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ABSTRACT
The tumour microenvironment is the result of the activity of many types 

of cells in various metabolic states, whose metabolites are shared between 
cells. This cellular complexity results in an availability profile of nutrients and 
reactive metabolites such as advanced glycation end products (AGE). The tumour 
microenvironment is not favourable to immune cells due to hypoxia and for the 
existence of significant competition between various types of cells for a limited 
nutrient pool. However, it is now known that cancer cells can influence the host's 
immune reaction through the expression and secretion of numerous molecules.  The 
microenvironment can therefore present itself in different patterns that contribute to 
shaping immune surveillance.  Colorectal cancer (CRC) is one of the most important 
causes of death in cancer patients. Recently, immunotherapy has begun to give 
encouraging results in some groups of patients suffering from this neoplasm. The 
analysis of literature data shows that the RAGE (Receptor for advanced glycation 
end products) and its numerous ligands contribute to connect the energy metabolic 
pathway, which appears prevalently disconnected by mitochondrial running, with the 
immune reaction, conditioned by local microbiota and influencing tumour growth. 
Understanding how metabolism in cancer and immune cells shapes response and 
resistance to therapy, will provide novel potential strategies to increase both the 
number of tumour types treated by immunotherapy and the rate of immunotherapy 
response. The analysis of literature data shows that an immunotherapy approach 
based on the knowledge of RAGE and its ligands is not only possible, but also 
desirable in the treatment of CRC.

INTRODUCTION

In recent years, new mechanisms have been 
discovered and elucidated that link carcinogenesis 
with cellular metabolism in colon cancer. Despite 
these progresses, 25% of CRC patients are diagnosed 
at an advanced stage with a 5-year survival < 20%, 

and only limited targeted therapies are available 
[1]. For these reasons, it is necessary to understand 
comprehensively the underlying mechanisms that 
promote CRC progression. In particular, the importance 
of the action of AGEs on their cell receptors here 
is highlighted to suggest potential new interesting 
therapeutic targets. 

 Review
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MOLECULAR AND METABOLIC 
CHARACTERISTICS OF COLORECTAL 
CANCER

1-MAPK pathway

Most colorectal cancers result from the 
transformation and progression of precursors such 
as adenoma. From a molecular point of view, three 
main pathways of carcinogenesis have been identified: 
chromosomal instability (CIN), microsatellite instability 
(MSI) and the CpG island methylator phenotype (CIMP). 
85% of CRCs develop from the CIN pathway and have 
alterations in structure and number of the chromosomes, 
leading to abnormalities such as aneuploidy, chromosomal 
rearrangement and loss of heterozygosity at the suppressor 
gene site. Tumours of the CIN pathway also acquire 
mutations in oncogenes and tumour suppressor genes 
including Adenomatous Polyposis Coli (APC), KRAS 
Proto-Oncogene, BRAF Proto-Oncogene and Tumour  
suppressor TP53. According to the model of Fearon and 
Vogelstein.

 [2] APC inactivation occurs first in the proliferating 
epithelium. The most relevant pathways involved in 
CIN tumours are the Wnt and MAPK pathways [3]. 
The MAPK pathway is activated by a receptor tyrosine 
kinase. Activating mutations of molecules, such as RAS, 
RAF or ERK, related to these signalling pathways, can 
produce tumour cell proliferation.  In CRC, MAPK can be 
constitutively overactive. This type of hyperactivation can 
occur through three main signal transduction pathways: 
usually overexpressed MAPK/ERK pathway, also known 
as the RAS/RAF/MEK/ERK pathway; MAPK14 (p38 
MAPK) pathway; activation of the stress-activated 
protein kinases/c-Jun Nh(2)-terminal kinase (SAPK/
JNK) signalling pathway. The overactive state in the 
MAPK signalling cascade is determinant to influence 
the responsivity degree of the patient treated with EGFR 
inhibitors [4]. Moreover, p38MAPK signaling enhances 
glycolysis in cancer cells through the up-regulation 
of the glucose transporters [5] that can trigger cellular 
stress responses. Dysfunctions of the metabolic signaling 
pathways in the colonic epithelium and local immune 
cells are highly intertwined with the the gene/pheno-
type dysfunction responsible of  tumour progression and 
relatively  antitumour immunity [6].

2-Warburg effect

In the colon, insulin resistance, hyperglycaemia 
and chronic inflammation reinforce the metabolic 
dysregulation associated with cancer development and 
promote the progression [7]. In fact, in this phase, the 
tumour cells proliferate rapidly by increasing their 
absorption of nutrients to satisfy their bioenergetic 
demands, developing a metabolism oriented towards 

anabolic pathways.  Moreover, the nutrient-poor tumour 
microenvironment can influence the phenotype of 
macrophages that control both the innate and adaptive 
immunity response. In fact, a metabolic adaptation of 
tumour-associated macrophages (TAM) is triggered 
through the upregulation of the glycolytic genes linked 
to lactate derived from neoplasia which contributes to the 
polarization of tissue-associated macrophages (TAM) M2 
which have an anti-inflammatory and pro-tumoural effect 
also in CRC [8, 9].

On the other hand, this reprogrammed metabolism, 
documented in many types of cancers is considered a 
hallmark of cancer cells and is called “Warburg effect”. 
The Warburg effect (WE) results in a glycolytic switch 
associated with oncogene activation, resulting in 
increased cytoplasmic production of ATP and lactate and 
disturbances in mitochondrial energy production [10, 11]. 
It is well known that CRC demonstrate the Warburg 
metabolic phenotype [12].  It is now evident that insulin 
resistance, hyperglycaemia and chronic inflammation lead 
to colon carcinogenesis through interaction with molecular 
pathways. The  WE  clearly suggests that the link between 
glucose metabolism, protein protonation state and the 
microenvironment of neoplasms, as resulting from 
interactions with the inflammatory infiltrate and related 
cytokine production, is a major actor of the development 
and progression of tumours [13, 14].

WE as the main characteristics of cancer can thus 
be triggered by infectious agents, followed by consequent 
effects such as genomic mutations [15], possibly switching 
benign adenomas to malignant carcinomas in the case 
of colorectal cancers. Inhibitors for mitochondrial ATP 
synthesis are being developed for colon cancer [16] 
in which the uptake of glucose is overregulated [17]. 
Moreover, tumor suppressor protein p53 was demonstrated 
negatively influences the oncogenic metabolic adaptation 
of cancer cells reverting WE [18].

3-Oxidative stress

Recently, it was also shown that some cancer cells 
use mitochondria, not glycolysis to generate ATP [19]. 
Such a cancer phenotype has been classified as the reverse 
Warburg effect (RWE). The underlying mechanism is 
based on a pathological collaborative interaction in tissue 
[20]. In particular, loss of stromal Caveoline-1 (Cav-1) 
expression results in increased production of nitric oxide, 
increased reactive oxygen species (ROS) production, 
increased oxidative stress, and mitochondrial dysfunction 
occurring in fibroblasts (supporting cells) which supply 
energy-rich metabolites to a cancer cell with fully 
functional mitochondria. Extensive morphological changes 
occur, these tumours are highly aggressive, fast growing, 
with a strong metastatic potential and poor outcomes for 
a patient. The reverse Warburg effect may exist in many 
different types of epithelial cancers [21] and the loss of 
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stromal Cav-1 thus may be involved mechanistically in all 
the different phases of epithelial tumorigenesis.

CAV1 is frequently overexpressed in advanced 
colorectal tumors and it is implicated in enhanced aerobic 
glycolysis of tumor cells. Elevated CAV1 increases 
glucose uptake and ATP production by stimulating 
transcription of the glucose transporter GLUT3 via a high 
mobility group A1 (HMGA1)-binding site within the 
promoter [22]. HMGA1 chromatin remodeling protein 
is known as an important factor required by cancer cells 
for tumor progression and acquisition of a stem-like state 
[23, 24].  However, HMGA1 is also a ligand of RAGE 
(Receptor for advanced glycation end products) with 
direct implications in metabolic and molecular signaling 
dysfunction in the colon cancer microenvironment [25].

AGES AND RAGES IN COLORECTAL 
CANCER

1-AGEs

The methylglyoxal (MG) produced through the 
glycolysis, is a highly reactive dicarbonyl compound 
and a major precursor of the cell advanced glycation 
end products (AGE) [26]. The AGE are highly reactive 
molecules, formed endogenously or exogenously during 
metabolic oxidative stress and accumulate in tissues 
normally with age [27]. Advanced glycation endproducts 
(AGEs) derive nonenzymatically from metabolism 
through glycation reaction between proteins, lipids, or 
nucleic acid with free reducing sugars [28].

AGEs can result from Maillard reaction or from 
glycolysis and oxidative pathways through the reaction 
between the electrophilic carbonyl group of reducing 
sugars with free amino group of proteins. Such reactions 
can generate unstable Schif’s bases that may form stable 
Amadori products after further rearrangements.  Maillard 
in 1912 described the formation of melanoidins, a class 
of heterogeneous polymers that are formed when sugars 
and amino acids combine. In fact, Maillard products 
are synthesized trough a reaction between free amino 
groups of proteins, mainly arginine and lysine, and 
carbohydrates. This reaction was furtherly described 
by Amadori and is known as Amadori Heyns rear-
rangement. In turn, the stable Amadori products undergo 
further modifcations, such as oxidation, dehydration or 
polymerization in the presence of transition metals to 
form more stable AGEs [29]. 

Many AGEs have been identifed such as the 
so-called GOLD (glyoxal lysine dimer), MOLD 
(methylglyoxallysine dimer), CEL (Nε-carboxyethyl-
lysine), CML (pentosidine, and non-cross linking Nε- 
carboxymethyl-lysine).

The cellular functions of AGEs are mediated 
through binding to the receptor for advanced glycation end 
products (RAGE), a transmembrane molecule considered 

a pattern recognition receptor (PRR). It is a member of the 
immunoglobulin superfamily and a multi-ligand receptor 
that interacts with various ligands RAGE is thought to 
be associated with colon cancer metastasis and poor 
prognosis. 

2-RAGE 

RAGE is a multi-ligand signaling system highly 
expressed on the cell surface membrane of immune, 
endothelial or tumour cells when they are in the active 
phase. During embryonic development, there is a high 
RAGE expression especially in brain tissue. Its expression 
diminishes with the development and is almost absent 
in healthy adults. Only in healthy lung epithelium, does 
RAGE expression remain constitutive and relate to 
elevated levels of a unique isoform not found in other 
adult epithelia or cell types

RAGE consists in a 45–50 kDa molecule that binds 
to AGEs and other danger signaling molecules (DAMPs) 
to exert their pathophysiological roles in multiple 
disorders. These DAMPs include, among others, High-
mobility group box proteins (HMGB1), S100 calgranulins 
and amphoterin.

Binding of RAGE with AGEs activates many 
signaling pathways also active in CRC, such as MAPK,  
NF-κB, PI3K, Akt, ERK1/2 and JAK-STAT, involved in 
inflammation, cell survival and cancer progression [30]. 

Hypoxia in cancer cells increases RAGEs expression 
and in cancer the involvement of the AGE-RAGE axis 
promotes the autophagic activity via the activation of 
autophagic proteins such as Beclin-1 with inhibition of 
apoptotic signaling. AGE-RAGE signaling also causes 
oxidative stress producing oxygen-free radicals, and 
activates NF-κB that causes secretion of pro-infammatory 
cytokines, growth factors, and adhesion molecules [31].

Studies conducted on knockout mouse models 
to understand the functions of RAGE, suggest that 
this receptor plays a regulatory role in sepsis [32]. In 
particular, it affects the homeostatic regulation of innate 
immunity, which in turn, can play a pivotal role in 
cancerogenesis [33]. 

 When receptor ligand binding occurs, the resulting 
complex does not constitute a clear negative feedback 
signal aimed at inducing and regulating the clearance 
and degradation of the RAGE receptor. In fact, it has 
been shown that the receptor ligand complex instead 
functions almost as a positive feedback leading to a 
prolonged period of its expression and activation with 
consequent prolonged inflammation (Figure 1) [34]. This 
redundant positive effect created by the receptor ligand 
binding, results in an exasperated downstream molecular 
activation. This behaviour justifies why the pathways 
RAGE-dependent are involved in the pathogenesis of 
many simple and complex diseases, where inflammation 
is the least common. Currently, clinically relevant 
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studies for RAGE associate its elevated plasma levels 
in inflammatory disease and brain injury with disease 
severity and functional outcome [35].

Among the countless diseases in which RAGE is 
involved there is also the onset and progression of colon 
cancer [36] (Table 1). 

3-AGEs-RAGE axis in vitro

Studies in human colon cancer cell lines have shown 
how the AGEs-RAGE axis induces the progression of 
cancer cells through the regulation of specific pathways, 
such as upregulation of carbohydrate response element 
binding protein (ChREBP) in the cell line HCT 116 
(Human, colon, carcinoma). This protein, ChREBP, 
by promoting the enhancement of anaerobic glucose 
metabolism, drives the metabolic switch and suppression 
of p53. These actions combine to promote the growth 
and progression of cancer cells [37, 38]. Furthermore, in 
human colon cancer cell lines, Caco-2 and COLO320, 
the AGEs-RAGE axis increases ERK and MAPK and 
NF-ΚB respectively [39, 40]. The expression of Sp1 is 
also regulated by the binding of RAGE, with the AGEs 
through the activation of the ERK pathway. Sp1 is a key 

regulator of the molecular process that drives metastasis. 
This molecular actor intervenes in the modification of the 
stroma by promoting the degradation of type IV collagen 
with activation of metalloproteinases (MMPs). The 
prolonged NF-ΚB activation promotes tumour progression 
in colon cells through the inhibition of proapototic 
pathways that inhibit caspase activity [41–43]. 

RAGE LIGANDS IN CRC

S100 and RAGEs in colonrectal cancer  

The S100 family of proteins is an important group 
that is part of the RAGE ligands. S100 proteins bind Ca2 
+ and their function is to regulate the levels of intracellular 
Ca2 + and consequently also of numerous Ca2 + signaling 
pathways. Unlike calmodulin and troponin-C, proteins 
linked to calcium metabolism and whose activities are 
limited to the intracellular environment, several proteins 
of the S100 family act as intracellular regulators but also 
as extracellular signaling proteins. They can be secreted 
and/or released to regulate the activities of target cells. 
Within the cell, S100 proteins exhibit a somewhat specific 
distribution. In the intracellular context, S100 proteins are 

Figure 1: Mechanism of endogenous AGE formation and pathobiological actions of RAGE receptor ligands. The two 
cells represented here can be identified as a tumor cell and the stromal counterpart or vice versa. The energy demand of the tumor cell 
aimed at supporting the high proliferative standard that induces a proportional increase in the glyco-lytic pathway. The increased glycolysis 
results in an increased production of lactate and aldehydes such as glioxal and methylglioxal. These two aldehydes bind, by Maillards 
reaction, to the free radicals of the macromolecules, protein and non-protein present in the intracellular microenviroment resulting in 
adducts of Methylglyoxal, or advanced gly-cated adduct AGEs. These molecules gain extracellular space and bind to their receptors, 
RAGE. RAGE's expression is induced by the presence of the AGEs. RAGE activation results in the activation of downstream signaling 
pathways responsible for the release of cytokines, chemokines and growth factors. S-100 proteins DAMP and PAMP and HMBG in 
response to specific conditions share analogous ability to induce and bind RAGE.
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involved in the regulation of proliferation, differentiation, 
apoptosis, Ca2 + homeostasis, energy metabolism, 
inflammation and migration/invasion. They interact 
with a variety of target proteins including enzymes, 
cytoskeletal subunits, receptors, transcription factors and 
nucleic acids. As extracellular signaling molecules, S100 
proteins regulate cell proliferation, differentiation, survival 
and migration in normal and pathological conditions, 
inflammation and tissue repair and/or exert antimicrobial 
activity [43, 44]. Indeed, at the gene level, numerous S100 
genes are specifically inducible by appropriate growth 
factors, cytokines and toll-like receptor (TLR) ligands. To 
fulfill the function of alarmins, or cell signaling molecules, 
they are secreted and may function as damage-associated 
molecular pattern factors that primarily mediate the 
functions of the innate and adaptive immune systems. 
Operationally, they stimulate the locomotion of tumour 
cells and/or participate in tissue repair. The S100B protein 
is expressed in astrocytes, some neuronal populations, 
Schwann cells, melanocytes, chondrocytes, adipocytes, 
skeletal myofibers and associated satellite cells, some 
dendritic cell and lymphocyte populations and a few 
other cell types. This protein acts as a stimulator of cell 
proliferation and migration and as an inhibitor of apoptosis 
and differentiation [45].

Cancer cells also exhibit a distinctive S100 protein 
profile which can be both stage-specific and subtype 
specific. In gliomas, S100B expression correlates 
positively with proneuronal, neuronal and classical 
subtypes, but not mesenchymal, whereas S100A8 
and S100A9 expression correlates positively with 
mesenchymal subtypes [46, 47].

Extracellular protein S100A9, but not S100A8, 
binds to the EMMPRIN receptor and requires TNF 
receptor-associated factor 2 of adapter protein (TRAF2) 
to upregulate the expression of TNFα, IL-1, IL-6 and other 

factors [48]. Another example is given by the S10012 
protein which mediates pro-inflammatory effects through 
binding to RAGE and the toll-like receptor such as TLR-
4. The duple stimulation of RAGE and TLR-4s leads to 
the activation of the transcription nuclear factor NF-κB. 
Nuclear transfer of NF-κB induces inflammatory response 
and leukocyte recruitment. [47].

Furthermore, through RAGE receptors, under stress 
conditions, S100B, triggers NF-ΚB and MAPK signaling 
and stimulates the release of pro-inflammatory cytokines, 
such as IL6, TNFα and IL-1β [49, 50].

 S100A8, S100A9 and S100P are other S100 
proteins related to AGEs/RAGE progression mechanism 
of colorectalcarcinoma. They trigger many of the 
pathways above cited such as ERK, NF-kB [51, 52].

Interestingly, the membrane protein S100A16 and 
its main partner S100A14 and S100A4 are expressed by 
tumour cells in CRC and is associated with prognosis, 
indicating that the expression of these S100 proteins is a 
favorable prognostic biomarker and a therapeutic target. 

The S100A4 protein also exhibits both intra- and 
extracellular activities. The expression of S100A4 in 
cells causes apoptosis, cell migration and maintenance of 
stem cells and in the extracellular space activates various 
processes by stimulating pro-inflammatory pathways and 
the expression of various molecules, such as cytokines 
[53]. In S100A4 knock out (S100A4 -/-) mice the 
expression of inflammatory cytokines and the recruitment 
of macrophages and neutrophils decreased significantly. 
On the other hand in wild type (WT) mice the effects, 
favouring colitis development, promoted by S100A4 
could be abolished by a receptor for advanced glycation 
end products (RAGE)-specific inhibitor (FPS-ZM1) [54]. 

In summary, some effects of S100 proteins in CRC 
may be mediated by the regulation of TIL. Tumour-
infiltrating lymphocytes (TILs) are associated with the 

Table 1: Principal RAGE-ligands and activated pathways involved in the pathogenesis and 
development of colon cancer

Axis
RAGE-ligand

Downstream 
Activated Pathways Cancer phases Pleiotropic effects Study

RAGE-AGEs NFkB, ERK, MAPK
Tumorigenesis 
and progression 
of colon cancer 

cell proliferation, 
inflammation, 

cancer progression 

Malara N, et al. [14]
Liliensiek B [39]

RAGE-S-100 NFkB, MAPK, IL-6, 
TNFα, TIL

Advanced 
colon cancer cancer progression 

Onyeagucha BC, et al. [37]
Sun X, et al. [53]

Wang HY, et al. [55]

RAGE-HMGB1 NFkB, TIL, PD-1 Resistant colon 
cancer

inflammation, 
cancer progression, 
immunosuppresion

Yao X, et al. [71]
Huang CY, [65]

RAGE-DAMPs/
PAMPs

SAPK/JNK, CdC42/
Rac, p38MAPK, 

ERK1, CXCL2, IL-1, 
TNFα, 

Tumorigenesis 
and progression 
of colon cancer 

inflammation,  
cancer progression 

Escamilla-Tilch M, et al. [75]
Stephens M, et al. [76]
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host's immune status and are an important prognostic 
factor in many malignancies. Many reports have shown 
that an elevated level of TIL is a favorable biomarker in 
the prognosis of colorectal cancer. RAGE and its ligands 
are of fundamental importance in the modulation of TILs. 
RAGE and its ligands can play a fundamental role in the 
regulation of the lymphocyte infiltrate in CRC [55] by 
modulating its intensity and persistence in the tumour 
microenvironment (Table 1).
 HMGB1  and RAGEs in colonrectal cancer  

HMGB1 is a chromatin binding factor in the 
nuclei of cancerous and normal cells, it plays a role in 
DNA repair, transcription, differentiation, extracellular 
signaling and somatic recombination [56]. The function 
of HMGB1 takes place by binding non-specifically to 
a smaller groove of the DNA and thus modulates the 
interaction of the DNA with transcription factors [57]. 
It enhances the activity of p53, p73, the retinoblastoma 
protein, transcription factors such as the Rel/NF-κB family 
and the estrogen receptor [58]. ERK/MAPK pathway is 
upregulated by HMGB1 in colon carcinoma [59]. In 
cell culture studies HMGB1 may show DNA damage 
caused by chemotherapy [60]. In colon cancer, HMGB1 
and its receptor, are indicators of progression [61]. In an 
immunohistochemical study, HMGB1 overexpression was 
determined as 55.6% in relation to tumour invasion, lymph 
node status, distant metastasis and stage of colon cancer 
disease [62]. c-IAP2 is an antiapoptotic protein which may 
be upregulated through NFk-B activation via HMGB1. 
There is a strong correlation between upregulation of the 
apoptosis repressing HMGB1 and c-IAP2 proteins in the 
pathogenesis of colon carcinoma [63]. Upregulation of 
MMPs with HMGB1 has been associated with cancer cell 
proliferation of colon through the RAGE/Snail/NF-κB 
signalling pathways accompanied by the activation of 
MMP-7 [64].

HMGB1 expression was also correlated with overall 
survival and proved to be an independent predictor of 
worse prognosis in CRC cases [65] (Table 1). High 
expression of HMGB1 in the cytoplasm of breast cancer 
cells has been associated with high histological grade, 
pT stage and abundant TIL [66]. In patients with locally 
advanced rectal cancer and with elevated cyto-HMGB1 
and PD-1 + TIL they showed better results. The best 
outcome is probably due to the release of HMGB1, which 
stimulates the maturation of dendritic cells (DCs) through 
the activation of TLR4, and the subsequent recruitment 
of TIL into the tumour [67]. Another explanation of the 
best outcome related the elevated cyto-HMG is due the 
inverted relationship with the CAV1 expression. In colon 
calcer cells CAV1 depleted cytoplasmic levels of HMGA1 
are concomitantly increased.  Increased expression of 
CAV1 stimulates HMGA1 interaction with the HMGA1-
binding site in the SLC2A3 promoter at nuclear levels 
to improve the GLUT3 expression [68]. When GLUT3 
is highly expressed in colorectal cancer (CRC) it is 

negatively linked to CRC patient outcome. GLUT3 
expression protects CRC cells by energy stress in the 
tumour microenvironment to withstand nutrient scarcity 
and to exacerbate the malignancy of CRC cells [69].
PAMPs/DAMPs and RAGEs in colonrectal cancer  

The community of the microbiota in the lumen of 
the colon requires a careful system of surveillance of the 
intestinal immune system. In fact, the intestinal microbiota 
is a crucial biomodulator of the development and function 
of immune cells. Gut bacteria are directly involved in 
homeostatic regulation, function and differentiation of 
T cells. This is a saprophytic and mutually convenient 
contribution to both parties. In fact, while the microbes 
obtain a habitat and nourishment from the host, they 
return the favor by regulating the alimentary digestion 
and the protective immunity against the pathogens of 
the host [70]. Not surprisingly, in the early stages of the 
neoplastic transformation of the colonic epithelium there 
are phenomena of dysbiosis of the intestinal microbiota 
and increased intestinal permeability associated with 
inflammation. These same phenomena also underlie 
the tumour progression of CRC. Gut microbe-derived 
signals have been recognized to tune immune cells 
interacting with key players mediating host and microbe 
communication, known as pattern recognition receptors 
(PRRs). These signalling molecules, therefore considered 
to be part of the alarmine’s system, are expressed by innate 
immune cells such as dendritic cells (DC), monocytes/
macrophages and natural killer (NK) cells [71]. RAGE, 
as an important pattern recognition receptor (PRR), may 
play a fundamental role in maintaining microbiological 
homeostasis within the colonic epithelium and how it 
can be considered as a perfect sensor for environmental 
stimuli. RAGE, as described above, is expressed on 
macrophages, smooth muscle cells, endothelial cells, 
epithelial cells. In addition to PAMP, RAGE also 
recognizes the molecular patterns associated with damage 
(DAMP) that induce inflammation [72]. The detection 
of PAMP and DAMP by RAGE drives a cascade of 
signals that converge to the nuclear factor κB (NF-κB) 
[73]. The interaction of ligands with RAGE activates a 
positive feedback loop by upregulating multiple signalling 
pathways such as SAPK/JNK (stress-activated protein 
kinase/c-jun-NH2-terminal kinase), Cdc42/Rac, p38 
MAPK (protein kinase activated by mitogen) and ERK1/2 
(Ras-extracellular kinase regulated by signal 1/2), which 
results, once again, in the increase of the transcription 
factor NF-KB and  consequent production of cytokines, 
adhesive molecules and MMP (metalloproteinase of 
the matrix) [74]. Cytokines and chemokines that act as 
growth factors and promote angiogenesis have been 
associated with the development of polyps. In mice with 
defects in colon barrier integrity, bacterial invasion and 
increased expression of several inflammatory factors 
such as IL-17, Cxcl2, TNF-α and IL-1 can be observed 
[75, 76] (Table 1). In these proinflammatory responses, 
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the mitochondrial dysfunction within the cancer cells, 
favors the excess reactive oxygen species release that 
can exacerbate the production of AGEs fueling the fire of 
inflammation [77]. 

RAGE/AGES CROSS-TALK IN IMMUNE 
STATE AND IMMUNOTHERAPY OF 
COLON CANCER

K-Ras is a small nucleotide-binding molecule of 
guanine that cycles between the active (GTP-bound) 
and inactive (GDP-bound) forms [78]. Mutations of the 
oncogene in K-Ras cancel its interactions with GTPase 
activating proteins (GAP) with a consequent decrease in 
the hydrolysis rate of GTP. Furthermore, the oncogenic 
mutation confers constitutive activity to K-Ras leading 
to prolonged but not permanent activity which returns to 
baseline in the absence of continuous external stimulation 
[79]. It has been shown that during the initial stages of 
neoplastic transformation of the colon the oncogen 
Kras requires not only external stimuli but also for the 
continuous maintenance of the signaling necessary to 
support the growth of tumour cells [80]. The high levels 
of K-Ras activity generate inflammatory stimuli and 
oxidative stress, NFκB activation, COX2 expression 
and DNA damage leading to the release of HMGB1 and 
nucleic acids. These events form a Ras/inflammation feed-
forward loop.

In this scenario RAGE is a central key player 
involved in maintaining the Kras/inflammation feed-
forward loop. The role in chronic colon inflammation and 
tumour promotion of upregulation dependent on RAGE 
and its potential ligands S100a8 and S100a9 [81, 82]. 
Furthermore, bone marrow chimera experiments revealed 
that RAGE expression on immune cells maintains the 
inflammatory reaction during tumour promotion [83]. 
However, the importance of RAGE in tumours expressing 
the Kras oncogene may be even stronger. Animals 
expressing oncogenic Kras but deficient in RAGE 
expression showed a delay in cancer development. Mice 
deficient in the RAGE ligand, S100A9, show a significant 
reduction in the incidence and burden of colorectal cancers 
associated with colitis [84].

Colon cancer is known to generate a variety of 
RAGE ligands, including HMGB1 and S100 molecules, 
suggesting that while oncogenic K-Ras itself may be “non-
pharmacological,” it may be possible to inhibit or modulate 
its role in cancer by blocking the critical feed-forward 
mechanism in which RAGE plays an important role. In 
addition to its previously described intra-nuclear role, 
HMGB1 functions as an extracellular signaling molecule 
by mediating different responses and binding to different 
receptors, including RAGE and toll-like receptors (TLRs) 
−2 and 4. Consequent are pleiotropic effects, such as 
proliferation cellular, differentiation, death, inflammation 
and immunity. When HMGB1 is passively released 

from dying tumour cells following chemotherapy in 
colorectal cancer, HMGB1 facilitates autophagy following 
cytotoxic insults for chemoresistance via its RAGE 
receptor via the MEK/ERK signaling pathway. ERK 
mediated phosphorylation of Drp1 is necessary to resist 
chemotherapy cytotoxicity as it promotes the induction of 
autophagy on surviving tumour cells to promote regrowth. 
Patients with highly phosphorylated Drp1 proteins are 
associated with an increased risk of developing relapse 
lesions after neoadjuvant chemoradiotherapy treatment in 
locally advanced rectal cancer [85].

Furthermore, there are cumulative points of 
evidence towards a cooperative interaction in the 
host immune response between RAGE and members 
of the Toll-like receptor (TLR) family. The question 
relating the possible physical association between 
RAGE and TLR remains to be address. RAGE and 
TLR shared three ligands, HMGB, S100 and bacterial 
cell wall component, LPS. The mechanism or the 
physicochemical conditions underlying the choice of 
ligands to bind preferentially RAGE or TLR is not well 
understood. Increasing evidence in literature support 
their potential synergism on down-stream signaling 
pathways and the outcome of these interactions on the 
inflammatory response [86].

TLRs are found on the cell surface or intracellular 
in endosomes. They have well-established roles in the 
host immune response to infections and their activation 
normally contributes to the induction of protective 
immune responses [87].  

TLR can be recognized by exogenous and 
endogenous ligands (DAMPs), as low-molecular-weight 
hyaluronic acid, fibrinogen, fibronectin, heparan sulfate 
peptidoglycans, and AGEs. AGE/TLR interaction 
determines the expression of NFκB with an increase in 
adhesion molecules (ICAM and VCAM, which lead 
to the recruitment of macrophages and neutrophils) 
and production of TNF, IL-1α, IL-4, IL -10, Cytokines 
IL-12 MCP-1, PAI-1 and tPA. [88]. TLRs represent a 
molecular link between the phenotype of inflamed tumour 
cells, the regulation of T cell activation and antitumour 
immunity and can modulate tumour progression and 
chemoresistance. The experimentally induced absence 
of the three receptor forms of TLR (TLR 3,7,9) results 
in tumour regression dependent on both CD4 and CD8 
T cells and protects mice from subsequent tumour 
provocation. [89].

The CRC can evade immune surveillance in 
various ways, for example through the recruitment of 
immunosuppressive cells such as regulatory T cells 
(Treg), the secretion of factors such as TGF-β or 
through the activation of Immune checkpoints. On 
the other hand, these tumors can activate, through 
the secretion of pro-inflammatory cytokines, cellular 
factors promoting carcinogenesis such as STAT3. 
Among the immunotherapies used against CRC are 
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recombinant cytokines, agents modulating the immune 
microenvironment, oncolytic viral therapy, small 
molecules, autologous T cells, vaccines, antibodies against 
specific antigens and immune checkpoint inhibitors. 
Combination of immunotherapies for CRC are also tested. 

Imumune checkpoint inhibitors are used in order 
to treat CRC because they provide a prolonged disease 

control and exhibit an acceptable toxicity degree. Patients 
with MSI have higher responses to PD-1 treatment [90].

In the interaction between cancer cell and the 
immune system, a central role has recently been attributed 
to the immunosuppressive action of PD-L1. Cancer 
cells can locally produce PD-L1 to inhibit immune cell 
surveillance. In this regard, it has been shown that PD-L1 

Figure 2: Mechanism of chemo resistance RAGE-ligands dependent. Anticancer treatments in colon rectal carcinoma, 
chemotherapy and radiotherapy have as a side effect the induction of local inflammation and alteration of the intestinal flora. The two 
biological phenomena can be associated with the induction of RAGE-ligand axis with consequent activation downstream of pro- inflammatory 
pathways favoring chemo resistance establishment.

Figure 3: Chemo resistance in colon cancer cell. Hypothesis of targeted therapeutic intervention in resistant cases in which the 
RAGE or PDL-1, or both, overexpression is proven in colon cancer cells.
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is expressed on the surface of exosomes secreted by 
tumour cells, which are found in the bloodstream with the 
function of inhibiting the anti-tumour activity of T cells. 
It has been shown that there are numerous transcriptional 
regulators. which can induce the expression of PD-L1. In 
the tumour microenvironment, PD-L1 can be modulated 
by inflammatory cytokines such as IFNγ, which induces 
activation of STAT1 and increased transcription of PD-L1 
[91, 92].

HIF1, Myc, STAT3, AP-1, and NF-ÎºB have also 
been shown to increase PD-L1 transcription in response 
to a variety of upstream signals. PD-L1 expression is 
significantly elevated in colon cancer tissues. During 
chemotherapy HMGB1 is passively released and through 
its RAGE receptor, upregulating the MEK/ERK signaling 
pathway increases NF-ΚB transcription and indirectly 
stabilizes PD-L1 [93]. Indeed, NF-ΚB, by upregulating 
the CSN5 deubiquitinase, inhibits the ubiquitination 
and proteasomal degradation of PD-L1 in tumour 
cells [94, 95]. Intriguing is the consideration that the 
RAGE-ligand axis can promote an immunosuppressive 
microenvironment by activating the PD-1/PD-L1 
checkpoint, together with other previously reported 
immunosuppressive cytokines, such as IL4, IL10, PGE2 
and TGFβ [96]. In this scenario, it is possible to imagine 
that possibly significantly blocking PD-1/PD-L1 could 
enhance CD8 + T-cell-mediated antitumour immunity 
against cancer cells. Therefore, a treatment with anti-
PD-1 blocking antibodies to increase the number of CD8 + 
memory T cells in the tumour microenvironment may be 
useful as an immune prevention approach to antagonize 
the immune evasion of tumour cells [97–99].

CONCLUSIONS

The RAGE-ligand axis intervenes and supports the 
tumour progression of the CRC by inducing and activating 
molecular pathways promoting chemoresistance and 
immuno-escape phenomena. In particular, endogenous 
ligands as molecules produced and present in the 
intracellular microenvironment, which, once released 
in the extracellular space, become signalling molecules 
aimed at the endogenous activation of the RAGE. These 
molecules, AGEs, S100, HMGB1, are all connected to 
pro-cancerogenic molecular pathways of the colon and 
are also produced during chemotherapy. Their presence 
and concentration in the extracellular space induces 
and influences the activity of the RAGE receptor on 
cellular surface membrane of tumour cells, stromal cells 
and of immune cells. Moreover, exogenous microbial 
agents, relative to disturbance phenomena on colon 
microbiome, releasing DAMPs and PAMPs free to 
interact with RAGE, contributed to its constitutional state 
of activity. Metabolism and metabolites conditioned the 
microenvironment by modulating the immune response 
and on the other hand, the concomitant activation 

of RAGE, by inducing the indirect increasing of the 
transcriptional activity of NFKB, affects the production 
and release of cytokines and chemokines. Cytokines 
and chemokines are essential actors in the inflammatory 
scenario that implies the progressive evolution of the 
chemo resistant CRCs (Figure 2).  The initial presence of 
the K-Ras mutation, which guides the choice of first-line 
treatment for CRCs, loses consistency on the molecular 
cross-linked front of the advanced tumour. We hypothesize 
that in the case of advanced CRCs the therapeutic action 
of cancer containment should be concentrated by working 
on several molecular fronts. Without disregarding the 
target therapy but supporting it to favour the persistence 
and duration of a positive response, through direct 
inhibition of RAGE-ligand axis and PDL-1expression, 
previously verifying their sharing of the activity. From the 
data emerging in this review,  patients with chemoresistant 
CRCs cannot be retrained only through the presence or 
absence of K-ras mutation, evaluated by i.e., cfDNA 
analysis [100, 101], but it is necessary, through the 
analysis of markers such as RAGE or PDL-1 expression, 
through immunocytochemical approach [102–104] on 
i.e., circulating tumour cells [105–107], to verify how to 
support the possible choice of a targeted therapy or in the 
absence of this, to identify an optional and personalized 
therapeutic intervention (Figure 3). 
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