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ABSTRACT
Background: Radiomics involving quantitative analysis of imaging has shown 

promises in oncology to serve as non-invasive biomarkers. We investigated whether 
pre-treatment T2- weighted magnetic resonance imaging (MRI) can be used to predict 
response to neoadjuvant chemotherapy (NAC) in breast cancer.

Materials and Methods: MRI scans were obtained for 102 patients with locally 
advanced breast cancer (LABC). All patients were treated with standard regimens of 
NAC as decided by the treating oncologist, followed by surgery and adjuvant treatment 
according to standard institutional practice. The primary tumor was segmented, 
and 11 texture features were extracted using the grey-level co-occurrence matrices 
analysis of the T2W-images from tumor cores and margins. Response assessment 
was done using clinical-pathological responses with patients classified into binary 
groups: responders and non-responders. Machine learning classifiers were used to 
develop a radiomics model, and a leave-one-out cross-validation technique was used 
to assess the performance.

Results: 7 features were significantly (p < 0.05) different between the two 
response groups. The best classification accuracy was obtained using a k-nearest 
neighbor (kNN) model with sensitivity, specificity, accuracy, and area under curve 
of 63, 93, 87, and 0.78, respectively.

Conclusions: Pre-treatment T2-weighted MRI texture features can predict NAC 
response with reasonable accuracy.
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INTRODUCTION

Locally advanced breast cancer (LABC) is defined 
as breast cancer with tumors greater than 5 cm, primary 
disease involving the chest wall, skin, or advanced regional 
lymph node metastasis, without distant metastases [1]. 
Neoadjuvant chemotherapy (NAC) is the standard of care 
for patients with LABC, with chemotherapy administered 
before surgery [2], with the purpose of improving 
resectability and facilitating breast-conserving therapy 
[1]. Approximately 50–70% of patients respond to NAC, 
which can serve as an important surrogate for clinical 
outcomes in specific molecular subgroups [3]. Pathological 
response rates are worse, with approximately 20–40% of 
patients achieving pathological complete response [4]. 
NAC can lead to various toxicities, including alopecia, 
fatigue, nausea, myelosuppression, neuropathy, and 
cardiotoxicity [5]. It would be helpful to develop imaging 
biomarkers to identify patients likely to benefit from NAC 
avoiding ineffective treatments in a selected cohort of 
patients having chemoresistant disease. Radiomic analysis 
involving a wide range of imaging modalities, including 
magnetic resonance imaging (MRI) [6–8], quantitative 
ultrasound (QUS) [9–12], and computed tomography 
(CT) [13], has shown promising results in the assessment 
of clinical outcomes for patients with breast cancer.

“Pre” and “post”-treatment MRI scans are often 
undertaken as the standard of care for patients with LABC 
for disease staging, assessment of response post-NAC, and 
surgical decision making. T1 and T2-weighted contrast-
enhanced sequences are used to assess tumor extent 
and characterize malignancy based on morphological 
characteristics [14]. T2-weighted MRI sequences are 
based on T2 relaxation time, which is typically dependent 
on intrinsic tissue characteristics. Factors of the tissue 
that affect T2 relaxation time include: tissue water and 
fat content, the random movement of water and macro-
molecules, and pH value, with the tissue water content 
being one of the most influential [15]. Breast cancer 
lesion T2 relaxation time has shown a decrease after 
NAC, with a more significant reduction in responders 
than non- responders [16]. In T2-weighted breast MRI, the 
texture of these images has been significantly correlated 
with pathological heterogeneity such that the texture 
could hypothetically be used to predict patient prognosis. 
Texture, in that case, was represented in a limited 
manner by uniformity and entropy, which describe the 
distributions of intensity histograms of MRI [17]. Also, 
contrast agents, such as gadolinium, and examining the 
T1-weighted increase of the tumor intensity over time, 
one can generate quantitative kinetic texture features 
representing tumor vascularity characteristics. These 
features have been demonstrated to have the potential for 
predicting NAC response before treatment with an area 
under curve (AUC) of 0.68 [18]. However, not all patients 
can receive contrast agents due to allergies or renal 

insufficiencies, and there can be issues with standardizing 
contrast perfusions and time requirements [19]. Thus, 
texture features derived from non-contrast T2-weighted 
MRI are potentially more generalizable, should they show 
similar predictive capability.

A common and useful method of describing texture 
involves computing features from the grey-level co-
occurrence matrices (GLCMs) of images [20]. GLCMs 
represent the probability distributions of the pixel 
intensities between pixels and their neighbors, applied 
throughout the whole image. Machine learning algorithms, 
such as Fisher’s linear discriminant analysis (FLD), 
support vector machines (SVM), and k-nearest neighbors 
(kNN), permit the tuning of functions or decision 
boundaries such that classification accuracy is maximized 
and capable of leveraging the differentiating capacity of 
GLCM textures [9]. They take advantage of otherwise 
undetectable multi-dimensional feature relationships.

The study examined T2 non-contrast images in 
predicting the treatment response to NAC. Specifically, 
we investigated a number of parameters, including 
quantization level, region of interest (ROI) selection 
method (tumor core and margin), GLCM pixel distances, 
classifier type, and tuning parameters to examine whether 
treatment response can be predicted before starting NAC.

RESULTS

The study included 102 patients with LABC 
treated with NAC. Clinical and pathological details of the 
analyzed patient cohort are summarized in Table 1. The 
median age of the patients was 51 years (range: 27–83 
years), with the median tumor dimension of 5.2 cm (range: 
1.3–12.8 cm). 52% of the patients were premenopausal, 
2% were perimenopausal, 40% were postmenopausal, 
while in the remaining 6% information was not available. 
In terms of histology, 87% of patients had invasive ductal 
carcinoma, 6% had invasive lobular carcinoma, mixed 
invasive ductal and lobular carcinoma in 6%, and invasive 
micropapillary carcinoma in 1%. Fifty-one percent of 
patients received doxorubicin and cyclophosphamide 
followed by paclitaxel (AC-T), 41% received 5- 
fluorouracil, epirubicin, cyclophosphamide, and docetaxel 
(FEC-D), and the remaining 8% received other treatments. 
Trastuzumab was given to 34% of patients. 81% (n = 83) 
of patients were classified as responders, and 19% (n = 19) 
of patients were classified as non-responders.

Figure 1 displays representative MRI (A, B) and 
texture feature images (C–F) for a typical non-responder 
(NR) and responder (R). For the tumor core, in order of 
increasing p-values, the different texture features were as 
follows: maximum (MAX), correlation (COR), angular 
second moment (ASM), energy (ENE), entropy (ENT), 
standard deviation (STD), variance (VAR), mean (MEA), 
contrast (CON), homogeneity (HOM), and dissimilarity 
(DIS).
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The first seven texture features showing a significant 
difference between non-responders (NR) and responders 
(R) (p ≤ 0.05), and the final four not showing significant 
differences between the two groups (p > 0.05). For the 
tumor margin, none of the features were independently 
significant. Figures 2 and 3 represent the distributions of 
the different texture feature values for NR and R obtained 
from tumor core and margin, respectively.

The classifier performances using the individual 
machine learning algorithms are summarized in Table 2. 
The kNN classifier had the maximum accuracy (87%) 
and specificity (93%) in the overall analyses, but the 
FLD classifier had the maximum sensitivity (84%) and 
F1- Score (0.76). Both optimal SVM classifiers used the 
ROI core texture features, whereas the FLD and kNN used 
the texture features from the margin, including 15 and 
10 pixels, respectively. Figure 4 shows the bar diagram 
comparing the different classifiers (FLD, SVM-Lin, SVM-
RBF, kNN) with sensitivity, specificity, and accuracy as 
performance evaluation metrics.

Full results associated with different quantizations, 
pixel distances, and tumor core and margin analyses are 
presented in Supplementary Figure 1. For the quantization, 
the optimal value depended on classifier type, with the 

highest accuracy associated with a classifier using 256 
grey levels for FLD, 32 grey levels for SVM-Lin and 
SVM-RBF, and 16 grey levels for kNN, with a fixed ROI 
selection method of the core and a pixel distance of 1 
(Supplementary Figure 1A). When varying pixel distance 
between 1 and 15, there was no significant change 
in classification performance (Supplementary Figure 
1B), whereas the results for 32 vs. 128 grey levels had 
different trends (Supplementary Figure 1C). For the ROI 
selection method, a margin of 15 pixels was consistently 
the least sensitive with quantization of 32 grey levels 
but consistently the most sensitive with quantization 
of 128 grey levels. (Supplementary Figure 1D and 1E) 
Additionally, 128 grey levels resulted in higher accuracies 
than 32 grey levels for all classifiers except SVM-Lin. 
Across all models trained using 128 grey levels, those 
trained using the margins had better accuracy than those 
from the core. A quantization of 128 grey levels with the 
margin of 10 pixels had the individual classifier with the 
highest overall accuracy (kNN, Acc = 87%). Models were 
tested using the core and margin features together. This 
did not improve performance, as the features selected in 
the optimal model were solely from the margin. This was 
a significantly better performance than from tumor core 

Table 1: Patient, disease, and treatment characteristics (n = 102) 
Features Median ± Standard Deviation/Percentage
Age 51 ± 11 years
Initial Tumour Size 5.2 ± 2.8 cm
Histology
 Invasive Ductal Carcinoma: 87%
 Invasive Lobular Carcinoma: 6%
 Other: 7%
Tumour Grade

Grade 1: 7%
Grade 2: 43%
Grade 3: 46%

Unavailable: 4%
Molecular Features
 HR+/HER2-: 41%

HR+/HER2+: 20%
HR-/HER2+: 14%

 Triple-negative: 25%
Neoadjuvant chemotherapy

AC-T (51%)
FEC-D (41%)
Others (8%)

Residual Tumour Size 1.9 ± 4.1 cm

Abbreviations: HR: Hormone receptor; HER2: Human epidermal growth factor receptor 2; AC-T: doxorubicin and 
cyclophosphamide followed by paclitaxel; FEC-D: 5-fluorouracil, epirubicin, cyclophosphamide, and docetaxel.
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features (accuracy 87% versus 71%). Figure 5 presents 
the receiver operator characteristics curves for each of 
the optimal classifiers and displays their area under curve 
(AUC) values. The FLD classifier had the minimal AUC, 
with 0.74, SVM-Lin had 0.75, SVM-RBF had 0.76, and 
kNN exhibited an AUC of 0.78.

DISCUSSION

Radiomics is an emerging discipline in medicine 
and oncology involved with the advanced processing of 
imaging data [21]. Radiomic analysis can be undertaken 
on various morphological or functional imaging modalities 

Figure 1: The MRI, quantized tumor ROI, and texture feature images for a typical NR and R. Includes (A) MRI sagittal 
view before treatment, (B) the MRI ROI quantized to 16 grey levels with both the ROI core and a margin of 10 pixels outlined, and feature 
images for (C) MAX, (D) HOM, (E) ENE, and (F) COR. The solid lines around the tumor core in the feature images differentiate the cores 
from the margins. Scale bars on the top panel correspond to 1 cm.
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undertaken in routine management for patients with 
cancers. The various features extracted can include first-
order features including shape parameters, second-order 
features like texture, or higher-order, which can extract 
meaningful information which is otherwise beyond the 
abilities of human interpretation. Computational imaging 
analysis leads to generation of higher-dimensional 

data, which is often coupled with advanced machine 
learning classifiers for meaningful interpretation of the 
data towards specific biological endpoints. Supervised 
machine learning algorithms are more commonly used 
for development of radiomic models using the extracted 
set of imaging features directed towards a pre-specified 
output. Quantitative imaging can therefore serve as crucial 

Figure 2: Boxplot with an overlayed scatterplot of the distributions of NR and R patient texture feature values 
calculated with only the tumor core, a quantization of 256 grey levels, and a pixel distance of 1.
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non-invasive biomarkers linked to clinical outcomes 
like treatment response, survival, or determination of 
treatment-related toxicities, guiding treatment decisions 
in clinical practice. Radiomics research has been widely 
undertaken in breast cancer using different imaging 
modalities, including CT, MRI, and QUS [22]. In this 
study, we explored the efficacy of pre- treatment non-

contrast T2-weighted MRI in predicting response to NAC 
in a cohort of 102 patients with LABC, incorporating 
different regions of the tumor (core vs. margin) and 
different techniques of data processing (quantization, pixel 
distance).

Similar work carried out using T2-weighted MRI 
texture has either analyzed different endpoints [6], not 

Figure 3: Boxplot with an overlayed scatterplot of the distributions of NR and R patient texture feature values 
calculated with only tumor margin, a quantization of 256 grey levels, and a pixel distance of 1.
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examined solely pre-treatment predictive capacity [7], not 
examined T2- weighted MRI independently [23], or been 
incapable of detecting a significant difference [24, 25]. 
Henderson et al. used GLCM entropy with a pixel distance 
of 2 and 5, and a constant quantization of 64 grey levels 
[24], involving 2 features, and did not take advantage 
of any ML techniques with data from 88 patients. 
Additionally, the analysis that was performed was on T2- 
weighted MRI without fat suppression [24]. Additional 
work by Liu et al. was more comprehensive, with a cohort 
of 414 patients using a total of 13,950 radiomic features 
per patient, including 90 textural features [25]. It used 
advanced feature selection, fat-suppressed pre-treatment 
T2-weighted MRI, and a final SVM-RBF model with 10-
fold cross-validation. Their model constructed with only 
T2-weighted MRI had AUC = 0.69, p = 0.042, predicting 
pathologic complete response [25].

In this study, the ROI selection method was varied 
to examine the effects of the tumor core alone and tumor 

margins of different sizes. Quantitative ultrasound research 
on NAC breast cancer response has demonstrated that the 
tumor boundary contents can be significant in predicting 
patient response [9]. Independent of analysis and classifier 
(except for the 32 grey-level SVM), the classifiers trained 
with the pixels from the border with either 5, 10, or 15 
pixels outperformed the classifiers trained on the tumor 
core alone. The peritumoral region can represent areas 
of microscopic tumor as well as the tumor-infiltrating 
lymphocytes playing an essential role in dictating response 
to chemotherapy.

Our working model is that as tumors become more 
aggressive and less likely to respond to chemotherapy, their 
structure becomes more disorganized. This is in alignment 
with the fact that as grade increases, tumors become less 
like normal breast tissue and more aggressive. Whereas 
pathologists limit characterization to 3 tumor grades, 
recent genetic tests have been better able to categorize 
tumor subsets based on genetic “disorganization”. Here 

Table 2: Optimal patient response classifier parameter details, including texture features used
Classifier Sensitivity 

(%)
Specificity 

(%)
Accuarcy 

(%) AUC F1-Score Features ROI Selection 
Method Quantization Pixel 

distance

FLD 84 70 73 0.74 0.76 MEA, VAR, 
STD

Margin 
(15 pixels)

128 1

SVM-Lin 74 70 70 0.75 0.72 MEA, STD Core 32 5

SVM-RBF 74 70 71 0.76 0.72 MEA, STD, 
ENT, MAX

Core 32 5

kNN 63 93 87 0.78 0.75 HOM, ASM Margin 
(10 pixels)

128 1

Abbreviations: AUC: Area under curve; ROI: Region of interest; MEA: Mean; VAR: Variance; STD: Standard deviation; ENT: Entropy: MAX: Maximum; 
HOM: Homogeneity; ASM: Angular second moment.

Figure 4: Bar diagram showing classifier result values (optimized for maximum F1-Score). The performances of the four 
classifiers in terms of sensitivity, specificity, and accuracy are presented.
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we postulate that this characterization is based rather on 
structural disorganization with indirect links to the genetic 
alterations responsible for changes in cellular structure 
and higher-order organization that changes with the 
development of malignant neoplasia.

One limitation of the current study was the use 
of different chemotherapy regimens. While a model 
that is invariant of treatment type is useful, a variety of 
models trained only for a specific treatment type might 
in the future yield a greater classification accuracy. 
Additional texture features could be extracted from 
tumors using alternative methods of representation 
such as grey run-length matrices (GRLMs), grey-level 
size zone matrices (GLSZMs), and first-order features, 
which will be included in future follow up studies. We 
intend to expand the current study cohort to include 
a higher number of patients to perform more robust 
validation strategies, including consideration of external 
validation from a different institution. In comparison to 
other studies, we had used a different endpoint towards 
detection of chemotherapy response. Rather than using 
pathological complete response as an endpoint, we had 
used responder and non-responder classification outputs. 
We believe in clinical practice; it will be more prudent to 
continue NAC in patients demonstrating some or partial 
response rather than considering a stricter criterion of 
complete response.

MATERIALS AND METHODS

Patient selection and treatment information

This study was approved by the research ethics 
board of Sunnybrook Health Sciences Centre, Toronto. 
Patients with LABC who received NAC were included in 
this retrospective study. Waiver of consent was approved 
by the ethics committee, given the retrospective nature of 
the study.

After NAC, surgery was performed, followed by 
radiation therapy, according to institutional guidelines. 
Before treatment initiation, a core needle biopsy 
was acquired from each patient for histopathological 
confirmation and assessment of molecular characteristics. 
MRI images were obtained before starting NAC.

The response was classified using a modified 
RECIST score, using a combination of post-NAC 
imaging and histopathological specimen, which served 
as the gold standard [26]. Patients were classified into 
binary treatment response groups: responders and 
non-responders. Patients with a complete pathological 
response, residual tumor cellularity of less than 1%, and/ 
or decrease in tumor dimension by more than 30%, were 
classified as “responders”. Patients with partial response 
not defined by the previous criteria or having progressive 
disease were labeled “non-responders”.

Figure 5: Receiver operator characteristics curve for the optimal response classifiers, optimized for maximum F1-Score. 
The AUCs for each classifier are reported in the legend.
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MRI protocol

All patients were scanned with a 1.5 T Signa HDxt 
(GE Medical Systems) with 8 breast-specific receiving 
coils. The sequences analyzed were from sagittal T2-
weighted scans pre-contrast (fast spin echo, fat-saturated, 
TR 2500 ms, variable TE averaging ~76.14 ms, 90-degree 
flip angle, slice thickness 3 mm, with a variable DFOV, 
averaging approximately 190 mm). All MRI data were 
obtained from the same scanner dedicated to breast 
imaging at a single institution.

Image analysis segmentation

The ROI was selected freehand using the lasso 
tool from GIMP (GIMP 2.10) guided by a radiologist 
specializing in breast radiology. The ROIs were selected 
on a per-slice basis, spanning the tumor volume on the 
sagittal T2 pre-treatment MRI. Also, for tumor margin, a 
set of additional ROIs was created, which expanded on 
the original ROI by 5, 10, and 15 pixels in all directions 
within the breast tissue.

Texture features

Grey-level co-occurrence matrices (GLCMs) 
represent pixel contrast probabilities determined from 
an image and were used to calculate Haralick’s texture 
features [27, 28]. All texture feature values used to train 
the classifiers in this study were directionally invariant. 
GLCM offset direction was kept fixed, and offset distance 
was varied to capture difference patterns. Whereas for 
most MRI image analyses, a pixel distance of 1 is selected 
[29, 30], the original ROI was tested with offset distances 
of 1, 2, 3, 4, 5, 10, and 15 pixels. For the ROI- margin 
analysis, the only offset distance used was 1 pixel, as 
there were not enough pixels to get significant results with 
larger pixel distances.

Quantization or grey-level binning was performed 
after the ROI had been selected, so any data from 
outside of the tumor mass did not influence the process. 
Quantization was varied for the purpose of this work, with 
values of 16, 32, 64, 128, and 256 grey levels, since in the 
literature, there was no consensus on the optimal value for 
MRI analysis [29, 31].

A set of 11 features including contrast (CON), 
dissimilarity (DIS), homogeneity (HOM), angular 
second moment (ASM), energy (ENE), maximum 
(MAX), entropy (ENT), mean (MEA), variance (VAR), 
standard deviation (STD), and correlation (COR) were 
determined for the T2- weighted ROIs. These features 
were described and compiled by Hall-Beyer [27]. 
Feature extraction was done using a custom Python 
script (code can be made available upon request). The 
features were extracted individually from the tumor core 
and margin.

Data classification

For each of the machine learning methods below, 
the data were tested using 1–4 features for each parameter 
combination. Limiting the maximum number of features 
to 4 was done to avoid the curse of dimensionality [32]. 
Machine learning was done using MATLAB (R2016a).

Algorithms investigated maximized the accuracy in 
the first execution and the F-score in the next. Algorithms 
returned the features used in the generation of the classifier 
in addition to the values of all tuning parameters (e.g., 
k values for kNN). The algorithm assessed the sensitivity, 
specificity, accuracy, F-score, and AUC as evaluation 
metrics. In this study, we defined true positives as non-
responders. The results were tested with leave-one-out 
cross-validation. This method regenerated the model 
using all the available data but withholding data from a 
single patient, running such that all patients are left out in 
one instance and generating an average of the classifier 
performance evaluation metrics.

The first data classification machine learning 
technique used was Fisher’s linear discriminant (FLD) 
analysis [33]. This was tested with both balanced and 
unbalanced data sets. The balanced data set was generated 
by subsampling the original data into several subsets, 
such that each subset had an equal number of R and NR. 
In this case, the balanced subset contained 19 R and 19 
NR. FLD analysis created an axis that had a maximized 
separability between the two classes-responders (R) and 
non-responders (NR).

Additionally, support vector machines (SVMs) were 
used, with two kernel functions: linear (Lin) and radial 
basis function (RBF). SVMs use the kernel function to 
find a hyperplane to differentiate the data. The SVMs were 
executed on a balanced dataset. Within SVM analysis, 
two classifier parameters were tuned so that the model 
better fit the data when using the RBF as the kernel. These 
include the C and the γ parameters (C representing the 
cost of misclassification, and γ controlling the shape of 
the kernel function). The optimal C and γ were selected by 
grid search in the ranges of C = 21 to 210 and γ = 2−15 to 25.

The final algorithm investigated was k-nearest 
neighbors (kNN), a technique that classifies the data 
depending on the classes of the k nearest neighbors (where 
k is variable). k was varied from 1–5 neighbors with an 
increment of 1.

The best overall classifier was determined from 
identical image datasets with different imposed grayscale 
quantization levels. Classifiers also evaluated texture 
features from the tumor core and margin, in addition to 
different GLCM pixel distances.

Ethics approval and consent 

The study was conducted following the Declaration 
of Helsinki. The ethics committee of Sunnybrook Health 
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Sciences Centre, Toronto, was involved in study approval 
(REB: 034-2020), necessary data monitoring, and 
appropriate conduct of the research. The ethics committee 
approved the waiver of consent given the retrospective 
nature of the study.

CONCLUSIONS

In conclusion, classifiers trained with pre-treatment 
MRI texture were shown to have an accuracy of 87% 
in predicting NAC treatment response. Here a classifier 
based on tumor margin performed better than one based on 
tumor core alone. Radiomic analysis of MR images using 
simple machine learning classifiers could predict response 
and guide clinicians in prescribing effective treatments.
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