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Neddylation and anti-tumor immunity
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ABSTRACT
Contrary to chemotherapy, novel targeted therapies are associated with 

diverse immunomodulatory effects. Nedd8 is a small ubiquitin-like modifier that is 
involved in regulation of protein degradation. Neddylation is a promising target in 
cancer. Pevonedistat, a small molecule inhibitor of the Nedd8-activating enzyme, 
demonstrates pre-clinical activity in multiple tumor types. Recent studies have 
revealed that neddylation is important in immunity. We and others have shown 
that interfering with neddylation causes downstream immunomodulatory effects 
potentially leading to enhanced anti-tumor immunity. Thus, Nedd8 is a promising 
target in immuno-oncology.

The ubiquitin-proteasome system (UPS) is 
a common pathway which controls degradation of 
unwanted or misfolded proteins in cells. Proteins targeted 
for degradation are labeled with ubiquitin chains by E3 
ubiquitin ligases [1]. The Cullin-RING E3 ubiquitin 
ligases (CRLs) represent the largest family of E3 ligases, 
which contribute approximately 20% of UPS-mediated 
protein degradation [2]. Targeting protein degradation 
pathway has precedence in the clinic. Bortezomib, 
carfilzomib and ixazomib are proteasome inhibitors which 
received regulatory approvals in the therapy of multiple 
myeloma. Lenalidomide and pomalidomide modulate 
Cereblon, part of an E3 ligase complex, resulting in 
increased secretion of IL-2 by T cells, a shift towards the 
Th1 phenotype and improved immune synapse formation 
[3]. Moreover, lenalidomide was shown to enhance the 
function of chimeric antigen receptor T cells [4]. 

The conjugation of the ubiquitin-like modifier 
NEDD8 to Cullins (neddylation) is essential for the 
conformational change and subsequent ubiquitination 
of CRL (Cullin RING ligase) substrates [5]. As a post-
translational modification process, neddylation is a three-
step sequential enzymatic reaction: 1. NEDD8 activation 
by the E1 NEDD8-activating enzyme (NAE, NAE1/
UBA3 heterodimer) in an ATP-dependent manner; 2. 
NEDD8 transfer to the E2 NEDD8-conjugating enzymes 
(UBC12 and UBE2F) via a thioester linkage; 3. NEDD8 
conjugation to cullin activates the ubiquitin ligase activity 

of the CRL [6, 7]. Pevonedistat is a small molecule which 
covalently adducts with NEDD8, leading to effective 
inhibition of NAE via competitive binding. Consequently, 
NEDD8 is prevented from conjugation to CRLs, thus 
leading to CRL deactivation and accumulation of CRL-
dependent substrates [8]. As a first-in-class NAE inhibitor, 
pevonedistat demonstrated pre-clinical and early clinical 
efficacy across multiple tumor types [9–14]. Furthermore, 
we and others have reported additive cytotoxic activity of 
NAE inhibition in combination with chemotherapeutic and 
targeted agents [15–20]. Pevonedistat has entered clinical 
trials in solid tumors and hematologic malignancies. Our 
group is conducting a Phase I clinical trial investigating 
pevonedistat in non-Hodgkin lymphoma (NCT03479268).

Recent reports have implicated neddylation in 
regulation of immune cell function, including proliferation, 
maturation, effector cell function and signal transduction 
[21–25]. Meanwhile, pharmacologic and genetic 
manipulation of the neddylation pathway has been shown 
to modulate T-cell mediated immune responses [26]. A 
significant body of literature suggests that neddylation 
regulates T-cell functionality. In a pivotal study, genetic 
knockdown of the Nedd8-conjugating enzyme Ubc12 
in murine CD4+ T cells led to diminished proliferation, 
skewed Th1/Th2 differentiation and reduced cytokine 
production [21]. In vivo treatment with pevonedistat 
was shown to have comparable effects in a malaria 
murine model, where UBA3 deficiency significantly 
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compromised survival, activation, and proliferation of 
CD4 T cells and impaired Th1/Tfh differentiation [22]. 
Similarly, downmodulation of sensitive to apoptosis gene 
(SAG), regulator of Cullin neddylation, reduced T-cell 
activation, proliferation, and cytokine release in murine 
T cells [23]. Recently, our group has shown that in vitro 
exposure to pevonedistat downregulated activation of 
proximal T-cell receptor (TCR) signaling, accompanied by 
suppression of NF-κB-regulated genes and IL-2 signaling 
in T cells derived from patients with chronic lymphocytic 
leukemia (CLL) [24]. However, we also found that 
targeting neddylation may exert immune modulation 
that ultimately leads to enhanced anti-tumor effects. 
Specifically, we demonstrated that NAE inhibition with 
pevonedistat suppressed induction of FoxP3-positive CD4 
Tregs in in vitro conditions. This result was confirmed in 
immunized mice [24]. Furthermore, we have observed 
increased T-cell polarization towards Th1 phenotype in 
vitro and in vivo, accompanied by an increase of IFNγ 
production. Our results are partially supported by Friend 
et al who observed that CRLs suppress TCR signaling 
and IL-2 production in murine T-cell hybridomas, a 
phenomenon reversed by pevonedistat [25].

Although pevonedistat may suppress the ability of 
dendritic cells to stimulate murine and human allogeneic 
T-cell responses [27], treatment with pevonedistat was 
shown to significantly inhibit infiltration of immune 
suppressor cells, including tumor-associated macrophages 
(TAMs) and myeloid derived suppressor cells (MDSCs), 
and promoted CD8 T cell infiltration in lung cancer 
models [28].

Immune checkpoint (e.g., PD-1, CTLA-4) has 
become an important target in cancer. There is paucity of 
data as to how neddylation and other UPS components 
regulate expression, turnover and function of these 
molecules. We have found that targeting NAE with 
pevonedistat significantly enhanced CTLA-4 expression 
in human T cells [24]. The mechanism for this is 
poorly understood but may depend on NAE-mediated 
control of several key signaling pathways. CTLA-4 is 
positively regulated by the transcription factor GATA3 
[29]. Proteasome inhibition was shown to induce GATA3, 
upregulate CTLA-4 expression and thereby efficiently 
suppress the proliferation of CD4 T cells in vitro [29]. 
A recent study found that SKP1-Cul1-F-box E3 ligase 
complex induces degradation of GATA3 in a GSK3-
dependent manner [30], and targeting this complex may 
therefore lead to enhanced expression of CTLA-4. On the 
other hand, our data shows that pevonedistat markedly 
increases HIF-1α expression in CD3/28-stimulated T cells 
[24], a finding consistent with the fact that ubiquitination 
of HIF-1α is mediated by VHL–Cul2-EloBC E3 ligase. 
HIF-1α is critical to metabolic transition to glycolysis, a 
process indispensable in T-cell proliferation and effector 
functions [31]. Loss of HIF-1α in CD8 T cells was shown 
to reduce activation, tumor infiltration and tumor cell 

killing, and alter tumor vascularization [32]. By contrast, 
VHL-deficient cytotoxic T lymphocytes displayed 
enhanced control of persistent viral infection and 
neoplastic growth via HIFs [33]. Checkpoint receptors, 
including TIM3, PD-1, CTLA-4 and LAG-3, were also 
downregulated in CD8 T cells deficient in HIF-1α, and 
thus it is possible that enhanced CTLA-4 expression 
observed by us may be in part mediated by NAE 
interference with HIF-1α signaling pathway [32].

Genetic depletion of key neddylation pathway 
enzymes or pevonedistat treatment was also shown 
to markedly elevate PD-L1 expression in gliomas, in 
part due to a block in degradation of MYC protein 
[18, 34]. Furthermore, inactivation of cullin 3–SPOP 
E3 ligases blocked degradation of PD-L1, causing 
increased PD-L1 levels and reduced numbers of tumor-
infiltrating lymphocytes in mouse tumors and in 
primary human prostate cancer specimens [35]. While 
PD-L1 induction attenuated T cell-mediated killing in 
this model, concurrent targeting of NAE and PD-L1 
restored anti-tumor immunity. Targeting NAE may also 
enhance tumor antigenicity. Thus, cancer cells exhibiting 
enhanced microsatellite instability (MSI) were dependent 
on neddylation to clear misfolded protein aggregates 
resulting from destabilizing mutations [17]. In these cells, 
treatment with pevonedistat induced immunogenic cell 
death when PD-1 was blocked. These studies pave the way 
for rationally designed therapeutic strategies employing 
a neddylation inhibitor and a checkpoint inhibitor. The 
effects of concurrent targeting neddylation and CTLA-4 
and other immune checkpoint molecules have not been 
investigated thus far.

In sum, a significant body of literature highlights 
direct anti-tumor effects of pevonedistat, firmly 
establishing neddylation as a therapeutic target in 
cancer. Provocative new data uncover a hitherto poorly 
understood immunomodulatory function of neddylation, 
with a potential to redefine its place in immuno-oncology. 
Such advances are highly relevant in the current age of 
cancer therapeutics, as they open avenues to enhance 
efficacy of existing therapies as well as develop novel 
mechanistic approaches to boost anti-tumor immunity. 
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