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ABSTRACT
Somatic mutation signatures are an informative facet of cancer aetiology, 

however they are rarely useful for predicting patient outcome. The aim of this study is 
to evaluate the utility of a panel of 142 mutation-signature–associated metrics (P142) 
for predicting cancer progression in patients from a ‘TCGA PanCancer Atlas’ cohort. 
The P142 metrics are comprised of AID/APOBEC and ADAR deaminase associated 
SNVs analyzed for codon context, strand bias, and transitions/transversions. TCGA 
tumor-normal mutation data was obtained for 10,437 patients, representing 31 of 
the most prevalent forms of cancer. Stratified random sampling was used to split 
patients into training, tuning and validation cohorts for each cancer type. Cancer 
specific machine learning (XGBoost) models were built using the output from the P142 
panel to predict patient Progression Free Survival (PFS) status as either “High PFS” or 
“Low PFS”. Predictive performance of each model was evaluated using the validation 
cohort. Models accurately predicted PFS status for several cancer types, including 
adrenocortical carcinoma, glioma, mesothelioma, and sarcoma. In conclusion, the 
P142 panel of metrics successfully predicted cancer progression status in patients 
with some, but not all cancer types analyzed. These results pave the way for future 
studies on cancer progression associated signatures.

INTRODUCTION

Cancer is a leading cause of human mortality 
worldwide and the incidence of cancer is expected to 
rise as our average life expectancy increases [1–3]. Yet, 
despite many recent advances in treatment, the immense 
socio-economic burden of cancer persists [1–3]. A key 
strategy for reducing the burden of cancer is to personalize 
treatment regimes to optimize patient outcomes [4]. 
Currently less than 25% of patients benefit from 
personalized care [5, 6] and efforts to increase adoption 
and utility are ongoing, for example by incorporating 
novel biomarkers into existing treatment methods. 
Effective personalized cancer treatment requires a detailed 
understanding of the aetiology, physiology and molecular 

biology of the cancerous cells. However, many of the 
mechanisms driving cancer progression are still not fully 
understood, such as the causes, effects, and patterns of 
DNA mutation in oncogenesis.

As cancer develops, many mechanisms and 
endogenous cellular processes cause mutations in DNA. A 
predominant endogenous DNA mutagen is the orthologous 
family of proteins known as deaminases, specifically the 
activation-induced cytidine deaminase/apolipoprotein 
B editing complex (AID/APOBEC) family of enzymes 
[7–11] and putatively adenosine deaminases acting on 
RNA (ADARs) [12–14]. These enzymes mutate DNA 
and/or can edit RNA [15–17] by binding to specific target 
motifs. For example, the binding motif for APOBEC3G 
is two consecutive cytosines (“CC”) and deamination of 
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the second cytosine results in another nucleotide being 
incorporated e.g., “CT” [9]. Deaminase binding domains 
are typically highly specific: the deaminase enzyme AID 
also deaminates cytosines (“C”) predominantly, however it 
binds at WRC loci (W = A/T, R = A/G) [18, 19].

Analyzing somatic mutations coinciding with known 
deaminase binding motifs can signal aberrant activity of 
that specific deaminase and compromised DNA repair 
in cells [8, 9, 20, 21]. Furthermore, the accumulation 
of specific deaminase-associated mutations in a patient 
can provide valuable information on how the cancer 
has developed [20–23], and in specific cases provide 
information on the rate of progression of the disease and 
likely response to specific treatments [24–28]. Despite 
clinical utility in a handful of examples, quantification 
of deaminase-associated DNA mutations currently does 
not provide actionable information for the majority of 
cancer types [29, 30]. However, further classification and 
analysis of deaminase-associated DNA mutations can 
reveal additional information. This has been previously 
shown using metrics such as strand bias [31]; codon 
context (the position of the mutated nucleotide within the 
codon, relative to the transcript start site and read 5’ to 
3’ on the non-transcribed strand) [13]; and the number 
and ratio of transitions and transversions in deaminase-
associated variants [32]. For example, higher strand bias 
and transition/transversion ratios have been observed in 
inherited disease-associated genetic variants [32]. 

Antecedent research has shown that, when combined 
with the codon-context of the targeted motifs for both 
cytosine and adenosine deaminases as described by Lindley 
[13], deaminase-associated mutation signatures can be 
used to stratify patients with high-grade serous ovarian 
cancer into long-term and short-term survivors [14]. In this 
study, the proposed molecular model of AID/APOBEC 
and ADAR mutagenesis advances existing models by 
implicating the open transcription bubble and transcription 
elongation complex as illustrated by Lindley [12] (Figure 
1A). In this model, deamination targets are presented in 
C-site motifs both in the displaced ssDNA of the non-
transcribed strand, and may also be accessed in the exposed 
ssDNA of the transcribed strand at annealed RNA:DNA 
hybrids assisted via the action of the RNA exosome [33]. 
ADAR A-site deamination targets are present in WA-motifs 
in the dsRNA stem loops of the nascent pre-mRNA, and 
in the RNA and DNA A-site moieties in the RNA:DNA 
hybrid, assisted by the reverse transcriptase activities of 
DNA Polymerase-eta (Pol η) [31, 34, 35]. This presumptive 
model is based on known deaminase targets and their role 
in oncogenesis, combined with the mechanisms underlying 
reverse transcription. This model contributes to the rationale 
underpinning the development of the panel of cancer 
progression associated metrics used in this study. 

Whilst the utility of deaminase-associated metrics 
is yet to be fully realized, it is our view that this approach 
may ultimately be used to improve the predictive 

accuracy of a range of emerging genomic diagnostics 
in an ‘additive’ manner. Several other approaches have 
also been used to stratify cancer patients into long- and 
short-term survivors [36–39]. Methods such as analyzing 
gene expression changes and pathway enrichment [40], 
protein abundance and localization [41], single nucleotide 
polymorphisms (SNPs) [42, 43], altered RNA splicing 
[44], metabolites or other analytes [45] have been used 
to stratify patients. Models combining these approaches 
with clinical data such as patient age, sex, treatment and 
histopathology can achieve relatively high predictive 
accuracy [46]. The P142 panel is fundamentally different 
to these existing methods and may provide a new source of 
cancer progression biomarkers. This is the first application 
of these deaminase-associated metrics for predicting 
cancer progression and patient outcomes.

The aim of this study is to evaluate the efficacy 
of a panel of 142 deaminase-associated metrics (herein 
referred to as the ‘P142’ panel) for predicting the rate of 
cancer progression in patients selected from The Cancer 
Genome Atlas (TCGA) PanCancer Atlas cohort. The P142 
metrics evaluated in this study are defined and described 
in Supplementary Table 1. We hypothesize that the P142 
markers associated with AID/APOBEC and ADAR 
deamination and codon reading frame context can be used 
to predict cancer progression for patients with a range of 
different cancer types.

RESULTS

Application of the P142 metric panel and patient 
categorization

The P142 panel of metrics was applied to every 
patient eligible for inclusion in the study (see Figure 
1A; n = 5,903) and the results were collated into patient 
profiles. Each patient profile contains 142 values: one for 
each metric in the panel. Patient profiles were grouped by 
cancer type and categorized according to their Progression 
Fee Survival (PFS) status, labelled as either “Low PFS” 
or “High PFS”. The median PFS for each cohort and the 
corresponding PFS threshold used to delineate “Low 
PFS” patients from “High PFS” patients are presented 
in Table 1, along with the number of patients in each 
group. For example, the PFS threshold for TCGA patients 
with adrenocortical carcinoma (ADCC) is 24 months: 
patients in the “Low PFS” category presented with cancer 
progression/recurrence before 24 months (n = 39), and 
patients in the “High PFS” category did not progress 
before 24 months (n = 46) (Table 1).

Distribution of variants in coding regions of the 
genome

Somatic single-nucleotide variants (SNVs) in 
protein coding regions (CDS) were quantified for each 
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patient. The distribution of CDS SNVs for each cancer 
type are shown in Figure 1B. The highest average CDS 
SNV burden was observed in skin cutaneous melanoma 
and lung cancers (SKCM, LUAD, LUSC). In comparison, 
the observed SNV burden was more than 10-fold lower in 
thyroid cancers, testicular germ cell carcinoma and uveal 
melanoma (THYM, TGCT, THCA and UVME).

Correlation between somatic variant burden and 
progression free survival

A statistically significant correlation between total 
SNV burden and patient PFS status was not found for the 
majority of cancer types (see Figure 2). However lower 

grade glioma (BLGG, Figure 2B), mesothelioma (MESO, 
Figure 2C) and adrenocortical carcinoma (ADCC, Figure 
2D) had significantly more mutations in patients with 
“Low PFS” vs those with “High PFS” (p < 0.05). This 
trend was not seen in sarcoma (SARC, Figure 2E; p > 
0.05). Other individual metrics in the P142 panel were 
similarly weak predictors of patient PFS status in different 
cancer types (Supplementary Figure 1).

Cross validation and predictive accuracy of 
machine learning models

Patients grouped by cancer type were split using 
stratified random sampling into training, tuning and 

Table 1: A summary of the patient cohorts and key parameters included in the study

Cancer type
Cancer type 
abbreviation

Median 
PFS 

(months)
PFS threshold 

(months)

No. patients 
included in 

analysis

No. patients 
above PFS 
threshold

No. patients 
below PFS 
threshold

Adrenocortical Carcinoma  ADCC 27.60 24 85 46 39

Glioblastoma Multiforme  BGBM 5.92 6 306 161 145

Bladder Urothelial Carcinoma  BLCA 17.98 18 291 157 134

Brain Lower Grade Glioma  BLGG 27.81 24 290 168 122

Breast Invasive Carcinoma  BRCA 46.62 60 321 211 110

Cervical Squamous Cell Carcinoma  CESC 31.27 30 134 79 55

Cholangiocarcinoma  CHOL 7.96 9 32 18 14

Colorectal Adenocarcinoma  COAD 29.06 24 310 202 108

Diffuse Large B-Cell Lymphoma  DLBC 32.01 30 20 14 6

Esophageal Adenocarcinoma  ESCA 10.55 12 141 83 58

Head and Neck Squamous Cell Carcinoma  HNSC 25.97 24 351 190 161

Kidney Chromophobe  KICH 87.24 60 45 37 8

Kidney Renal Clear Cell Carcinoma  KIRC 45.96 48 264 200 64

Kidney Renal Papillary Cell Carcinoma  KIRP 34.29 36 166 127 39

Liver Hepatocellular Carcinoma  LIHC 12.89 12 254 122 132

Lung Adenocarcinoma  LUAD 23.87 24 320 163 157

Lung Squamous Cell Carcinoma  LUSC 31.56 36 283 188 95

Mesothelioma  MESO 12.00 12 64 16 48

Ovarian Serous Cystadenocarcinoma  OVCA 16.04 18 294 137 157

Pancreatic Adenocarcinoma  PAAD 12.33 12 161 130 31

Prostate Adenocarcinoma  PRAD 37.00 36 222 156 66

Sarcoma  SARC 17.80 18 202 128 74

Skin Cutaneous Melanoma  SKCM 28.59 30 371 219 152

Stomach Adenocarcinoma  STAD 16.57 18 264 145 119

Testicular Germ Cell Tumors  TGCT 40.01 42 73 46 27

Thyroid Carcinoma  THCA 39.73 36 217 175 42

Thymoma  THYM 45.63 48 62 44 18

Uterine Corpus Endometrial Carcinoma  UCEC 35.13 36 257 161 96

Uterine Carcinosarcoma  UCSA 11.64 12 51 28 23

Uveal Melanoma  UVME 27.52 24 52 34 18

TOTALS 5903 3585 2318

Details include cancer type and cancer type abbreviation, the median Progression Free Survival (PFS) time, the corresponding PFS threshold, and the total 
number of patients in each PFS status group (determined to be either “High PFS” or “Low PFS” using the PFS threshold).
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validation cohorts: 75%, 10% and 15% of patients 
respectively. These cohorts retained the same approximate 
ratio of “High PFS” and “Low PFS” patients as the 
original patient groups. Two cancer type groups (DLBC 
and KICH) had insufficient patient numbers (i.e., zero 
“High PFS” or “Low PFS” patients in the tuning or 
validation cohorts) and were excluded from further 
analysis.

For the validation cohorts, the average predictive 
accuracy for machine learning (ML) models across all 
cancer types was 60% ± 1.2% (mean ± SD; 20 rounds 
of cross validation per cancer type), higher than expected 
according to random chance (i.e., 50%). Overall, 59.1% 
of ML models had a Cohen’s Kappa value > 0 (Figure 3). 
As shown in Figure 3, the highest predictive accuracy 
was seen in ML models for adrenocortical carcinoma, 
mesothelioma and cholangiocarcinoma (ADCC, MESO, 
CHOL), which predicted the PFS category of validation 
patients with 100% accuracy. A selection of ML models 
achieved > 80% predictive accuracy, including models 
for adrenocortical carcinoma, lower grade glioma, 
cervical squamous cell carcinoma, cholangiocarcinoma, 
mesothelioma, sarcoma, thyroid carcinoma, and uterine 
carcinosarcoma (ADCC, BLGG, CESC, CHOL, MESO, 
SARC, THCA, UCSA). Overall, one or more ML models 

achieved a predictive accuracy > 70% in the majority of 
cancer types in the TCGA (20/28 cancer types analyzed).

Kaplan–Meier survival curves for each cancer 
type

A significant difference in the probability of 
recurrence (the ‘actual’ PFS) between patients predicted 
as “Low PFS” compared to those predicted as “High 
PFS” is seen in Kaplan–Meier plots for a selection of 
cancer types (Figure 4; p < 0.05). Kaplan–Meier plots 
generated by applying the best performing ML model to 
the respective validation cohorts for each of the 28 cancer 
types are shown in Supplementary Figure 2. ML models 
with poor predictive accuracy showed little separation 
between lines (e.g., lung adenocarcinoma; Supplementary 
Figure 2N). This is irrespective of the individual patient’s 
predicted PFS status (“Low PFS” or “High PFS”), as the 
actual PFS does not correlate with the predictions. Overall, 
a significant difference in the probability of recurrence 
(the ‘actual’ PFS) in each validation cohort was observed 
between patients predicted as “Low PFS” compared 
to patients predicted as “High PFS” for the majority of 
cancer types in the TCGA (20/28 cancer types analyzed; 
p < 0.05).

Figure 1: (A) Schematic of the key concepts involved in generating output from the P142 metric panel. Each metric in the P142 panel 
is described in full in Supplementary Table 1. These metrics are derived from tumor-normal single nucleotide variants and cover a range 
of sequence motifs, incorporating strand bias, codon context, transitions/transversions and synonymous/non-synonymous status. (B) 
Distribution of SNVs contained within the coding sequence (CDS) regions of the genome. Cancer types are ordered and colored from 
highest to lowest mutation burden.
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Evaluation of the chosen PFS thresholds

Additional ML models were created for each cancer 
type using predetermined PFS thresholds of 6, 12, 24, 36, 
48 and 60 months to evaluate the appropriateness of the 
PFS thresholds used in the study (listed in Table 1). Cross 
validation was performed (10-fold for each PFS threshold) 
and Cohen’s Kappa values were used to compare models 
for each cancer type (Supplementary Figure 3). ML 
models could not be obtained when the PFS threshold 
led to insufficient patient numbers in a category (i.e., 
zero “High PFS” or “Low PFS” patients in the tuning 
or validation cohorts), for example, Supplementary 
Figure 3B: ML models were not generated at 48 and 60 
months PFS for the BGBM cohort, as only 4 patients 
with that cancer type survived past 48 months. In the 28 
different cancer types investigated, the predetermined PFS 
threshold (either 6, 12, 24, 36, 48 or 60 months) that was 
closest to the threshold used in the study (listed in Table 1) 
had the highest Cohen’s Kappa value and predictive 
accuracy, confirming the PFS thresholds used in the study 
were appropriate.

DISCUSSION

The TCGA PanCancer Atlas has greatly improved 
our understanding of cancer biology, leveraging 
comprehensive genomic, epigenetic, and transcriptomic 

analyses across a broad range of tumor types. Here, we 
used TCGA whole exome sequencing data to evaluate 
the utility of genomic metrics associated with deaminase 
mutagenesis (P142) for predicting the PFS status of 
patients from 28 cancer types. Machine learning (ML) 
models generated using the P142 metric panel accurately 
categorized patients as “High PFS” (above the PFS 
threshold) or “Low PFS” (below the PFS threshold) with 
up to 100% predictive accuracy and with Cohen’s Kappa 
values above 0.4 for 11 cancer types. Nevertheless, the 
ML models used did not accurately categorize patients 
in all cancer types. In addition to existing methods of 
quantifying somatic mutations with putative deaminase 
binding motifs, incorporating additional physiological 
characteristics such as strand bias, codon context and 
transitions/transversions, provides new insights and 
novel genomic biomarkers that can be used to predict 
PFS status in cancer patients. These findings support our 
hypothesis that deaminase-associated metrics can be used 
for predicting patient outcome and provides a foundation 
for further development of diagnostic and prognostic tests.

An advantage of the methods developed for this 
study is that the P142 metrics implicate a broad range of 
physiological and molecular mechanisms associated with 
mutagenesis. For example, some deaminases are known 
to preferentially target the transcribed or non-transcribed 
strand of a transcript [18, 47–50]. One P142 metric that 
incorporates this specificity is #15: “cds:A3B_T-C-W 

Figure 2: (A) Total number of SNVs (log10 scale) for each patient, grouped by cancer type and colored by Progression Free Survival 
(months). “High PFS” = above the PFS thresholds listed for each cancer type in Table 1; “Low PFS” = below the PFS threshold listed in 
Table 1. Also shown is the total number of SNVs (linear scale) for (B) the BLGG cohort, (C) the MESO cohort, (D) the ADCC cohort, and 
(E) the SARC cohort. T-tests were used to statistically evaluate the difference between the “High PFS” and “Low PFS” patient groups (B, 
C, D, E; *p < 0.05).
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G>A motif %” (Supplementary Table 1), which evaluates 
the proportion of mutations that occur within a known 
APOBEC3B target motif that we classify as G>A. As this 
metric denotes a mutation of “G” within an APOBEC3B 
motif, the mutation occurred at C>T on the opposite strand, 
which is a measure of strand bias [45]. Another example 
is the position of the mutated nucleotide in the codon, 
which evaluates synonymous verses non-synonymous 
amino acid changes and implicates factors relating to 
DNA structure and conformation [13]. This mechanism is 
associated with many of the P142 metrics, for example 
#7: “cds:A3G_C-C- MC3%” (Supplementary Table 1), 
which calculates the proportion of mutations that occur 
within the APOBEC3G motif (“CC”) at the 3rd position 
of a codon (“MC3”). Leveraging physiological and 
molecular insights associated with deaminase mutagenesis 
can reveal differences between patients despite similar 
overall deaminase signature profiles. This is a key point of 
difference between this study and alternative approaches 
such as the “mathematical” deaminase signature 
quantification methods used by others (e.g., [11, 51–53]). 

Despite a clear correlation between the P142 metrics 
and patient outcome in the majority of cases, predictive 
accuracy was low for 8 of the 28 cancer types investigated. 
A potential explanation for this result is that deaminase 
expression is highly tissue-specific and perhaps these 
cancer types have lower deaminase activity or expression. 
This is a potential direction for future investigation. 
It should be noted that high expression of deaminase 
enzymes does not necessarily cause more mutations in 
DNA unless repair pathways are compromised. Recent 
investigation into the overexpression of APOBEC3B in 
cells has found a negligible increase in mutations in vitro. 

Yet, in cells that are p53-compromised a significantly 
higher number of mutations with the expected APOBEC 
motif were observed when APOBEC3B was overexpressed 
[54]. Thus, despite expression of deaminases varying 
greatly between cell/tissue types, the relationship between 
expression and phenotype is complex and cannot be easily 
quantified by measuring gene or protein expression or 
by counting SNVs that occur within deaminase binding 
motifs. This is another potential explanation for the low 
level of deaminase-associated mutations seen in some 
cancer types, such as TGCT and UVME, which do not 
typically have compromised DNA repair machinery.

An ongoing research question in oncology is the 
clinical utility of Tumour Mutational Burden (TMB) as 
a biomarker for patient survival. TMB is increasingly 
being incorporated into genomic testing (diagnostic 
and prognostic) and it is the leading biomarker used to 
predict patient outcome after immune checkpoint inhibitor 
therapy [55–58]. High TMB is typically associated with 
positive response to immunotherapy (and subsequently 
higher PFS), yet in cancer types such as adrenocortical 
carcinoma and lower grade glioma (ADCC, BLGG) a 
lower mutation burden was associated with longer PFS 
(see Figures 3 and 4). This finding was also reported in 
a recent study by Alghamri et al. [59]. There are several 
potential explanations for this observation. For instance, 
TMB may not relate to patient outcome unless the 
patient is treated with immunotherapy, or perhaps TMB 
is not a useful biomarker in the cancer types described. 
Nevertheless, the link between TMB and patient outcome 
in cancer types such as ADCC and BLGG may be useful 
for customizing a panel of metrics to increase predictive 
accuracy and utility.

Figure 3: Predictive accuracy of machine learning cross validation (20 rounds) for each cancer type (n = 28). Cohen’s 
Kappa represents the deviation of the observed accuracy from the expected accuracy for each cohort of patients. Cohen’s Kappa is 
traditionally evaluated as described in Landis and Koch [74]: values < 0 = not different to random chance, 0–0.20 = slight agreement, 
0.21–0.40 = fair agreement, 0.41–0.60 = moderate agreement, 0.61–0.80 = substantial agreement, and 0.81–1 = almost perfect agreement 
(i.e., perfect predictive accuracy on validation data). Cohen’s Kappa values less than zero are not statistically different to random chance 
(colored grey).
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Machine learning methods were used in this study 
to circumvent inherent correlations between individual 
P142 metrics. For example, normalizing metric values 
using the total number of mutations occurring within a 
specific motif is a known source of potential bias. The 
XGBoost decision tree ensemble algorithm was chosen 
specifically to mitigate this issue. Despite high predictive 
accuracy in the final model, we did not observe individual 
metrics to be strong predictors of patient PFS status, and 
the distribution of patient scores for each metric when 
compared between cancer types and PFS status was 
highly variable (Supplementary Figure 1). An explanation 
for these observations is that each metric made a small 
contribution to the final overall prediction, and the 
contribution was dependent on cancer type. For example, 
the distribution of patient scores for a specific metric in the 
four highlighted cancer types with the highest predictive 
accuracy were not always found to be concordant 
(Supplementary Figure 1C). The XGBoost algorithm is 

well-suited to this scenario as it combines bagging and 
boosting algorithms to build weak learner models initially, 
then improves the learner models as training progresses 
[60]. Overall, the findings of this study support using the 
XGBoost algorithm over other analytical methods.

Genomic instability is the accumulation of somatic 
mutations and chromosomal alterations within cellular 
lineages [61]. This is a hallmark of cancer, and often 
these somatic mutations do not have a discernable source 
as they are caused by mechanisms such as oxy-radicals 
(e.g. oxidation damage creating G → A mutations via 
Guanine → 8-Oxoguanine → Adenosine), or exposure 
to radiation [62]. Mutations without a discernable source 
are not targeted to specific genomic motifs (unlike 
deaminase-associated mutations), though there are regions 
that appear to be more susceptible than others [63, 64]. 
We have previously speculated that the combinatorial 
association of different deaminase isoforms, homodimers 
and heterodimers may moderate deaminase targeting 

Figure 4: Kaplan–Meier plots comparing the ‘actual’ Progression Free Survival (PFS in months; X axis) of patients predicted to be “Low 
PFS” (PFS below the threshold, shown in red) versus patients predicted to be “High PFS” (PFS above the threshold, shown in blue) for (A) 
Adrenocortical Carcinoma (ADCC), (B) Lower Grade Glioma (BLGG), (C) Mesothelioma (MESO), and (D) Sarcoma (SARC). Results 
were generated using the best machine learning (ML) model for each cancer type (i.e., the model with the highest predictive accuracy and 
Cohen’s Kappa value). Cancer type, the number of patients in the validation cohort, and the PFS threshold used to delineate “Low PFS” 
from “High PFS” are shown. Statistical comparisons between groups were conducted using log-rank tests (significance: *p < 0.05). Kaplan–
Meier plots for all 28 cancer types are presented in Supplementary Figure 2. 
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specificity and contribute to this accumulation of 
mutations as cancer progresses [65]. This phenomenon is 
referred to in the literature as ‘trained’ innate immunity 
and experimental evidence is now being generated to 
examine the potential contribution of deaminase isoforms 
and dimers to genomic instability [66–68]. Regardless of 
the underlying mechanism, the accumulation of somatic 
mutations without a discernable source may reduce our 
ability to resolve deaminase-mediated mutation signatures 

in specific regions of the genome. Establishing baseline 
levels of 8-Oxo-G–associated mutations and other non-
deaminase–associated mutations in future studies would 
address this potential confounding factor.

Notable limitations exist in TCGA genomic 
sequencing data that may have affected the results of 
this study. For instance, sparse personal information 
and clinical history, missing metadata, predominantly 
Caucasian samples, and a single timepoint for almost every 

Figure 5: Data analysis pipeline outlining key data processing, machine learning analysis, and validation steps used 
in the study. Exclusion criteria are described further in the Methods. Patients were grouped according to cancer type and were split into 
training, tuning and validation cohorts using a stratified semi-random approach. The P142 panel was then applied to patients in each cohort 
separately and the TSM results (the collective output of the panel) were collated. For each cancer type, the XGBoost algorithm was used 
to train and tune models using the training and tuning cohorts, then the final model was evaluated using the validation cohort. This process 
was repeated (20 rounds) using a different patient split in each case. The barplot illustrates predictions for validation patients (prediction 
values between 0 and 1) with patients predicted to be “Low PFS” below the red line and patients predicted as “High PFS” above the red 
line. Bars are colored according to their actual PFS status: red = “Low PFS” and green = “High PFS”.
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patient may have reduced the overall predictive power 
and limit translation of the results obtained. Datasets 
generated from prospective, purpose-designed studies 
could ameliorate these caveats and may provide a more 
accurate estimate of the predictive power and potential 
utility of the P142 panel. Furthermore, prospective studies 
could eliminate the effects of other confounding factors 
inherent to NGS technology, for example by obtaining 
high tumor purities, using high depth sequencing 
(e.g., 500X), ensuring accurate tumor subtyping, and 
implementing new technologies and bioinformatics tools. 
Creating homogenous datasets and augmenting the P142 
panel with additional biomarkers may help to improve the 
predictive accuracy for those cancer types with poorer 
predictive outcomes as well as provide further insight into 
tissue-specific deaminase mutagenesis.

In conclusion, we have identified a correlation 
between cancer patient outcomes and changes in metrics 
associated with deaminase mutagenesis in some, but 
not all, cancer types investigated. Potential molecular 
explanations for this observation are based on our 
evolving understanding of dysregulated deaminase DNA 
mutagenesis, disrupted DNA-RNA repair pathways 
and subsequent aberrant protein production. Further 
investigation using prospective, purpose-designed studies 
would likely improve the efficacy of machine learning 
models and provide a more accurate evaluation of the 
potential utility of this approach. This study provides a 
basis for further development of biomarker panels based 
on metrics associated with deaminase mutagenesis for 
predicting cancer progression and patient outcome.

MATERIALS AND METHODS

Data source

The Cancer Genome Atlas (TCGA) is a 
collaboration between the National Cancer Institute (NCI) 
and the National Human Genome Research Institute 
(NHGRI). A prominent TCGA initiative is the ‘PanCancer 
Atlas’ project, conducted by the Multi-Center Mutation-
Calling in Multiple Cancers (MC3) network, which 
includes genomic tumor-normal mutation exome data 
for 10,437 tumors from 33 of the most prevalent types of 
cancer. The TCGA PanCancer Atlas has been widely used 
to improve our understanding of cancer biology across 
a broad range of tumor types. This well-characterized 
cohort of patients has specific features and characteristics 
that enable the application of state-of-the-art machine 
learning methods: primarily the size of the dataset and 
homogeneity of metadata.

The results shown here are in whole or part based 
upon data generated by the TCGA Research Network: 
https://www.cancer.gov/tcga. Data access is via the NIH 
Genomic Data Commons (https://gdc.cancer.gov/access-
data/data-access-processes-and-tools). Data visualization 

can be conducted using the cBioPortal for Cancer 
Genomics (https://www.cbioportal.org/) [69, 70].

Patients without a valid Progression Free Survival 
(PFS) and patients without any detected somatic mutations 
were excluded from analysis. Somatic mutations were 
obtained for 9,433 patients (30 different cancer types) 
in VCF format (https://samtools.github.io/hts-specs/
VCFv4.1.pdf). 

Genomic metrics included in the P142 panel relate 
to mutational burden, deaminase binding motifs, incidence 
of tumor/normal single nucleotide mutations, and reading-
frame context of the codon triplet (i.e., if a codon contains 
a mutation, what is the position of the mutated codon 
(MC): 1, 2 or 3 as read 5’ to 3’). The panel also contains 
additional metrics, such as those related to transitions/
transversions and strand bias. The metrics included in the 
P142 biomarker panel used in this study are defined in 
Supplementary Table 1.

Data analysis

SNVs for each patient were processed using the 
‘Targeted Somatic Mutation’ (TSM) platform as described 
in Lindley et al. [14]. Schematics of the data processing 
pipeline are provided in Figure 1A and Figure 5. For 
each patient, the bases surrounding each somatic SNV 
were identified, and mutations with defined motifs were 
quantified to create a patient profile. Patient profiles were 
then collated, and patients were grouped by cancer type 
for analysis. Patients were annotated according to their 
Progression Free Survival (PFS) time in months. PFS is 
defined as the period of time from the date of diagnosis 
until the date of the first occurrence of a new tumor event 
(NTE), locoregional recurrence, distant metastasis, a 
new primary tumor, or death with tumor. Patients were 
categorized as “High PFS” or “Low PFS” according to 
the median PFS (months) from the TCGA PanCancer 
cohort rounded to the nearest 6-month increment. The 
PFS threshold was adjusted for three cancer types (BRCA, 
COAD, KICH) to more closely reflect PFS thresholds 
previously reported in the literature. The thresholds used 
to delineate “High PFS” from “Low PFS” patients for each 
cancer type are shown in Table 1.

Machine learning models were built to predict 
membership to either the “High PFS” or “Low PFS” 
groups, and a nested cross validation (CV) was performed 
to evaluate predictive performance. For each cancer type, 
data was split into partitions using the createDataPartition 
function from the caret package (https://topepo.github.
io/caret/data-splitting.html) [71]. For each CV iteration 
(n = 20), one partition was used to train the model (using 
75% of patients), one partition was used for tuning 
hyperparameters (random search, https://mlr.mlr-org.com/
reference/makeTuneControlRandom.html [72]) (using 
10% of patients), and one partition was used to evaluate 
predictive accuracy for validation (using 15% of the total 

https://www.cancer.gov/tcga
https://gdc.cancer.gov/access-data/data-access-processes-and-tools
https://gdc.cancer.gov/access-data/data-access-processes-and-tools
https://www.cbioportal.org/
https://samtools.github.io/hts-specs/VCFv4.1.pdf
https://samtools.github.io/hts-specs/VCFv4.1.pdf
https://topepo.github.io/caret/data-splitting.html
https://topepo.github.io/caret/data-splitting.html
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number of patients that were removed from the patient pool 
before data processing, training or tuning was conducted). 

Patients were randomly allocated to each partition 
for each iteration (random seed), and a “gbtree” booster 
was applied with a “binary:logistic” objective function 
[60]. Hyperparameter values, or range of values, included 
an “eta” between 0.1 and 0.3, “gamma” = 0, “subsample” 
= 0.8, “max depth” between 4 and 12, “minimum child 
weight” between 2 and 8, “colsample by tree” between 
0.5 and 1, and up to 250 “rounds” of training with “early 
stopping” after 50 rounds with no improvement in error 
rate. The accuracy of each trained classifier for predicting 
the class labels (“High PFS” or “Low PFS”) of patients 
in the validation partition was then evaluated for each 
iteration. Evaluation included calculation of sensitivity, 
specificity, positive predictive value, negative predictive 
value, balanced accuracy and Cohen’s Kappa values.

In addition to the clinically relevant PFS thresholds 
used to delineate between “High PFS” and “Low PFS” 
patients, further training/tuning/validation was conducted 
at 6, 12, 24, 36, 48, 60 months PFS for each cancer type 
(Supplementary Figure 3).

Data visualization and statistics

Data analysis and visualization was conducted using 
R (v4.0.2) and python (v3.7.7). The R package Janitor 
v1.2.1 (https://garthtarr.github.io/meatR/janitor.html) was 
used to correct variable names. Data was partitioned using 
caret v6.0-85 (https://topepo.github.io/caret/) [71], and 
models were trained using XGBoost v0.90.0.2 (https://
xgboost.readthedocs.io/) [60]. Hyperparameters were tuned 
using MLR v2.17.0 (https://github.com/mlr-org/mlr) [72] 
and data was visualized using functions from the tidyverse 
v1.3.0 (https://github.com/tidyverse/tidyverse) [73] and 
XgboostExplainer v0.1 (https://github.com/
AppliedDataSciencePartners/xgboostExplainer). Cohen’s 

Kappa statistic was defined as κ = 
po pe

pe
po
pe

-
-

= - -
-1

1 1
1  where po 

is the observed predicted accuracy, and pe is the expected 
predictive accuracy, per Landis and Koch [74]. The 
magnitude of Cohen’s Kappa was evaluated as: values < 0 
= not different to random chance, 0–0.20 = slight 
agreement, 0.21–0.40 = fair agreement, 0.41–0.60 = 
moderate agreement, 0.61–0.80 = substantial agreement, 
and 0.81–1 = almost perfect agreement (i.e., perfect 
predictive accuracy on validation data). Survival curves 
were estimated using the Kaplan–Meier method and 
compared with a log-rank test using the Survival R package 
v3.2-3 (https://github.com/therneau/survival) [75]. 

Novelty and significance

This is the first study to predict cancer progression 
in TCGA patients with 28 cancer types using a panel 
of metrics associated with AID/APOBEC and ADAR 
deaminase mutagenic processes. 
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