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Advances in innovative exosome-technology for real time 
monitoring of viable drugs in clinical translation, prognosis and 
treatment response
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Innovative technologies and exosomes 

In the field of medicine, technological discovery is 
a vital way to bridge knowledge gaps and equip us with 
the know-how to address biological challenges. Innovative 
technologies allow us to work faster and better understand 
complexities, especially pertaining to human health 
and disease [1–3]. Computer simulation and artificial 
intelligence play a significant role in the timely diagnosis 
and effective treatment of complex ailments such as cancer 
[2–5]. The inquisition towards developing and acquiring 
new technologies is quintessential in the journey towards 
improving the quality of patient care.

The advent of advanced exosome purification 
methods has made it possible to tap on the unexplored 
potential of these tiny particles in clinically-precise 
diagnosis and treatment of a myriad of diseases [6–8]. 
More efforts are currently being funneled into research 
and development endeavors in order to increase the quality 

and reach of exosomes-based diagnostic and therapeutic 
applications in the near future.

Exosomes are small nano-particles made by 
cells within our body [8–10]. They contain crucial 
information by way of proteins, metabolites, and 
nucleic acids, facilitating cell-cell communication cells 
[8–10].  Structurally, exosomes are surrounded by lipid 
bilayers, which provides a robust layer of protection to 
the biological contents stored within [10]. The abundance 
of adhesive and surface proteins found on the surface of 
exosomes readily interact with the cellular membrane of 
target cells, allowing exosomes to essentially be vehicles 
to deliver cargo such as drugs [10–12]. The innovative use 
of exosomes as drug delivery systems for small molecules, 
cytokines, and other biological components makes them 
an ideal choice for clinical use [13].

In addition, the recent COVID19 pandemic has 
opened up new opportunities for exosome technology to 
benefit humankind. In the realm of vaccine development, 
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Figure 1: Schematic illustration showing the application of exosome technology in major clinical uses and in different 
scientific investigation.
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researchers are creating vaccines that consist of exosomes 
engineered to display SARS-CoV-2 proteins on their 
surface [14–16]. Also, since exosomes are known to be 
resistant to immune attack, lysis, and degradation [13, 
16–18], they can be exploited for use as an early-stage 
diagnostic marker. Many conventional biomarkers that 
are often proteinaceous-in-nature are unprotected from 
biofluids which are home to degradative enzymes such 
as proteases [17, 19]. Exosomes, which are encapsulated 
within lipid bilayers, will be able to withstand said harsh 
conditions and are stable for a prolonged duration of 
time. Therefore, exosome-based biomarkers are attractive 
options for efficient diagnosis of diseases such as cancer. 

Other benefits that could give exosomes the edge 
over existing platforms are that they are less immunogenic, 
less cytotoxic, and due to sheer size, can easily cross 
biological barriers such as the blood–brain barrier (BBB) 
[19–21].

Innovations pertaining to the engineering of 
exosomes have progressively circumvented the limitations 
of naive exosomes (naturally-occurring exosomes 
produced by cells), which are known to have lower 
targeting capabilities, are more challenging to isolate, low 
drug loading capacities, bioavailability issues, low half-life 
in circulation, and low concentration of functional surface 
receptors [22–24]. Engineered exosomes are manipulated 
in a way that they can be loaded with maximum amounts 
of components such as drugs or miRNAs, and have 
higher specificity and delivery efficacies [13, 24, 25]. 
Additionally, engineered exosomes have other advantages 
over native exosomes, such as lower production cost, 
higher biocompatibility, and low undesirable effects 
such as cytotoxic effects [25, 26]. No doubt, the clinical 
application of exosomes can be enhanced by intelligent 
engineering methods for improving the delivery of drugs, 
genes, heat shock proteins, and functional bioactive 
molecules to target tissues [26–28]. They also have the 
capabilities to penetrate deeper within tissues with their 
surface ligands and receptors (Figure 1) [27, 28].

CONCLUSIONS AND FUTURE DIRECTIONS

New and emerging technologies play a significant 
role in permitting exosome detection and tracking, in vivo 
monitoring and analysis [29–31]. Magnetically-labeled 
particles and optical sensors offer great promise for in 
vivo monitoring, and detection of exosomes [31, 32]. 
Innovative technologies are also beneficial to improve 
exosome target specificity, which translates to higher 
sensitivity of patients to drug response, reduction in 
treatment cost, and greater disease outcome [31–33]. 
Artificial, digital, and optical technologies, when used in 
combination, have the potential to detect exosomes at the 
single-particle level or at very minimal concentrations, 

which have a high diagnostic value [33–36]. Collectively, 
exosome technology will revolutionize the field of 
diagnostics and treatment of human diseases (Figure 1).

Nonetheless, further optimization of current 
methods and fine-tuning of technologies are necessary 
to push the field towards real clinical value [37, 38]. 
Exosomes technology has already been increasingly 
used in disease diagnosis and treatment; this encourages 
researchers to channel more efforts into overcoming 
limitations and challenges in the field [38, 39] such as 
issues related to the purification of exosomes from their 
parent source, eliminating contaminants, reducing the 
damage of exosomes from the harsh ultracentrifugation 
method (which spins the exosomes at ultra-speed and 
damages their membrane and enclosed therapeutic 
content) [39–42]. 
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