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ABSTRACT
Additional prognostic and therapeutic biomarkers effective across different 

histological types of sarcoma are needed. Herein we evaluate expression of TAZ 
and YAP, the p53-MDM2 axis, and RABL6A, a novel oncoprotein with potential ties 
to both pathways, in sarcomas of different histological types. Immunohistochemical 
staining of a tissue microarray including 163 sarcomas and correlation with clinical 
data showed that elevated YAP and TAZ independently predict worse overall and 
progression-free survival, respectively. In the absence of p53 expression, combined 
TAZ and YAP expression adversely affect overall, progression free, and metastasis 
free survival more than TAZ or YAP activation alone. RABL6A independently predicted 
shorter time to metastasis and was positively correlated with p53, MDM2 and YAP 
expression, supporting a possible functional relationship between the biomarkers. 
Network analysis further showed that TAZ is positively correlated with MDM2 
expression. The data implicate all five proteins as clinically relevant downstream 
players in the Hippo pathway. Finally, a novel inhibitor of MDM2 (MA242), effectively 
suppressed the survival of sarcoma cell lines from different histological types 
regardless of p53 status. These findings suggest both independent and cooperative 
roles for all five biomarkers across different histological types of sarcoma in predicting 
patient outcomes and potentially guiding future therapeutic approaches.

INTRODUCTION

Sarcomas are difficult to treat malignant 
mesenchymal neoplasms arising in bone or soft tissue. 
Surgical resection is the mainstay of therapy for localized 

sarcomas; however, this is not always possible if the 
sarcoma arises adjacent to crucial anatomical structures. 
Few effective medical therapies are available for 
metastatic sarcoma and the average five year survival 
for metastatic sarcoma remains at 15% [1]. Over 50 
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histological types of sarcoma have been identified and 
many of these demonstrate widely divergent clinical 
behavior [2]. Although the French (FNCLCC) and NCI 
grading schemes have been adopted for many sarcomas 
[2, 3], there is a substantial subset of sarcomas for which 
the grading scheme does not adequately predict clinical 
behavior. For these reasons, additional therapeutic targets 
and prognostic markers that would be effective across 
different histological types of sarcoma are needed.

The Hippo pathway represents such a therapeutic 
target. Hippo signaling controls the growth, development 
and regeneration of mammalian tissues and has been 
implicated in a number of different cancers [4]. The 
pathway is composed of a series of serine/threonine kinases, 
MST1/2 and LATS1/2, and its transcriptional effectors, 
TAZ (transcriptional coactivator with PDZ binding motif) 
and YAP (Yes associated protein). In normal cells, during 
conditions of confluence or detachment, the Hippo pathway 
is activated resulting in phosphorylation of TAZ and 
YAP by LATS1/2. When TAZ/YAP are phosphorylated, 
the equilibrium of these transcriptional coactivators is 
shifted out of the nucleus into the cytoplasm where they 
subsequently undergo ubiquitin-mediated degradation and 
are inactivated. TAZ and YAP are oncogenic transcriptional 
coactivators that activate a transcriptional program 
promoting cell proliferation and anchorage-independent 
growth [4]. Hippo pathway dysregulation is an important 
impetus for uncontrolled cell growth or neoplasia. However, 
compared to other signaling pathways involved in cancer, 
few somatic or germline mutations have been discovered in 
Hippo pathway genes [4].

Studies have found that TAZ (encoded by 
WWTR1) and YAP are constitutively activated 
and located in the nucleus in various carcinomas 
including breast [5], colon [6], liver [7], lung [8], 
pancreas [9], and thyroid [4, 10]. More recently, 
TAZ/YAP were shown to be activated in multiple 
histological types of sarcoma [11–13]. In epithelioid 
hemangioendothelioma (EHE), a vascular 
sarcoma, a WWTR1-CAMTA1 gene fusion encodes 
a constitutively activated form of TAZ (TAZ-
CAMTA1 fusion protein) that activates a TAZ-
like transcriptional program [14–16]. While this 
fusion protein demonstrates that TAZ/YAP, in some 
contexts, can initiate sarcomagenesis, what is not 
known are the genetic hits that cooperate with TAZ 
activation to promote sarcomagenesis.

One putative cooperative genetic event is loss 
of p53 activity. The TP53 gene encodes for the 
p53 protein, a key tumor suppressor known as the 
guardian of the genome [17]. Normal cell division 
is controlled at different checkpoints to avoid 
inappropriate or aberrant cell growth. If a cell has 
sustained DNA damage or stress, p53 expression is 

upregulated and the cell undergoes senescence or 
apoptosis [18, 19]. Alterations of the p53 pathway 
are among the most frequent aberrations observed 
in human cancers, including sarcomas [20, 21]. p53 
appears to be an essential player in sarcomagenesis. 
Individuals with Li-Fraumeni syndrome (LFS) have 
inherited mutations in TP53 and are prone to the 
development of multiple tumor types at an early age. 
Among the most common type of tumors noted in 
individuals with LFS are sarcomas, specifically soft 
tissue sarcomas and osteosarcomas [22]. Alterations 
in the p53 pathway also appear to confer a metastatic 
advantage with regard to sarcomas [23] and thus a 
poor overall survival and prognosis [24]. 

 Mouse double minute 2 homolog (MDM2) is an E3 
ubiquitin ligase and powerful negative regulator of p53. 
MDM2 directly binds to an N terminal phosphodegron 
in p53, thereby inactivating the protein by promoting 
its degradation [25]. As such, the amplification of the 
MDM2 gene region in several sarcomas including well-
differentiated liposarcoma/dedifferentiated liposarcoma, 
parosteal and low-grade central osteosarcoma, and 
intimal sarcomas represents an effective mechanism of 
p53 inactivation [26–32]. Thus, MDM2 is part of a p53-
MDM2 axis known to play a key role in several sarcomas.

Other ways of activating MDM2 besides genetic 
amplification also exist [33, 34], including upregulation 
at the protein level by a novel RAB-like GTPase called 
RABL6A. RABL6A is a newly recognized oncoprotein 
that has been implicated in various human cancers, 
including pancreatic neuroendocrine tumors [35, 36], 
breast cancer [37, 38], colon cancer [37], non-small cell 
lung cancer [39, 40], pancreatic ductal adenocarcinomas 
[41] and osteosarcoma [42]. In pancreatic neuroendocrine 
tumors, RABL6A activates Akt signaling through PP2A 
inactivation and drives G1 to S phase progression via 
inactivation of the retinoblastoma (RB1) tumor suppressor 
[35, 36]. Negative regulation of RB1 signaling by 
RABL6A has also been observed in osteosarcoma [42]. 
Most recently, RABL6A was shown to be an essential 
driver of a highly aggressive sarcoma, malignant 
peripheral nerve sheath tumors (MPNSTs) [43]. Because 
RABL6A functionally interacts with the Alternative 
Reading Frame (ARF)-Mdm2-p3 tumor suppressor 
pathway [34, 44], we hypothesized that it may be a key 
prognostic marker in other sarcomas and potentially 
interact with the other biomarkers being evaluated.

RESULTS

Biomarker patterns of expression in various 
sarcomas

The protein expression of each candidate biomarker 
of sarcoma (TAZ, YAP, p53, MDM2 and RABL6A) was 
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examined by immunohistochemical (IHC) staining in a 
clinically annotated tissue microarray (TMA) containing 
163 sarcomas representing 18 different histologic subtypes 
[11]. To facilitate statistical analysis of the IHC results, 
H-scores (intensity x % positive cells) were calculated 
for each protein (Supplementary Table 1 and Figure 
1A–1E). The median H-score for YAP was 164 (IQR 
68-255). Sarcomas with the highest YAP expression 
included epithelioid sarcoma, synovial sarcoma, and 
malignant extrarenal rhabdoid tumor (Figure 1A). The 
median H-score for TAZ was 200 (IQR 80-270) with the 
greatest expression levels observed in epithelioid sarcoma, 
angiosarcoma, and myxofibrosarcoma (Figure 1B). 
Importantly, YAP and TAZ expression did not entirely 
mirror one another, suggesting differences in their 
regulation.

As a powerful tumor suppressor, wild-type p53 
expression is either low to undetectable in normal cells 
and tissues. Strong detection of p53 in tumors typically 
correlates with TP53 genetic mutations that impair 
MDM2-mediated degradation of the protein [45]. The 
presence of `wild-type staining’ in some tissues has been 
described as an admixture of negative cells, weakly, and 
strongly positive cells, with the latter likely reflecting its 
natural stress-induced stabilization. On the other hand, 
diffuse and strong nuclear staining of p53 is highly 
correlated with its mutation [46–49]. Because tiered 
scoring systems of p53 used to calculate the likelihood 
of p53 mutation introduce an element of arbitrariness to 
the evaluation, we utilized an unbiased approach where all 
p53 staining was considered in the statistical evaluation. 
The median expression value of p53 was 0 (IQR 0-8), with 
expression of the protein detected in 45.8% of samples. 
Sarcomas demonstrating p53 expression (Figure 1C) 
included malignant extrarenal rhabdoid tumor, epithelioid 
sarcoma, undifferentiated sarcoma (undifferentiated 
pleomorphic/spindle cell sarcoma), angiosarcoma, high 
grade osteosarcoma, and dedifferentiated liposarcoma. 
Of note, dedifferentiated liposarcoma (DDLPS) displayed 
elevated levels of p53 compared to well-differentiated 
liposarcoma (WDLPS), which is consistent with tumor 
progression and served as an internal control. 

By comparison, MDM2 was highly expressed in 
malignant extrarenal rhabdoid tumor, dedifferentiated 
liposarcoma-well differentiated liposarcoma (known 
to harbor amplification of MDM2 [50]), and malignant 
peripheral nerve sheath tumor (Figure 1D). Higher levels 
of MDM2 expression were also seen in DDLPS relative to 
WDLPS, as has been previously described, thus providing 
further validation for the data set [50]. The median 
expression value of MDM2 was 15 (IQR 0-62). 

RABL6A expression was relatively evenly 
distributed across histological types (Figure 1E) with 
a median H score of 150 (IQR 65-218). This included 
sarcomas where RABL6A has been shown to play a key 
role in their pathogenesis, such as malignant peripheral 

nerve sheath tumor [43], as well as other poorly 
differentiated sarcomas lacking reliable biomarkers such 
as undifferentiated sarcoma (undifferentiated pleomorphic/
spindle cell sarcoma) and pleomorphic liposarcoma. The 
highest levels of RABL6A were observed in clear cell 
sarcoma (CCS), one of the rarer sarcomas associated with 
poor prognosis due to metastatic spread and recurrence. 

Biomarker associations with sarcoma 
pathological stage and grade

Potential correlations between expression of the 
various biomarkers with clinical behavior and prognosis 
were examined, combining histological types, with an 
initial focus on pathological stage and grade. Pathological 
staging in sarcomas utilizes the American Joint Committee 
on Cancer (AJCC) TNM system [51]. Unadjusted 
univariate linear regression analysis suggested a negative 
association between tumor size (T stage) and both 
RABL6A and TAZ expression. When adjusting for age, 
gender, and tumor type, these associations are no longer 
significant. 

YAP and TAZ levels have been shown to correlate 
with higher histological grade or prognosis in a number 
of different carcinomas [6, 52], but their role in predicting 
grade in sarcomas was previously limited to a few 
histological types [11]. Similar to other cancers, both YAP 
and TAZ protein expression were significantly associated 
with histological grade based on unadjusted univariate 
logistic regression (Figure 2A and 2B). TAZ demonstrated 
a slightly higher odds ratio (OR) of 2.52 (p = 0.0002) 
than YAP (OR = 2.35; p = 0.0012) and, among the five 
biomarkers, uniquely demonstrated a significant OR after 
adjusted univariate analysis (OR 4.75; p = 0.0084). 

Mouse studies have established a biologically 
significant role for p53 inactivation in sarcoma tumor 
progression [53–55], but its role in predicting histological 
grade in sarcomas has not been well-defined. We found 
p53 H-scores to be positively associated with grade (OR 
= 2.41; p = 0.0087) as a function of histological grade 
with an OR of 2.41 (Figure 2C). Similar to p53, RABL6A 
has also been shown to promote the tumor progression of 
malignant peripheral nerve sheath tumor [43] which led 
us to hypothesize that its expression may be associated 
with histological grade. Indeed, unadjusted univariate 
analysis showed that of the 5 biomarkers, RABL6A had 
the strongest association with tumor grade (Figure 2D, OR 
= 3.06, p < 0.0001). 

YAP and TAZ levels predict worse overall and 
progression free survival

We have previously shown that higher mRNA 
expression of WWTR1 and YAP1 portend a poorer prognosis 
with shorter overall survival in two histological types, 
undifferentiated pleomorphic sarcoma and dedifferentiated 
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Figure 1: YAP, TAZ, p53, MDM2 and RABL6A are widely expressed in various sarcomas. (A) Median H-scores for YAP 
expression across histological types in descending order of expression. Histological section of an undifferentiated spindle cell sarcoma 
with YAP nuclear expression by immunohistochemistry (IHC). (B) Median H-scores for TAZ expression arranged in similar order to 
(A); histological section of an undifferentiated pleomorphic sarcoma with TAZ nuclear expression by IHC. (C) Median H-scores for 
p53 expression in sarcomas. Histological section of an undifferentiated spindle cell sarcoma with nuclear p53 expression by IHC. (D) 
Median H-scores for MDM2 expression in sarcomas. Histological section of dedifferentiated liposarcoma with MDM2 nuclear expression 
by IHC. (E) Median H-scores for RABL6A expression in sarcomas. Histological section of pleomorphic liposarcoma with RABL6A 
cytoplasmic localization. ES = epithelioid sarcoma; SS = synovial sarcoma; MERT = malignant extrarenal rhabdoid tumor; M/RC LPS 
= myxoid/round cell liposarcoma; U-LMS = uterine leiomyosarcoma; AS = angiosarcoma; HGOS = high grade osteosarcoma; ST-LMS 
= soft tissue leiomyosarcoma; DDLPS = dedifferentiated liposarcoma; PLPS = pleomorphic liposarcoma; US = undifferentiated sarcoma 
(undifferentiated pleomorphic sarcoma/undifferentiated spindle cell sarcoma); MPNST = malignant peripheral nerve sheath tumor; 
WDLPS = well-differentiated liposarcoma; AVR/AR/SR=alveolar rhabdomyosarcoma, adult-type rhabdomyosarcoma, sclerosing/spindle 
cell rhabdomyosarcoma; MFS = myxofibrosarcoma; CS = chondrosarcoma; EWS = Ewing sarcoma; CCS = clear cell sarcoma of soft parts.
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liposarcoma [11]. To determine if TAZ, YAP, or the other 
biomarkers predicted poorer overall survival in other 
histological types of sarcoma, we performed Cox regression 
and log-rank tests using H-scores from the various samples 
and the linked survival data (Supplementary Figure 1A–
1C and Supplementary Tables 1–4). Adjusted univariate 
analysis showed that YAP (HR = 1.66; p = 0.0005) and TAZ 
(HR = 1.35; p = 0.033) predicted a poorer overall survival 
(Figure 3A). Moreover, multivariate analysis showed that 
YAP alone independently predicted poorer overall survival 
(HR = 1.51; p = 0.0069) (Figure 3B). Because p53 plays a 
key role in sarcoma pathogenesis [22–24] we dichotomized 
the sarcomas into p53 positive (Supplementary Figure 1D) 
and p53 null groups (Figure 3C), and further evaluated the 
role of TAZ and YAP in determining overall survival. In 
the p53 null group, combined TAZ and YAP expression 
(nuclear localization indicating activated forms) determined 
markedly poorer overall survival that was statistically 
significant (p = 0.0017). The cooperative effect of TAZ and 
YAP expression predicting worse overall survival can be 
explained in part by the univariate analysis (Figure 3A), 

which shows that TAZ has a statistically significant albeit 
lower hazard ratio than YAP. 

We then determined if expression of these five 
biomarkers correlated with progression free survival 
(defined as time from diagnosis to first local recurrence 
or metastasis). In contrast to overall survival, adjusted 
univariate analysis showed that TAZ (HR = 1.49; p = 
0.0009) rather than YAP (HR = 1.32; p = 0.0250) had 
the higher hazard ratio (Figure 3D), suggesting a more 
prominent role in predicting progression free survival. This 
was further validated by the adjusted multivariate analysis 
(Figure 3E) which showed that TAZ alone (HR = 1.44; 
p = 0.0110) directly predicted progression free survival. 
Splitting the sarcomas into p53 positive (Supplementary 
Figure 1E) and null groups (Figure 3F) showed a similar 
finding to overall survival (Figure 3C) with combined 
TAZ and YAP portending a much poorer prognosis across 
all sarcoma types. This finding is also consistent with the 
observation by univariate analysis showing that TAZ and 
YAP separately correlated with reduced progression free 
survival in a statistically significant manner (Figure 3D).

Figure 2: YAP, TAZ, p53, and RABL6A expression are associated with higher histological grade. Unadjusted logistic 
regression showed (A) YAP, (B) TAZ, (C) p53, and (D) RABL6A expression are associated with higher histological sarcoma grade. Grade 
1 = low grade, Grade 2 = intermediate grade, Grade 2.5 = intermediate to high grade, and Grade 3 = high grade. Box plots demonstrate the 
sample median, interquartile range, and outliers if present.
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RABL6A expression predicts metastasis free 
survival

Metastasis, typically pulmonary metastasis, is 
the main cause of mortality in sarcoma patients [56]. 

Biomarkers correlating with metastasis in sarcomas 
could potentially play an important role in guiding 
clinical management. Because TAZ was found to be 
a prognostic determinant of progression free survival, 
we sought to determine if TAZ and potentially other 

Figure 3: YAP and TAZ are associated with overall and progression free survival across histological types of sarcoma. 
(A) Separate univariate analyses for each biomarker showed YAP and TAZ expression are associated with poorer overall survival. (B) A 
multivariate model including all five biomarkers showed YAP is independently associated with overall survival. (C) Kaplan-Meier curves 
and log-rank rest showed combined high TAZ and YAP expression is associated with poorer overall survival in sarcomas lacking p53 
expression. (D) Separate univariate analysis for each biomarker demonstrated TAZ and YAP are associated with poorer progression free 
survival. (E) A multivariate model including all five biomarkers showed TAZ is independently associated with progression free survival. 
(F) Kaplan-Meier curves and log-rank test showed combined high TAZ and YAP expression is associated with poorer progression free 
survival in sarcomas lacking p53 expression. 
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biomarkers would predict metastasis-free survival. Indeed, 
adjusted univariate analysis of metastasis free survival 
(Figure 4A) revealed that TAZ expression/activation 
predicted a statistically significant (p = 0.0220) worse 
metastasis free survival (HR = 1.41). RABL6A had a 
slightly higher hazard ratio (HR = 1.51; p = 0.0028) than 
TAZ by univariate analysis and was the only protein that 
independently predicted poorer metastasis free survival by 
multivariate analysis (HR = 1.42; p = 0.0350) (Figure 4B). 
MDM2 (Figure 4A), but not p53 expression, trended 
towards predicting worse metastasis free survival (HR = 
1.34, p = 0.0530). As in the overall and progression free 
survival analyses, we observed evidence of interactions 
between p53 and other proteins. Specifically, high TAZ 
and YAP levels predicted poorer metastasis free survival 
in the p53 null setting (Figure 4C) but not in tumors 
expressing p53 (Supplementary Figure 1F). 

The significant, independent effect of RABL6A 
on metastasis free survival (Figure 4B) prompted us to 
further explore its role in overall survival. A log-rank test 
comparing the highest and lowest tertiles of RABL6A 
expression (Figure 4D) demonstrated that high RABL6A 
expression portended a poorer prognosis in sarcomas 
compared to those with low RABL6A expression 
(p = 0.03). Additional analysis showed that increased 
RABL6A expression co-segregated with more aggressive 
histological types of sarcoma (Supplementary Figure 2A), 
indicating that the association between RABL6A 
illustrated in Figure 4D is driven by RABL6A’s high 
expression in aggressive sarcomas, rather than RABL6A 
expression within a given tumor type. This explains why a 
statistically significant HR was not identified in the initial 
analysis (Figure 3A and 3B), which quantifies association 
with survival within tumor type.

Figure 4: RABL6A and the Hippo pathway axis predict metastasis free survival. (A) Separate analyses for each biomarker 
show that RABL6A and TAZ are associated with a shorter time to metastasis. MDM2 trends towards statistical significance (p = 0.0530). 
(B) A model including all five biomarkers showed that RABL6A is independently associated with poorer metastasis free survival. (C) 
Kaplan-Meier curves and log-rank test showed combined high TAZ and YAP expression is associated with a worse metastasis free survival 
in sarcomas lacking p53 expression. (D) Kaplan-Meier curves and log-rank test show RABL6A is associated with poorer overall survival 
when evaluating the upper and low tertiles.
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An integrated model of Hippo pathway, p53/
MDM2, and RABL6A signaling

To explore the relationships between the Hippo 
pathway, the p53/MDM2 axis, and the RABL6A axis 
further, we performed correlation-based network analysis 
(Figure 5A). RABL6A and p53 were positively correlated 
(r = 0.17; p = 0.0347) as were RABL6A and MDM2 (r = 
0.19; p = 0.0182), mirroring interactions that have been 
previously described [34, 35]. Previously undescribed 
positive correlations between YAP and RABL6A (r = 
0.33; p < 0.0001) and TAZ and MDM2 (r = 0.28; p = 
0.0004) were also identified, linking the Hippo pathway 
to RABL6A and the p53/MDM2 axis. To identify direct 
protein-protein associations, Gaussian graphical models 
were also used (Supplementary Figure 2B). These analyses 
continued to show positive associations between RABL6A 
and p53 (coef = 0.27; p = 0.0120) and RABL6A with YAP 
(coef = 0.33; p = 0.0003), indicating an association of 
these proteins independent of the expression levels of the 
other biomarkers. These analyses also indicated a direct 
positive association between TAZ and MDM2 expression 
levels (coef = 0.23; p = 0.0441).

Integrating the above network analysis with known 
functions of the proteins, the following model diagram 
was constructed (Figure 5B). Both TAZ and YAP are 
transcriptional coactivators and nuclear effectors of 
the Hippo pathway that are negatively regulated by the 
upstream Hippo kinases (MST1/2 and LATS1/2) [57–
65]. As indicated in the network analysis, RABL6A is 
positively correlated with YAP, while MDM2 is positively 
correlated with TAZ. RABL6A is known to drive 
MDM2 activity and, as mentioned above, its expression 
is positively correlated with MDM2. In this way, the 
correlation analysis suggests RABL6A represents a 
previously unappreciated link between YAP and TAZ. 
RABL6A is positively correlated with dysregulated 

p53 (likely including mutated p53 in clinical samples 
with the highest H-scores) but is known to inhibit the 
function of the wild-type tumor suppressor [34], as such 
the relationship between the two proteins is indicated 
by an inhibitory sign. Although MDM2 is known to 
negatively regulate p53, a negative correlation was not 
observed by immunohistochemical (IHC) approaches. 
This likely reflects the fact that IHC predominantly detects 
mutant p53, which is known to demonstrate defects in 
transcriptional upregulation of MDM2 [66]. 

Pharmacological inhibition of MDM2 can be 
used to target sarcoma cell lines overexpressing 
MDM2 independent of p53 status

We and others have previously shown that 
verteporfin can inhibit the YAP-TEAD interaction in 
sarcomas and suppress their growth [11, 13, 67–70]. In 
this study, we attempted to determine whether other 
biomarkers in the RAB6A/YAP/p53-MDM2 axis can also 
be therapeutically targeted. 

 Using a panel of 13 mesenchymal neoplasm/
sarcoma cell lines [12], we found a broad range of 
expression for all five proteins of interest (Figure 6A), 
mirroring their wide distribution of expression in sarcoma 
clinical samples. No inhibitors of RABL6A currently 
exist, but various types of MDM2 inhibitors have been 
developed that either inhibit the MDM2-p53 interaction, 
its E3 ligase activity, or dampen its expression [71–73]. 
However, no MDM2 inhibitors are currently in routine 
clinical use. Herein, we use MA242, a small molecule 
that ablates MDM2 expression by simultaneously 
inducing MDM2 auto-ubiquitination and degradation as 
well as inhibiting NFAT1-mediated MDM2 transcription 
independent of p53 status [74, 75]. Its efficacy in 
sarcomas has not been previously demonstrated, so 
we evaluated its efficacy in the above cell lines using 

Figure 5: Network analysis supported a model integrating the Hippo pathway, p53/MDM2 axis and RABL6A signaling 
in sarcomas. (A) Correlation-based network analysis showed statistically significant, positive correlations between RABL6A and p53, 
MDM2, and YAP. In addition, a statistically significant positive correlation was identified between TAZ and MDM2. (B) Model diagram 
depicting the relationship between the five biomarkers integrating the network analysis and previously identified functions of the proteins, 
with RABL6A serving as a potential link between YAP and TAZ and integrator of the p53-MDM2 axis.
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an MTT-style proliferation assay (Figure 6B, 6C and 
Supplementary Figure 2C). Consistent with its p53-
independent mechanism, MA242 inhibited sarcoma cell 
lines regardless of whether p53 was wild type or null 
(Figure 6B). 

MA242 was effective at low to high nM doses 
across the sarcoma lines tested. IC50 values ranged from 
67 nM with the SJCRH30 cell line up to 813 nM for the 
HT1080 cell line (Figure 6C; summarized in Table 1). The 
observation that HT1080 fibrosarcoma cells demonstrated 
both the highest IC50 and MDM2 expression level 
prompted us to determine whether a correlation between 
the IC50 of MA242 and expression of MDM2 existed. 
Using densitometry, we showed a modest positive 
correlation (r = 0.49) between MA242 IC50 and MDM2 
expression (normalized to expression of MDM2 in U2OS) 
that trended toward statistical significance (p = 0.0749) 
(Figure 6D). This finding is consistent with the mechanism 
of MA242, which depletes MDM2 levels [74]. This also 
suggests that expression of MDM2 could potentially be 
used to predict response to MA242-based therapy. 

DISCUSSION

TAZ and YAP demonstrate complementary roles 
in predicting patient outcomes

Previously, it was shown that WWTR1 and YAP1 
genetic status can predict overall survival and grade in a few 
selected types of sarcoma [11]. Our data now establish that 
TAZ and YAP protein expression positively correlates with 
histological grade and predicts overall as well as progression 

free survival across multiple different histological types of 
sarcomas. Elevated TAZ is a stronger predictor of worse 
progression-free survival whereas increased YAP better 
predicts overall survival, implying different functional 
roles for TAZ and YAP in sarcoma pathogenesis. In that 
regard, TAZ and YAP are paralogues that share significant 
identify, particularly within their functional domains [76]. 
While YAP is conserved down to Drosophila, TAZ has more 
recently emerged in vertebrates [76], suggesting that YAP 
and TAZ may have similar yet non-overlapping functions. 
We recently verified distinct, albeit related, activities of 
TAZ and YAP in sarcoma in vitro [11]. Our studies herein 
confirm that TAZ and YAP drive different phenotypes in the 
clinical setting and may be used as prognostic biomarkers. 
Additional studies in vivo are warranted to dissect the 
differential mechanistic contributions of TAZ and YAP to 
tumorigenesis and metastasis in sarcomas.

TAZ/YAP are linked to the p53-MDM2 axis

Our data show that p53 expression is also positively 
correlated with histological grade, in agreement with the 
observation that genetic alterations involving p53 are 
frequent in sarcomas [77, 78]. Network analysis showed 
that YAP is indirectly linked to p53 via RABL6A, while 
TAZ and MDM2 are positively correlated, indicating that 
both nuclear effectors of the Hippo pathway interact with 
the p53-MDM2 axis. TAZ and YAP were prognostically 
important in p53 null but not p53 high (mutant) sarcomas 
with regards to overall survival, progression free survival, 
and metastasis free survival. These data suggest that TAZ 
and YAP may cooperate with loss of p53 expression in 

Table 1: Overview of sarcoma cell lines, p53/MDM2 status, and IC50 (MA242)
Cell Line Sarcoma Subtype IC50 (nM) p53 Status Relative MDM2 Expression

U2OS Osteosarcoma 234 WT 1.0*

SaOS Osteosarcoma 414 Null 0.1
26T MPNST 485 Null 1.3
S462 MPNST 577 Mut 3.1

sNF96.2 MPNST 360 WT 1.0
GCT Giant Cell Tumor 630 Mut 1.5

HT1080 Fibrosarcoma 813 WT 8.1
SW684 Fibrosarcoma 327 Mut 0.4

RD Embryonal 
rhabdomyosarcoma 491 Mut 1.7

A204 Malignant extrarenal 
rhabdoid tumor 269 WT 1.7

SJCRH30 Alveolar
rhabdomyosarcoma 67 Mut 1.3

SW872 Liposarcoma 570 Mut 0.1
SW982 Synovial Sarcoma 373 WT 0.9

SK-LMS Leiomyosarcoma 696 Mut 0.3
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some contexts to drive sarcomagenesis. This is consistent 
with several studies that have linked YAP and TAZ to 
p53 in various capacities, either by direct interaction or 
at a functional level [79]. Additional studies are needed 
to evaluate how inactivation of p53 cooperates with 
TAZ and YAP activation in sarcoma tumor progression. 
Importantly, immunohistochemical panels containing p53, 
TAZ, and YAP may be valuable in identifying sarcoma 
patients anticipated to have a particularly aggressive 
clinical course.

The RABL6A oncoprotein is a potential link 
between the TAZ/YAP and p53-MDM2 axis

Our data show that RABL6A expression predicted 
histological grade, likely connected to its prognostic role 
predicting metastasis-free survival, and confirmed its role 
as an oncoprotein across different histological types of 
sarcoma. One of the questions the above findings raise 
is whether TAZ/YAP activation, inactivation of p53, and 
activation of MDM2 are entirely stochastic events or 
mechanistically linked. Because RABL6A functionally 

interacts with p53 and MDM2 [34], we hypothesized it 
may connect the different signaling axes. Multivariate 
network analysis showed a positive correlation between 
RABL6A with both YAP and p53 expression. Whether 
or not RABL6A contributes to dysregulation of those 
signaling pathways in a GTPase-dependent manner is an 
important question for future functional studies. 

RABL6A expression was recently shown to be 
greatly upregulated in MPNSTs relative to benign, 
patient-matched plexiform neurofibromas [43]. Moreover, 
atypical neurofibromatous neoplasm of uncertain 
biological potential (ANNUBP), an intermediate step 
in tumor progression between plexiform neurofibromas 
and MPNST, expressed intermediate levels of RABL6A, 
directly correlating its expression with MPNST 
progression. The findings suggest RABL6A is activated 
at the ANNUBP step, where its ability to inactivate the cell 
cycle inhibitor, p27, is predicted to accelerate cell cycle 
progression as it does in MPNST [43]. Here, the discovery 
that RABL6A expression correlates with dysregulated 
p53 and YAP across diverse sarcoma types suggests a key 
role for RABL6A in promoting the pathogenesis of other 

Figure 6: MDM2 can be targeted sarcoma cell lines independent of p53 status. (A) Expression of RABL6A, MDM2, YAP, 
TAZ, and p53 in sarcoma cell lines. (B) Cells were treated for 3 days with MA242 and analyzed with AlamarBlue (MTT-style proliferation 
assay); MA242 similarly inhibits proliferation in p53 wild-type and p53 null sarcoma cell lines. (C) Sarcoma cell lines most sensitive 
(drug response curves—black) and least sensitive (drug response curves—blue) to MA242 treatment. (D) Positive correlation of IC50 with 
MDM2 expression trends towards statistical significance.
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sarcomas. Additional studies determining the mechanisms 
by which RABL6A regulates the activity of YAP and p53 
in sarcomas are warranted.

Clinical applications of the RABL6A, TAZ/YAP, 
p53-MDM2 network 

The interrelated RABL6A/YAP/p53 and TAZ/
MDM2 network provides multiple opportunities for 
therapeutic intervention. RABL6A has been targeted 
indirectly by inhibiting cyclin dependent kinases 4/6 and 
2 in MPNST [43]. We and others have shown that TAZ/
YAP can be targeted in sarcomas with verteporfin, which 
targets the TAZ/YAP-TEAD interaction [11, 13, 67–70]. 
p53 has shown the potential for therapeutic targeting 
[80]. MDM2 inhibitors have been developed that target 
MDM2 in the context of wild-type p53. In this study, 
we demonstrate that a novel MDM2 inhibitor, MA242, 
with a p53-independent mechanism [74, 75] can also be 
used to target this network. MA242 was effective in the 
nM range in a number of different sarcoma cell lines, 
suggesting that MDM2 is a relevant, common therapeutic 
target for suppressing different histological types of 
sarcoma. We expect that combination therapies targeting 
this network will be most effective in the treatment of 
sarcomas. Furthermore, there is a need to further validate 
these RABL6A/YAP/p53 and TAZ/MDM2 expression 
signatures in larger numbers of different histological 
types of sarcoma to determine if it differentially predicts 
prognosis or response to therapy within individual subsets 
of these sarcomas. We anticipate these above efforts 
will lead to a more effective, tailored approach for these 
cancers for which few effective medical therapies are 
currently available.

MATERIALS AND METHODS

Tissue microarray construction

A total of 159 untreated sarcomas were retrieved 
from the University of Iowa Department of Pathology 
and clinical data obtained with previous approval from 
the Institutional Review Board. The tissue microarray 
was constructed by arraying 1.0 mm cores taken from 
formalin fixed paraffin embedded tissue and assembled 
using a MTA-1 tissue arrayer from Beecher Instruments 
(Sun Prairie, WI) as previously described [11]. Sarcomas 
were classified according to World Health Organization 
criteria [2].

Clinical data

Institutional Review Board approval was obtained 
prior to collection of clinical data. Histological grade for 
soft tissue sarcomas reported in the clinical data analyzed 
in this study utilized the National Cancer Institute (NCI) 

grading scheme which depends on the number of mitoses 
per high-power field, the presence of necrosis, cellular and 
nuclear morphology, and the degree of cellularity [3]. 

Antibodies for immunohistochemistry

Anti-YAP (rabbit polyclonal, catalog #sc-15407) 
utilized for immunohistochemistry (1:100) was obtained 
from Santa Cruz Biotechnology (Santa Cruz, CA, USA). 
Anti-TAZ (mouse monoclonal 1H9; catalog # LSC173295) 
utilized for immunohistochemistry (1:50) was obtained 
from LifeSpan Biosciences (Seattle, WA, USA). Anti-p53 
(mouse monoclonal DO7, catalog #M7001) utilized for 
immunohistochemistry (1:100) was obtained from Dako 
(Agilent) (Santa Clara, CA, USA). Anti-MDM2 utilized for 
immunohistochemistry (mouse monoclonal OP46; catalog# 
OP46-100UG) was obtained from Millipore (CalBiochem). 
utilized for immunohistochemistry Anti-RABL6A utilized 
for immunohistochemistry [44] was obtained from the 
Quelle lab (D.E.Q, University of Iowa). See Supplementary 
Table 5 for additional details regarding antigen retrieval 
protocols and secondary antibody reagents.

Antibodies for western blot

Anti-YAP (rabbit monoclonal D8H1X, catalog# 
14074) used for western blot (1:1000) was obtained from 
Cell Signaling (Danvers, MA, USA). Anti-TAZ (rabbit 
polyclonal, catalog # HPA007415) used for western blot 
(1:5000) was obtained from Sigma Aldrich (St. Louis, 
MO). Anti-p53 (DO-1, catalog# sc-126) used for western 
blot (1:500) was obtained from Santa Cruz Biotechnology. 
Anti-MDM2 (mouse monoclonal clone 2A10) used for 
western blot (1:50) was obtained from Oncogene Research 
Products. Anti-RABL6A (rabbit polyclonal) used for 
western blot (1.5ug/mL) was obtained from the Quelle lab 
(D.E.Q, University of Iowa) [44]. β-actin (C-2, catalog# 
sc-8432) used for western blot (1:500) was obtained 
from Santa Cruz Biotechnology. Horseradish peroxidase-
conjugated secondary antibodies (catalog# NA934 and 
NA935) were obtained from Sigma.

Western blot

Harvested cells were counted and lysed in SDS-
PAGE loading buffer at 1 × 106c/mL. Identical cell 
equivalents were electrophoresed through polyacrylamide 
gels, and proteins were transferred to a polyvinylidene 
difluoride (PVDF) membrane (Millipore). Membranes 
were blocked with 5% nonfat milk or 5% BSA in TBST 
(Tris-buffered saline containing Tween-20) depending on 
the antibody used to probe (mentioned above). Proteins 
were detected using HRP-conjugated secondary antibodies 
and enhanced chemiluminescence (ECL). ImageJ (NIH, 
Bethesda, MD, USA). was used for densitometry 
quantification, where a region of interest was defined for 
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each protein and the net protein/net loading control ratios 
were calculated for each protein and normalized to the 
U2OS cell lines.

Proliferation/viability assays with MA242

MA242, a dual MDM2 and NFAT1 inhibitor, 
was obtained from Dr. Sadanandan Velu and stock 
solutions stored at –20°C. Sarcoma cell lines were 
seeded at 1,000 cells per well in 96-well flat-bottom 
dishes. Varying concentrations of MA242 were added 
the next day and cells exposed to drug for 3 days. Each 
condition was performed in triplicate and assayed for 
relative cell number using AlamarBlue (Thermo Fisher 
Scientific, DAL1025). Results were quantified using a 
fluorescence microplate reader by measuring absorbance 
at 540/570 nm. 

Statistics

Data preparation

163 subjects with sarcomas were included for 
analysis. For each subject and gene, the analyzed H-score 
ranged from 0 to 300 and was calculated as the mean 
of two H-scores determined by two pathologists (J.T. 
and M.R.T.). The clinical covariates gender, age, tumor 
grade, and tumor size were examined. Tumor size and the 
H-scores of p53 and MDM2 were highly right-skewed. 
Because of this, tumor size was log-transformed for all 
analyses. H-scores of p53 and MDM2 and were log(x+1) 
transformed, as zeros were present. Tumor grade was 
excluded from primary analyses due to high levels of 
missingness (n = 60). In a sensitivity analysis which 
included adjustment for grade, statistically significant 
associations identified in the primary analysis remained 
qualitatively consistent, though power to detect statistical 
significance was reduced to the substantial decrease in 
sample size. When tumor size was missing (n = 13), it was 
imputed with the median.

Survival analyses

Cox proportional hazards mixed effect models and 
the R package coxme were used for all survival analyses. In 
analyses, sarcoma type was treated as a normally distributed 
random effect, while clinical covariates and gene H-scores 
were modeled as fixed effects. These proportional hazards 
models were used to identify genes associated with various 
survival outcomes. Overall survival (OS) was defined as 
the time from diagnosis to patient death, while progression-
free survival (PFS) was defined as that from diagnosis to 
first incidence of disease progression—death, recurrence, 
or development of metastasis. Metastasis free survival 
(MFS) or time to metastasis was defined more narrowly 
as the time from diagnosis to first incidence of metastasis. 
To explore interactions, dichotomized versions of each 

gene and their pair-wise interactions were also considered. 
p53 was dichotomized as present (H-score > 0) or absent 
(H-score = 0), RABL6A was dichotomized using its upper 
and lower tertiles, and all other genes were dichotomized as 
high or low based on their median H-score value. 

Network analyses

Gene-gene networks were constructed to assess the 
marginal correlation among genes. To adjust for clinical 
covariates, each gene’s H-score was initially regressed 
on age, gender, log tumor size, and tumor type. These 
adjusted expression levels were then used in pairwise 
Pearson correlation tests. An unadjusted p-value of 0.05 
was used as a threshold to determine the presence of an 
edge between genes. Gaussian graphical models were 
additionally used to evaluate direct associations among 
genes/proteins. For this analysis, each protein’s H-score 
was regressed on age, gender, log tumor size, tumor type, 
and the remaining four proteins. An unadjusted p-value of 
0.05 was again used as a cutoff to determine the presence 
of an edge between proteins. All analyses were performed 
using R version 4.0.3. 
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