a random forest (RF) analysis [22]. To 
identify which of the miRNAs have prognostic value, 
in the RF analysis, we used LVI as the binary response 
and implemented a machine learning strategy. RF orders 
miRNAs according to their importance in predicting the 

Figure 9: Plot of the gap statistic against the number of clusters in an unsupervised k-means clustering of the miRNAs. 
Bars at every point represent the +/– 1 standard error of the gap statistic. 

https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=pheatmap
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LVI status based on a decision-tree based approach. For 
a RF analysis of a dataset, first the observations of the 
dataset are randomly divided into two parts, such as 80% 
and 20%. The larger portion is then used as a training 
dataset and the smaller set is used as a test dataset. 
The training data are used to tune the decision tree-
based algorithm. The test data are used for checking the 
predictive capability of the algorithm. The RF and the 
multiple logistic regression based on the Least absolute 
shrinkage and selection operator (LASSO) penalty are 
analogous approaches as both are used for identifying 
predictive miRNAs, but one is model based and the other 
is model-free approach.
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