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Piperlongumine promotes death of retinoblastoma cancer cells
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ABSTRACT
Retinoblastoma is the most common pediatric intraocular malignant tumor. 

While retinoblastoma initiation is triggered by the inactivation of both alleles of 
the retinoblastoma tumor suppressor gene (RB1) in the developing retina, tumor 
progression requires additional epigenetic changes, retinoblastoma genomes being 
quite stable. Although the management of RB has recently improved, new therapeutic 
agents are necessary to improve the treatment of advanced forms of retinoblastoma.

In this report, we analyzed the pro-death effect of piperlongumine (PL), a natural 
compound isolated from Piper longum L., on two human retinoblastoma cell lines, 
WERI-Rb and Y79. The effects of PL on cell proliferation, cell death and cell cycle were 
investigated. PL effectively inhibited cell growth, impacted the cell cycle by decreasing 
the level of cyclins and CDK1 and increasing CDKN1A and triggered a caspase-3 
independant cell death process in which reactive oxygen species (ROS) production 
is a major player. Indeed, PL toxicity in retinoblastoma cell lines was inhibited by a 
ROS scavenger N-acetyl-l-cysteine (NAC) treatment. These findings suggest that PL 
reduces tumor growth and induces cell death by regulating the cell cycle.

INTRODUCTION

Retinoblastoma is a malignant tumor derived 
from photoreceptor precursor cells. It affects retina at a 
very early stage of childhood with an incidence of one 
case per 15,000–20,000 live births and represents 4% 
of all pediatric malignancies [1]. Although the survival 
rate of patients with retinoblastoma is extremely high in 
developed countries, left untreated advanced tumors limit 
eye preservation and expose patients to risks of metastasis 
and death. Therefore, depending on the disease stage, the 
therapeutic approaches for retinoblastoma treatment have 
to be adjusted, including enucleation, intravenous or intra-
arterial chemotherapy, or local treatments such as laser 
therapy, cryotherapy, and radiation [2]. Renuméroter les 
références. 

A multi-step model for the progression of normal 
retina to retinoblastoma has been proposed [3], the first 
step being the inactivation of both alleles of the tumor 
suppressor gene RB1 in the developing retina. Additional 

epigenetic modifications following RB1 inactivation 
promote subsequent malignant progression [4]. The 
overall survival in children with RB is related to many 
factors, such as the tumor size and location. Even if the 
survival rate of children with RB is high (more than 85%), 
developing effective therapeutic strategies is the key to 
significantly improve the overall survival in patients.

Piperlongumine (PL) is a natural alkaloid isolated 
from long pepper (Piper longum). PL was described 
as an anticancer compound modulating apoptosis [5], 
ROS production [6], cell proliferation [7], migration 
and invasion [8], and showing selective cytotoxic effect 
on several cancer cell types including pancreatic, renal, 
prostate, and breast cancers [5, 9–12]. Depending on 
the cell types, PL acts on various signaling pathways, 
including MAPK (p38/JNK) [13], nuclear factor kappa B 
(NF‑κB) [14, 15], STAT3 [16], GSTP1 [17], and TrxR1 
[18]. 

In this report, we studied the death potential of PL on 
two human retinoblastoma cell lines, WERI-Rb and Y79. 
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RESULTS

Piperlongumine induces cell death of WERI-Rb 
and Y79 retinoblastoma cell lines

To assess the ability of PL to induce retinoblastoma 
cell death as a single agent, we exposed retinoblastoma 
cells to PL. As shown in Figure 1A, the proliferation 
assays revealed that the growth of both WERI-Rb and 
Y79 cancer cell lines was decreased by 2 and 3-fold 
respectively. LDH release experiments confirmed PL 
cytotoxicity against both cell lines (Figure 1B). 

WERI-Rb treated with PL exhibited some classic 
signs of apoptosis like caspase-3 activation (Figure 1C) 
and downstream PARP cleavage (Figure 1D). However, 
DNA fragmentation could not be detected as indicated by 
DNA laddering (Figure 1E). In addition, other mechanisms 
than apoptosis should be involved in WERI-Rb killing as 
the broad-spectrum caspase inhibitor Z-VAD-FMK had no 
effect when added to WERI-Rb exposed to PL (Figure 1A). 

Regarding Y79 cell death induced by PL, it appears 
to be caspase independent. Indeed, we were unable 
to measure any caspase-3 activation (Figure 1C), and 
downstream PARP cleavage (Figure 1D) in Y79 exposed 
to PL. No DNA fragmentation was either detected in Y79 
(Figure 1E).

In addition to the use of the caspase inhibitor zVAD 
implicated in the apoptosis mechanism, we tested whether 
the necroptosis inhibitor Nec1, as well as the ferroptosis 
inhibitors Ferrostatin and Liproxstatin impacted the cell 
death triggered by PL. As shown in Figure 1A, none of 
these inhibitors protected retinoblastoma cells from death, 
suggesting that other mechanisms than necroptosis or 
ferroptosis are involved.

Piperlongumine induces ROS production in 
WERI-Rb and Y79 retinoblastoma cell lines

Previous studies in several human cancer cell lines 
have reported that the cell death program engaged by PL 
included oxidative stress induction [6, 13, 19–22]. PL 
has been shown to inhibit Glutathione S‑transferase pi 1 
(GSTP1) by blocking its active site [17]. GSTP1, which 
is frequently overexpressed in tumors, has an important 
detoxifying function and provides cellular protection 
against free radical. Exposure of cancer cells to PL results 
therefore in increased ROS and decreased GSH.

After 3 h of treatment of WERI-Rb and Y79 cells 
with PL, increased levels of ROS production were readily 
observed (Figure 2A). As predicted, the PL-induced ROS 
accumulation was greatly reduced by the free-radical 
scavenger NAC, as well as by direct GSH addition 
(Figure 2A).

To further investigate the relationship between the 
ROS generation and PL-induced cell death, WERI-Rb and 
Y79 cells were exposed to PL in the presence or absence of 

NAC. NAC pretreatment for 1 hr completely blocked cell 
death (Figure 1A), suggesting that ROS production is critical 
for WERI-Rb and Y79 cancer cells death induced by PL.

ROS is known to activate JNK [23] and GSTP1 was 
shown to be a direct inhibitor of JNK [24]. We looked 
therefore at JNK activity in Y79 and WERI-Rb after 
PL treatment, and showed a tight correlation between 
ROS production and JNK activation in both cell lines 
(Figure 2B). In presence of NAC, JNK activity was greatly 
reduced (Figure 2C). However, blocking JNK activity 
using the JNK inhibitor peptide (JNKI) [25], we were 
unable to protect WERI-Rb and Y79 cells from death, 
suggesting that JNK is located in the downstream part of 
the death pathway (Figure 1A).

PL modulates the transcript level of cell cycle-
regulatory factors

PL has been shown to modulate the expression of 
cell cycle factors, such as cyclins and CDKs [26]. To 
determine the effects of PL on the transcription of cell 
cycle-associated genes in WERI-Rb and Y79 cells, real-
time RT-PCR were performed. The results showed that 
the expression of CCNA2, CCNB1, CDC25C and CDK1 
mRNA was significantly decreased in cells treated with 
PL (Figure 3A). It is also well established that CDKs 
activity and cell cycle progression can be attenuated by 
CDKN1A [27]. Real-time PCR experiments displayed that 
PL increases CDKN1A mRNA content in WERI-Rb and 
Y79 cells, while no variation in the CDKN1B transcript 
was observed (Figure 3A).

Our results suggest therefore that PL impacts the cell 
cycle by decreasing the level of cyclins and CDK1 and by 
increasing the content of the CDKs inhibitor CDKN1A. All 
these variations triggered by PL were acting through ROS 
accumulation, as they were almost completely abolished 
when cells were pre-treated with NAC (Figure 3A).

PL modulates the expression of FOXM1

Forkhead Box M1 (FOXM1) is a transcription 
factor of the members of the forkhead family of proteins, 
which plays a critical regulatory role in the cell cycle 
progression by targeting several cell cycle genes, such as 
CCNA2, CCND1, SKP2 and CDC25A during the G1/S 
transition phase; TOP2A, MCM3 and PLK4 during the 
S phase; CCNB1, CCNB2, CDK1, AURKA, Survivin, 
PLK1, PRC1 during the G2/S transition phase and 
mitosis [28]. FOXM1 has also a transcriptional inhibitory 
effect on CDKN1A. FOXM1 has been described as a 
promoter of cell proliferation in a variety of tumors [29], 
and FOXM1 content was shown to be downregulated 
in breast and pancreatic cancer cell lines following PL 
exposure [30]. Microarray analysis have detected an 
upregulation of FOXM1 in human retinoblastoma [31], 
and in retinoblastoma Y79 cells, FOXM1 depletion has 
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been shown to affect cell invasive capacity by targeting 
MMP2 [32]. We observed that FOXM1 is overexpressed 
in retinoblastoma tumors isolated from an SV40-Tag  
mouse model (Figure 3B), and that FOXM1 content was 
downregulated following WERI-Rb and Y79 cell exposure 
to PL (Figure 3C). We investigated the expression 

modulation of FOXM1 target genes by real-time RT-
PCR and observed that the expression of these different 
genes was significantly decreased in cells treated with 
PL (Figure 3D). These results suggest a potential role of 
FOXM1 in the cell death induced by PL through cell cycle 
dysregulation.

Figure 1: PL induces cell death in WERI-Rb and Y79 retinoblastoma cells. (A) WERI-Rb and Y79 cells were exposed to 10 
µM PL for 24 h, and cell viability was determined using the Cell Counting Kit-8. Before PL treatment, cells were exposed for 1 hour to 3 
µM NAC as wel as to 2 mM GSH, 10 µM zVAD (a broad‑range caspase inhibitor), 10 µM JNKi II (a peptidic JNK inhibitor), 50 µM Nec‑
1 (a RIP-1 inhibitor), 1 µM Ferrostatin (Ferr) or 1 µM Liproxstatin (Lipr), both inhibiting ferroptosis. Dark grey column, WERI-Rb; grey 
column, Y79. Averaged media controls for multiple plates were set as 100% viability. Independent experiments, conducted in triplicate, 
have been repeated five times. *P < 0.005 by Student’s t test. (B) PL cytotoxicity was determined by measuring the activity of the LDH 
enzyme released by damaged cells. (C) WERI-Rb and Y79 cells were treated with 10 µM PL for 6 and 16 h and caspase-3 cleavage was 
determined by western blot experiments. Staurosporin (st) treatment (0.5 µM) is used as control. (D) WERI-Rb and Y79 cells were treated 
with 10 µM PL for 24 h and the cleavage of PARP, a downstream substrate of caspase-3,  was determined by western blot experiment 
using an antibody that recognizes the full length and the cleaved protein (105 and 85 kDa). Staurosporin (st) treatment (0.5 µM) is used as 
control. (E) DNA laddering experiment. WERI-Rb and Y79 cells were exposed to 10 µM PL for 8 and 16 h and DNA fragmentation was 
investigated. M, Molecular weight marker. Treatment  with 0.5 µM Staurosporin (st) and 1 µM ABT-737 (ABT) is used as control.
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DISCUSSION

The aim of our study was to determine the 
cytotoxicity of PL against retinoblastoma cell lines. The 
main known mechanism used by PL to induce cell death 
is the excessive production of cellular ROS [20, 33]. We 
observed that PL increased ROS accumulation in WERI-
Rb and Y79 cells (Figure 3A), while pre-treatment of cells 
with NAC attenuated this accumulation and protected 
cells from death. It is well known that cancer cells 
have developed the capacity to reprogram their energy 
metabolism to survive in a rough environment [34, 35]. 

This adaptation has for consequence the increase of ROS 
production. Various studies have shown that the impact 
of ROS in cancer cells is dependent on the stage of the 
tumor. In early stages, the accumulation of intracellular 
ROS promotes oxidative DNA damage and mutations 
into pro-oncogenes and tumor suppressor genes [36]. In 
later advanced stages, excessive levels of ROS have been 
shown to increase the sensitivity of these cancer cells to 
cell death, making them more vulnerable to additional 
ROS enhancement [36]. In our study, the exposure of 
WERI-Rb et Y79 to PL induced an overproduction of ROS 
leading to their death. 

Figure 2: PL induces ROS production in WERI-Rb and Y79 followed by JNK activation. (A) WERI-Rb and Y79 were left 
untreated (ctrl) or treated with 10 µM PL during 3 h. Before PL treatment, cells were exposed for 1 h to 3 µM NAC. Cells were stained for 
30 min with H2DCFDA and images were obtained with a fluorescent microscope. (B) WERI-Rb and Y79 were exposed to 10 µM PL for 1, 
3 or 6 h. JNK activation was determined by western blot experiment using a P-JNK antibody. (C) WERI-Rb were exposed to 10 µM PL for 
3 h without or with NAC. cJun phosphorylation was determined by western blot experiment using a P-cJun antibody. 
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ROS has been described to mediate various 
programmed cell death including apoptosis, autophagy, 
pyroptosis, necrosis, and ferroptosis [37]. When considering 
markers of apoptosis after exposure to PL, we demonstrated 
that apoptosis was only weakly triggered in WERI-Rb and 
not involved in Y79 cell death. Caspase-3 activation by 
PL was very faint in WERI-Rb and undetectable in Y79, 
as observed by direct assays (Figure 1C), or indirectly by 
examining caspase-3 substrate cleavage (PARP) (Figure 
1D). We also investigated DNA fragmentation following 
PL treatment, even if absence of DNA laddering may 
not be a convincible evidence for the inexistence of 
apoptosis. Figure 1E showed that PL did not induce DNA 
fragmentation neither in WERI-Rb, nor in Y79.

In addition to massive ROS production, studies 
about the effect of PL on tumors have depicted multiple 
mechanisms. Depending on the cell types, PL has an 
impact on various signaling pathways, including MAPK 
(p38/JNK) [13], nuclear factor kappa B (NF‑κB) [14, 
15], STAT3 [16], GSTP1 [17], and TrxR1 [18]. We 
assessed the potential role of necroptosis and ferroptosis 
in WERI-Rb and Y79 cell death triggered by PL using 
specific inhibitors (Figure 1A). None of them showed any 
protective effect. We also investigated specific markers of 
these two programmed cell deaths, i.e., RIPK1 and RIPK3 
phosphorylation for necroptosis, and lipid peroxidation for 
ferroptosis. None of them were modulated following PL 
treatment (data not shown).

Figure 3: Effects of PL on cell cycle-regulatory factors in WERI-Rb and Y79 cells. (A) The expression of CDC25C, CDK1, 
CCNA2, CCNB1, CDKN1A and CDKN1B was measured at mRNA levels using real time RT-PCR. EZR transcript, encoding a cytoplasmic 
peripheral membrane protein, was used as a negative control and GAPDH was used as an internal control gene. Data represent the mean 
± SEM (n = 3). *P < 0.05 by Student’s t test. (B) The content of FOXM1 was determined in three healthy mouse retina (HR) and in five 
primary mouse retinoblastoma (PT) by western blot analysis. (C) WERI-Rb and Y79 were exposed to 10  µM PL for 24 h without or with 
1 h pre-treatment with 3 µM NAC. FOXM1 protein level was determined by western blot experiment. (D) The expression level of FOXM1 
target genes was determined by real time RT-PCR. GAPDH was used as an internal control gene. Data represent the mean ± SEM (n = 3).  
*P < 0.05 by Student’s t test.
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We also examined the autophagy process, but we 
were unable to observe any LC3II or p62 modulation 
in WERI-Rb and Y79 following PL treatment (data not 
shown).

Previous studies have established the effect of ROS on 
cell cycle progression by modulating cell cycle regulators, 
such as cyclins and cyclin dependent kinase inhibitor 
[38, 39]. We determined that PL disturbed the expression 
of various factors involved in the cell cycle progression 
including CDK1, CDC25C, CDKN1A (Figure 3A). Several 
of these genes are known to be regulated by FOXM1 
at transcriptional level. We found that FoxM1 protein 
expression was increased in primary mouse retinoblastoma 
(Figure 3B) and PL exposure of WERI-Rb and Y79 induced 
a decrease in FOXM1 protein content (Figure 3C). 

As a master regulator of the cell cycle, the 
transcription factor FOXM1 is required for cell 
proliferation of normal cells, and it is an important factor 
in various types of cancer [28, 29, 40]. The oncogenic 
potential of FOXM1 is based on its faculty to regulate the 
expression of target genes involved in cell cycle transition, 
cell proliferation, chromosome stability, stem cell renewal, 
and later phases of tumorigenesis. Indeed, studies aimed 
at FOXM1 inhibition in cancer cells have observed a 
decrease in cell proliferation and migration, metastasis, 
angiogenesis, EMT, and drug resistance, demonstrating 
the implication of FOXM1 in these different processes 
[40–45]. FOXM1 is therefore a potential therapeutic target 
in cancer therapy potentialy inhibited by PL. As FOXM1 
is involved in various signaling pathways -other than cell 
cycle- that control many key cancer properties, it would be 
interesting to determine whether PL has a effect on these 
pathways using animal model developping retinoblastoma.

Our study reports that PL induces retinoblastoma 
cells death through the accumulation of ROS resulting in 
cellular oxidative stress. A potential role of FOXM1 in this 
cell death process has to be verified using inhibitors or 
following FOXM1 overexpression. These data provide in 
vitro evidence that PL could serve as a potential anticancer 
molecule in retinoblastoma treatment.

MATERIALS AND METHODS

Chemicals

Piperlongumine (PL), N-acetyl-L-cysteine (NAC), 
Necrostatin-1 (Nec1), Ferrostatin-1, Liproxstatin, 
Glutathione (GSH), Ciclopirox (CPX) were purchased 
from Sigma-Aldrich (Sigma, St. Louis, USA), zVAD was 
from Promega (Promega, Madison, WI, USA).

The primary antibodies and their dilutions used 
for western blotting experiments were as followed, 
beta-actin (A5441, 1:1000, Sigma, St. Louis, USA), 
PARP (sc-7150, 1:1000, Santa Cruz Biotechnology, 
Santa Cruz, USA), cleaved-caspase 3 (9661, 1:1000, 
Cell Signaling, Danvers), P-JNK (4668, 1:1000, Cell 

Signaling, Danvers), JNK (sc-571, 1:1000, Santa Cruz 
Biotechnology, Santa Cruz, USA), P-c-Jun (9261, 1:1000, 
Cell Signaling, Danvers), OPA1 (BD Bioscience 612606), 
PRC1 (1:1000, Protein Tech Group, Chicago, USA), 
FOXM1 (sc-376471, 1:1000, Santa Cruz Biotechnology, 
Santa Cruz, USA), GPX4 (ab125066, 1:1000, Abcam, 
Cambridge, UK).

The secondary antibodies used for Western blotting 
experiments were as followed: ECL anti‑rabbit IgG 
horseradish peroxidase linked, ECL anti‑mouse IgG 
horseradish peroxidase linked (Amersham Biosciences, 
Otelfingen, Switzerland).

WERI-Rb and Y79 cell cultures

WERI-Rb and Y79 cell lines were obtained from 
ATCC (Manassas, VA, USA) and were cultured in 
RPMI 1640 medium supplemented with 100 µg/ml 
streptomycin, 100 units/ml penicillin, 1 mM sodium 
pyruvate, 2 mM glutamine and 10% fetal calf serum 
(20% for Y79). 

Cytotoxicity assays and LDH release

Cells were seeded at a density of 10,000 cells 
per well in 96-well plates, incubated overnight in 10% 
FBS/RPMI (20% for Y79), then treated for varying 
lengths of time with various chemical compounds. 
Following treatment, drug toxicity was measured using 
the Cell Counting Kit-8 developed by Sigma-Aldrich 
and the CyQUANT LDH Cytotoxicity Assay Kits from 
ThemoFischer Scientific (Waltham, MA, USA) using a 
microplate reader (Bio-Tek Instruments, Winooski, VT, 
USA).

Mean values were obtained from five independent 
experiments, each conducted in triplicate.

ROS production and microscopy

Following exposure to PL, cells were stained with 
10 μM of the dye dihydrodichlorofluorescein‑diacetate 
(H2DCFDA, Invitrogen Inc., Eugene, OR, USA) in 1 ml 
media to measure intracellular hydrogen peroxide. Cells 
were stained for 30 min at 37°C.

Fluorescence microscopy was performed on a Leica 
DM6000B Microscope, equipped with a Leica DFC365 
FX digital camera. Images were captured using the 
Leica Application Suite (LAS-AF) microscope software. 
Representative pictures were taken using a 40x/0,85 Leica 
HC PL-APOCHROMAT objective.

DNA laddering

After cells have been exposed to chemical 
compounds, study of DNA laddering was conducted as 
previously described [46]. 
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Whole cell lysates

Cells were washed once in cold Phosphate Buffered 
Saline (PBS) and recovered by centrifugation. Briefly, 
cell pellets were dislodged into cold lysis buffer (20 mM 
Tris-acetate pH 7.0, 0.27M sucrose, 1 mM EDTA, 1 mM 
EGTA, 50 mM sodium fluoride, 1%Triton X‑100, 10 mM 
β‑glycero‑phosphate, 1 mM DTT, 10 mM p‑nitrophenyl‑
phosphate, and antiproteases), and centrifuged at 15,000 
rpm for 20 minutes. Supernatants were recovered and 
stored at –70°C until use. Total protein in cell lysates was 
quantified using the BCA Protein Assay according to the 
manufacturer (Life Technologies, Carlsbad, CA, USA).

Western blotting experiments

Equal quantities of total protein lysates (40 ug per 
well) were resolved by 8–15% SDS-polyacrylamide gel 
electrophoresis and electrotransferred onto polyvinylidene 
difluoride membranes. Nonspecific protein binding was 
blocked by incubating the membranes with a blocking 
solution (1x TBS, 0.1% Tween 20, 5% nonfat dried milk 
powder) for 1 h at room temperature. The blots were then 
probed overnight with primary antibodies. The immune 
complex was detected by using a peroxidase-conjugated 
secondary antibody and the chemioluminescent detection 
kit according to the manufacturer’s specifications (EMD 

Millipore EMD Millipore, Merck KGaA, Darmstadt, 
Germany). FUJIFILM Multi Gauge software was used for 
densitometric analysis.

RNA isolation

Total RNA was extracted from treated cells using 
the TRIzol reagent (Invitrogen AG, Basel, Switzerland) 
and following the manufacturer’s instructions. Both 
quantity and quality of RNA were determined on a ND-
1000 spectrophotometer (NanoDrop technologies, Inc., 
Wilmington, DE).

Reverse transcription and quantitative PCR

cDNA synthesis was performed using 2 μg of total 
RNA in 20 μl reaction volume. This was done using an 
oligo dT primer according to the manufacturer’s manual 
(Affinity Script; Stratagene; Agilent technologies SA, 
Morges, Switzerland). For quantitative PCR, cDNA 
obtained from 50 ng original total RNA was used for 
PCR amplification using the 2× brilliant SYBR Green 
QPCR Master Mix (Agilent) with 250 nM of forward and 
reverse primer, designed to span an intron of the target 
gene (Table 1). Real-time PCR was performed in triplicate 
in a Mx3000PTM system (Agilent) with the following 
cycling conditions: 40 cycles of denaturation at 95°C 

Table 1: Primers sequence (5ʹ–3ʹ)
CDC25C-F TCTCCTGGTGAGAATTCGAAGA
CDC25C-R GAGGCAACGTTTTGGGGTTC
CDK1-F TGGAAATTGAGCGGAGAGCG
CDK1R TGGCTACCACTTGACCTGTAG
CCNA2-F CTGCGTTCACCATTCATGTGG
CCNA2-R ACACTCACTGGCTTTTCATCTTC
CCNB1-F CCTCTCCAAGCCCAATGGAA
CCNB1-R ACTTCCCGACCCAGTAGGTA
CDKN1B-F ACCTGCAACCGACGATTCTT
CDKN1B-R GTCCATTCCATGAAGTCAGCG
CDKN1A-F AGCAGAGGAAGACCATGTGG
CDKN1A-R TTCCAGGACTGCAGGCTTCC
EZR-F AAGGATTTCCTACCTGGCTG
EZR-R GGCAGTAGATCTCGTCGCGA
MCM3-F TGATGCTACCTATGCCAAGC
MCM3-R GTCTTCTTAGTAGCAGGACAG
PLK4-F TTTGCTGGTGTCTACAGAGC
PLK4-R CTCCATTATGGCACATTTCTA
PLK1-F TTTCGAGGACAACGACTTCG
PLK1-R CATTCAGGAAAAGGTTGCCC
AURKA-F GGAGGAACTGGCATCAAAAC
AURKA-R TAAGAGCCAGAATAAACTTGCT
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for 30 sec, annealing at 59°C for 30 sec, and extension 
at 72°C for 30 sec. Quantitative values were obtained by 
the cycle number (Ct value) reflecting the point at which 
fluorescence starts to increase above background at a fixed 
threshold level. Values obtained for the target genes were 
normalized with the housekeeping gene Gapdh.

Animal handling

The SV40-Tag (C57BL/6) mice [47] were a gift 
from Dr. Joan O’Brien. The animals were maintained and 
euthanized in accordance with the ARVO Statement for 
the Use of Animals in Ophthalmic and Vision Research 
and were approved by the local Committee Office on Use 
and Care of Animals in Research of the State of Valais, 
Sion, Switzerland.

Statistical analysis

All results were expressed as means ± SEM of the 
indicated number of experiments. For statistical analysis, 
Student’s t-test was performed and P values of less than 
0.05 were considered to be statistically significant. 
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