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ABSTRACT
Introduction: Unlike lung adenocarcinoma patients, there is no FDA-approved 

targeted-therapy likely to benefit lung squamous cell carcinoma patients. 
Materials and Methods: We performed survival analyses of lung squamous 

cell carcinoma patients harboring therapeutically relevant alterations identified by 
whole exome sequencing and mass spectrometry-based validation across 430 lung 
squamous tumors. 

Results: We report a mean of 11.6 mutations/Mb with a characteristic smoking 
signature along with mutations in TP53 (65%), CDKN2A (20%), NFE2L2 (20%), 
FAT1 (15%), KMT2C (15%), LRP1B (15%), FGFR1 (14%), PTEN (10%) and PREX2 
(5%) among lung squamous cell carcinoma patients of Indian descent. In addition, 
therapeutically relevant EGFR mutations occur in 5.8% patients, significantly higher 
than as reported among Caucasians. In overall, our data suggests 13.5% lung 
squamous patients harboring druggable mutations have lower median overall survival, 
and 19% patients with a mutation in at least one gene, known to be associated 
with cancer, result in significantly shorter median overall survival compared to those 
without mutations. 

Conclusions: We present the first comprehensive landscape of genetic alterations 
underlying Indian lung squamous cell carcinoma patients and identify EGFR, PIK3CA, 
KRAS and FGFR1 as potentially important therapeutic and prognostic target.

INTRODUCTION

Lung cancer is the leading cause of cancer-related 
deaths across the globe with more than 1.7 million deaths 
annually [1]. In India, lung cancer contributes to 8.1% of 
all cancer-related deaths [1]. Non-small cell lung cancer 
(NSCLC), more common type of lung cancer, accounts for 
85% of all lung cancers comprise of two major histological 

subtypes, adenocarcinoma and squamous cell carcinoma 
[2]. The adenocarcinoma of the lung arises mostly in 
patients with no previous significant tobacco exposure, 
while the squamous subtype is found almost exclusively 
in former or current smokers [3] with relatively higher 
overall mutational load [4]. Despite distinct histological 
and biological characteristics, the two NSCLC subtypes 
are largely treated with the same chemotherapeutic agents 
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except for pemetrexed to treat non-squamous NSCLC [5]. 
Significant advances in the molecularly targeted therapies 
have been made to treat lung adenocarcinoma patients 
harboring mutant EGFR, ALK, RET, ROS1, BRAF, MET, 
NTRK-1 & 2, ERBB2, and FGFR3 [6–8]. However, no 
approved targeted therapy regimens are available for lung 
squamous patients in spite of distinct genetic alterations 
identified in the tumor type, including alterations in 
TP53, PIK3CA, CDKN2A, MLL2, PTEN, KEAP1, 
NFE2L2,DDR2, FGFR1, PDGFRA, SOX2, and CCND1 
[9–15]. Moreover, most of the reported studies describe 
Caucasian, Chinese, Korean and Japanese population, 
with sparse information on the molecular profile of lung 
squamous patients of Indian origin that accounts for about 
30% of Indian lung cancer disease [16]. 

In this study, we sought to describe the first genetic 
landscape of alterations underlying 430 Indian lung 
squamous genomes and uncover the prevalence of known 
targetable somatic alterations using next generation 
sequencing followed by validation using mass spectrometry. 

RESULTS

Genomic landscape of alterations in lung 
squamous carcinoma samples

We performed whole exome sequencing of 20 
lung squamous tumors – pathologically confirmed to 
have tumor content above 40%, at an average on-target 
coverage of 50–70X, followed by mass spectrometry-
based genotyping of 430 tumors (Table 1 and 
Supplementary Table 1) using a customized panel of 
53 hotspot mutations across 17 genes (Supplementary 
Table 2). The sequencing quality, tumor purity and 
characteristic features of exome analysis for all the 
samples are detailed in Supplementary Tables 3 and 
4. The exome analysis revealed a non-synonymous 
mean somatic mutation rate of 11.6 mutations/Mb and 
median of 11 mutations/Mb with enrichment of C>T 
transitions as opposed to putative C>A transversions 
indicative of a smoking signature [17, 18] . However, 
these C>T transitions did not show concordance (cosine 
similarity > 0.9) with any of the 30 signatures defined 
in COSMIC. A total of 9261 alterations including 
4181 missense mutations, 3658 indels, 837 splice-site 
mutations and 585 nonsense and nonstop alterations 
were observed. Consistent with the literature, TP53 
was identified to be the most commonly mutated gene 
(Figure 1) at a frequency of 65%. Similarly, mutations 
in CDKN2A (20%) and PTEN (10%) were observed 
with co-occurring TP53 alteration, as reported earlier 
[9, 12, 15]. Additionally, alterations in tumor suppressor 
genes including NFE2L2 (20%, 4 cases), KMT2C (15%, 3 
cases), LRP1B (15%, 3 cases), FAT1 (15%, 3 cases), NF1 
(15%, 3 cases) and PREX2 (5%, 1 case) were observed 
at comparable frequencies, as reported earlier [9, 11] 

(Figure 1). Interestingly, alterations in KMT2D were 
altered at a higher frequency of 40%. The complete list of 
the somatic substitutions obtained from exome analysis is 
detailed in Supplementary Table 5. 

Inferred copy number analysis based on the 
exome data identified previously described copy number 
amplifications harboring genes including FGFR1 (10%), 
SOX2/ PIK3CA (5%), MYC (10%), CDK6 (10%) and MET 
(5%) (Figure 1B) [9, 17, 19, 20]. FGFR1 amplification 
is therapeutically relevant hallmark alteration in lung 
squamous cancer [20]. Thus, based on the availability and 
quality of genomic DNA samples, we selected a subset 
of 100 patients to validate copy number status at FGFR1 
amplification in these patients using real-time PCR. 
We observed FGFR1 amplified in 14% of Indian Lung 
squamous patients (Supplementary Figure 1). 

Similarly, activating kinase domain mutations of 
EGFR, including the in-frame 15bp deletion in exon 19, 
EGFR E746_A750 del and point mutation in exon 21, 
EGFR L858R were observed at a cumulative frequency 
of 5.8% (Figure 2) across 25/430 tumors (Supplementary 
Table 6). Interestingly, the activating mutations in the 
exon 18 of EGFR were not observed in any of the tumors, 
as reported earlier [9, 14]. In overall, EGFR activating 
mutations (5.8%) were observed at a significantly higher 
frequency than the Caucasians (0.2%, p = 0.0005, n = 
487) [9] , Korean population (0.1%, p = 0.0405, n = 
104) [12] and Chinese populations (3.7%, p = 0.285, n = 
271) [11, 21]. The activating KRAS mutations affecting 
the codon 12, observed at a frequency of 1.1% in our 
cohort, were mutually exclusive to EGFR mutations 
(p = 0.37, EGFR = 25, KRAS = 5, both EGFR and KRAS 
= 0, neither = 400). The canonical PIK3CA mutations, 
characteristic to lung squamous tumors, were observed 
at a frequency of 5.5% (E542K: 2.8%, E545K: 2.5% and 
H1047R: 0.2%, Supplementary Table 6), comparable 
to as reported among the Caucasian population [9, 
14]. Interestingly, of the 49 samples harboring either 
PIK3CA or EGFR alterations, only one sample showed 
co-occurring EGFR L858R and PIK3CA H1047R 
mutation. However, the mutual exclusivity of mutations 
among these two genes was not found to be significant 
(p = 0.575, EGFR = 25, PIK3CA = 23, both EGFR 
and PIK3CA = 1 neither 381). Furthermore, activating 
mutations at a lower frequency were observed in other 
genes including FGFR2 (0.5%), AKT1 (0.2%), NRAS 
(0.2%) and ERBB3 (0.2%) (Supplementary Table 6). 
Somatic mutations probed in other oncogenes CTNNB1, 
DDR2, ERBB2 and FGFR3 were not observed in any of 
the 430 tumor samples. 

Clinical correlation with genetic alterations in 
lung squamous cancer

Our study did not reveal any significant association 
between clinical features such as age, gender, tumor stage, 
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Figure 1: Somatic mutations and copy number variations observed in lung squamous carcinoma patients. (A) The 
spectrum of mutations obtained after whole exome sequencing analysis of discovery set of 20 Indian origin lung squamous carcinoma 
patients is represented in the form of heatmap. Black solid box indicates the patient samples positive for the mutation in the specified genes 
and white box indicates the wildtype status of the particular gene. The clinical characteristics of the patients including the sex, tobacco use 
and stage are mentioned above the heatmap. Males, tobacco users and stage IV tumors are indicated by black solid boxes while females, 
non-tobacco users are indicated by white boxes. Grey boxes indicate information not available. Alterations in genes known to be hallmarks 
of lung squamous carcinoma (based on COSMIC) alongwith therapeutically relevant genes observed in our dataset are depicted. The 
mutation frequencies of the genes observed in this study (n = 20) are compared with those already reported in COSMIC (n > 1000) and 
TCGA (n = 587) databases. Additional characteristics of the whole exome data including the distribution of different types of transitions 
and transversions (according to different shades as specified in the color code) and the tumor mutation burden (mutations/Mb) are shown 
in the bar graphs below the heatmap. (B) Somatic copy number changes obtained from whole exome sequencing data based on CODEX2 
pipeline. The score for segment gain or loss (horizontal axis) is plotted for each chromosome (vertical axis) and represents copy number 
gain (positive SGOL score, green color) or loss (negative SGOL score, red color). The representative hallmark cancer associated genes are 
mentioned in the respective amplified/deleted regions. 

Table 1: Demographic characteristics of lung squamous patients
Total number of lung squamous patients 430

Age 

< 65 years  283 

> 65 years  147 

Mean 59.5 (21–85 years) 

Gender

Male 364 (84%)

Female 66 (16%)

Habits

Smokers 309 (72%) 

Non-smokers 53 (12%)

Not available 68 

Stage

Stage IV 208 (48%)

Stage III 83 (19%)

Stage II 25 (6%)

NA 114 
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smoking, tobacco usages with mutations across any of the 
17 genes probed in the genotyping experiment, other than 
fourfold higher EGFR mutations (p = 0.001), and twofold 
higher mutations (p = 0.02) among non-smokers (Table 2 
and Supplementary Table 7), consistent with literature [21]. 
Next, we analysed whether these mutations are associated 
with the disease prognosis. Of all the mutations analyzed, 
the median overall survival of KMT2D mutated patients 
was found to be significantly lower than among patients 
with KMT2D wildtype (151.5 days, 284 days, p = 0.032) 
(Figure 3A), as reported earlier [11, 12]. Similarly, EGFR 
and PIK3CA mutations were associated with poor prognosis 
with a median overall survival of 185 and 165 days compared 
to 219 and 220 days for patients with wildtype, respectively 
(Figure 3B and 3C), irrespective of their smoking status. 
Of note, the association of EGFR and PIK3CA mutations 
and the lower overall survival of lung squamous carcinoma 
patients however did not attain statistical significance, likely 
due to lower incidence of the alterations. Additionally, 
13.5% of lung squamous patients harboring druggable 
oncogenic mutations (including KRAS G12C) showed lower 
median overall survival (165 days) compared to patients 
harboring other mutations, (221 days) (Figure 4A). And, of 
most significance, 19% patients harboring a mutation in at 
least one gene, known to be associated with lung squamous 
cancer, as inferred by mass-spectrometry based genotyping 
resulted in significantly shorter median overall survival 
compared to lung squamous patients with no mutations (167 
days vs 225 days, Figure 4B), wherein no patient received 
any targeted therapy. 

DISCUSSION 

We earlier reported a distinct frequency of 23% 
EGFR mutations and 18% KRAS mutations in lung 
adenocarcinoma patients of Indian ethnicity compared to 
10–15% vs. 27–62% EGFR mutations and 25–50% vs. 
5–15% KRAS mutations among the Caucasians and East 
Asians populations [6, 22–24]. These studies underscore 
the somatic mutation variability in lung cancer across 
populations. Large scale genomic analyses have identified 
alterations that underlie squamous cell lung cancers [10, 
11, 25]. However, most of the lung squamous studies 
described so far includes mainly the Caucasian, Chinese, 
Korean and Japanese population, while the molecular 
profiling of lung squamous patients of Indian origin 
remains sparsely explored. Here, we describe the first 
comprehensive landscape of genomic alterations prevalent 
in Indian lung squamous patients using a combination of 
next generation sequencing and genotyping technologies. 
Our study is marked by a deficiency of a lower average 
on-target coverage of 50–70X of orphan FFPE tumors. 
However, several lines of distinct features underlie 
this study attributing to unique etiology and specific 
population, which has been previously described for early 
stage tongue tumors among patients of Indian origin [26].

To begin with, we observed a relatively higher 
non-synonymous mean somatic mutation rate of 11.6 
mutations/Mb compared to 8.1 mutations/ Mb among 
Caucasian population, 8.7 mutations/Mb among Korean 
population and 7.1 mutations/Mb among Chinese 

Figure 2: Recurrent genetic alterations in Indian lung squamous carcinoma patients. Heatmap representation of genetic 
alterations identified by mass spectrometry based genotyping in 430 lung squamous patients. The clinical characteristics of the patients 
including the sex, tobacco use and stage are mentioned above the heatmap and the respective color codes are mentioned below the heatmap. 
Only alterations observed at a frequency > 0 are depicted in the heatmap. Alterations which were a part of panel, but not observed in any of 
the samples are not included. Comparison of frequencies of each alteration between our study and those reported in COSMIC and TCGA 
databases is shown on the right side of the heatmap. 
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Figure 3: Overall survival in lung squamous tumors with distinct gene alterations. Kaplan-Meier plots of overall survival (in 
days) in lung squamous tumors with mutations in (A) KMT2D (B) EGFR and (C) PIK3CA are shown. The orange and green lines denote 
mutated and wild-type patients respectively. The dotted lines indicate median overall survival of the respective groups. P-value is indicated 
on the top right corner of the plots. The number of patients and median survival in each group is mentioned in the table below.

Table 2: Corelation of clinicopathological features and gene alterations in Indian lung squamous 
patients

Clinico-
pathological 

features
Variable 

Number 
(%), 

along the 
column 

Gene alterations from mass-array based genotyping, Number (%) along the row

EGFR P 
value 

PIK3CA P 
value 

Oncogenic mutations P 
value 

Any mutation of 
panel P value 

Mutant Wildtype Mutant Wildtype Mutant Wildtype Mutant Wildtype

Age < 65 years 283 21 
(7.4%)

262 
(92.6%)

0.051

16 
(5.6%)

267 
(94.4%)

1

43 
(15%)

240 
(85%)

0.18
59 (21%) 224 (79%)

0.153
 > 65 years 147 4 (2.7%) 143 

(97.2%) 8 (5.4%) 139 
(94.6%)

15 
(10%)

132 
(90%) 22 (15%) 125 (85%)

Gender Females 66 7 
(10.6%) 59 (89.4%)

0.084
6 (9%) 60 (91%)

0.236

13 
(19.6%)

53 
(80.4%)

0.118
14 (21%) 52 

(79%)
0.608

 Males 364 18 (5%) 346 (95%) 18 (5%) 346 (95%) 45 
(12.3%)

319 
(87.7%)

67 
(18.4%)

297 
(81.6%)

Tumor stage II 25 1 (4%) 24 (96%)

0.828

2 (8%) 23 (92%)

0.32

4 (16%) 21 (84%)

0.651

6 (24%) 19 (76%)

0.373 III 83 5 (6%) 78 (94%) 2 (2.4%) 81 
(97.6%) 8 (9.6%) 75 

(90.4%)
13 

(15.6%)
70 

(84.4%)

 IV 208 9 (4.3%) 199 
(95.7%)

12 
(5.7%)

196 
(94.3%)

23 
(11%)

185 
(89%)

30 
(14.4%)

178 
(85.6%)

 
Information 

not 
available

114 10 104 8 106 23 91 32 82

Smoking 
status Non-smoker 53 8 (15%) 45 (85%)

0.002
4 (7.5%) 49 

(92.5%)
0.512

12 
(22.6%)

41 
(77.4%)

0.022
16 (30%) 37 (70%)

0.022
 Smoker 309 11 

(3.5%)
298 

(96.5%) 16 (5%) 293 (95%) 33 
(10.6%)

276 
(89.4%)

51 
(16.5%)

258 
(83.5%)

 
Information 

not 
available

68 6 62 4 64 13 55  14 54
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population, which is also considerably higher than the 
mutation rate observed in various non-tobacco associated 
cancer types [9, 12]. Interestingly, our data suggests an 
enrichment of C>T transitions as opposed to putative C>A 
transversions indicative of a smoking signature [17, 18] 
consistent with our previous report in tongue squamous 
tumors [26] and gingiva-buccal tumors as reported by the 
ICGC-India [27] with tobacco chewing habit. Furthermore, 
our lung squamous data is largely consistent with the 
“squamousness” characteristic alterations as described 
underlying all squamous tumors arising across different 
anatomical sites [28] — such as TP53, PIK3CA, CDKN2A, 
and SOX2. However, we observed a significant exception 
with the absence of alterations at the CCND1 loci among 
the squamous cell lung carcinoma patients from India 
compared to 7% frequency among Caucasian patients  
[29]. Of other significant alterations known to occur in 
lung squamous, we observed 65% TP53 alterations in our 
study as reported across different ethnic groups [9–14]. 
Also, alterations in other tumor suppressor genes, including 
CDKN2A (20%), NFE2L2 (20%), FAT1 (15%), KMT2C 
(15%), LRP1B (15%), PTEN (10%) and PREX2 (5%) were 
comparable to earlier reports [9–12, 14, 17]. 

Among the therapeutically relevant alterations, 
frequent oncogenic alterations were found in the 
PI3K-AKT pathway at a cumulative frequency of 
10.7%, as reported in other studies [9, 14]: including 
5% amplification at SOX2/PIK3CA; 5.5% PIK3CA 
mutations; and, AKT1 E17K mutation. Interestingly, 
the BASALT-1 phase II trial emphasised the prognostic 
impact of the PI3K pathway in lung squamous cancer, 
suggesting PIK3CA alterations in lung squamous as 
a good prognostic marker [30]. Secondly, we found 
14% lung squamous cancer patients harboring FGFR1 
amplification, comparable to as reported in other 
population as a promising therapeutic target [19, 20]. 

While a correlation between the FGFR1 copy number 
and protein expression remains to be established, this 
study underlines the relevance of the clinical trials testing 
the fibroblast growth factor receptor inhibitors in clinical 
use for the treatment of lung squamous cancer [31, 32]. 
Despite the dismal survival benefit of the LUME-Lung 
1 trial in unselected advanced lung squamous cancer 
patients trial with combination of FGFR inhibitor with 
chemotherapeutic agent, the findings of this study 
along with preclinical studies [33, 34], suggest that pre-
selection of ~14% lung squamous patients harboring 
FGFR1 alterations are more likely to benefit from the 
treatment; Thirdly, significant alterations in KMT2D 
were observed at a frequency of 40% compared to 10% 
and 24%, compared to the Caucasian and East Asian 
population [12, 17],based on our whole exome data that 
necessitate validation in a larger cohort of squamous 
carcinoma samples. And, lastly but most significantly, 
EGFR-tyrosine kinase inhibitor sensitive alterations 
were observed at a frequency of 5.8% in our cohort, 
significantly higher than as reported in the TCGA and 
studies from the East Asian populations [9–12]. As the 
LUX-Lung 8 trial underline benefit from the anti-EGFR 
tyrosine kinase inhibitor among lung squamous patients 
associated with ERBB alterations, the occurrence of 
5.8% EGFR mutations among Indian lung squamous cell 
carcinoma patients emphasizes the potential significance 
and relevance of the outcome of this trial in the Indian 
context [35]. Taken together, 13.5% of lung squamous 
tumors harbored one or more mutually exclusive 
therapeutically relevant oncogenic mutations (including 
KRAS G12C). This is consistent with earlier reports 
suggesting a 10–11% frequency of potentially targetable 
alterations in lung squamous carcinoma [36, 37]. 

Our survival analysis demonstrate that lung 
squamous patients harboring EGFR or PIK3CA 

Figure 4: Overall survival in lung squamous tumors with distinct gene alterations. Kaplan-Meier plots of overall survival 
(in days) in lung squamous tumors with mutations in (A) Druggable genes and (B) any gene are shown. The orange and green lines denote 
mutated and wild-type patients respectively. The dotted lines indicate median overall survival of the respective groups. P-value is indicated 
on the top right corner of the plots. The number of patients and median survival in each group is mentioned in the table below.



Oncotarget584www.oncotarget.com

mutations have a shorter median overall survival 
compared to patients with no mutations; 13.5% patients 
harboring potentially actionable oncogenic mutations 
similarly have a lower median overall survival (165 
days) compared to patients harboring other mutations 
(221 days), as reported earlier [36]; and, 19% lung 
squamous patients harboring a mutation in at least one 
gene resulted in statistically significant shorter median 
overall survival compared to lung squamous patients 
with (167 days vs 225 days). These mutations could thus 
help inform designing a panel of specific and actionable 
mutations to select patients likely to benefit from 
personalized treatment and follow up diagnosis based on 
liquid biopsy for disease progression and recurrence as 
shown for lung adenocarcinoma [38].

In overall, we present a striking variation of genetic 
heterogeneity among lung squamous cell carcinoma 
patients of Indian descent. The findings from this study 
extend the scope of the ongoing umbrella clinical trials 
such as the Lung-MAP master protocol that aims to 
evaluate multiple targeted therapeutic strategies in 
lung squamous cell carcinoma patients and the AACR 
Project GENIE database collaborative project [29, 39]. 
A systematic exploration of these target genes in lung 
squamous cell carcinoma patients and variability across 
ethnicity could further extend our insights into the etiology 
of lung squamous cancer.

MATERIALS AND METHODS

Patient cohort 

Tumors from 430 lung squamous patients, registered 
at Tata Memorial Hospital, Mumbai, India during the 
year 2011–2016 were obtained retrospectively from the 
tumor tissue repository. All the tumor tissues were stored 
as formalin fixed paraffin embedded (FFPE) blocks as 
per the standard protocol of Tata Memorial Hospital, 
Mumbai, India. The sample cohort and the study protocols 
were approved by Institutional Review Board and Ethics 
Committee of Tata Memorial Centre-ACTREC. 

Patient details and sample information

The 430 lung squamous patient cohort comprise of 
84% males and 16% females with a mean age of diagnosis 
at 59.5 years (range 21–84 years), 71% cases with a 
history of tobacco use (including former/current tobacco 
chewers and smokers) and tumors with stages IV (42%), 
III (18%) and II (7%). The medical and histopathological 
records including immunohistochemical staining status 
of p63, CK7, p40, TTF1 and Napsin A of all the patients 
were reviewed by oncopathologists to ensure the diagnosis 
of lung squamous carcinoma. Tumors diagnosed as 
adenosquamous tumors based on TTF1 expression were 
excluded from this study. The adequacy of tumor content 

in all the tissues was assessed by pathologists and was 
also inferred from whole exome sequencing dataset. All 
the samples had a minimum of 40% malignant cells. The 
complete clinical and histopathological characteristics of 
all the patients including age, sex, tumor stage, smoking 
status/tobacco usage, nature of biopsy material and 
immunohistochemical staining status of various markers 
are detailed in Table 1 and Supplementary Table 1 
respectively. 

DNA extraction

Genomic DNA extraction from FFPE tumor 
blocks was performed according to the standard protocol 
of QIAmp DNA FFPE Tissue Kit. For whole exome 
sequencing, DNA concentration and quality was assessed 
using Qubit 3.0 fluorometer and Tape Station respectively 
and for MassArray genotyping, the DNA concentration 
was measured using Nanodrop 2000c spectrophotometer 
(Thermo Fischer Scientific Inc). 

Whole exome sequencing

Whole exome sequencing was performed on 
lung squamous carcinoma DNA samples by Genotypic 
Technology Pvt Ltd, Bengaluru, India. A minimum of 
100ng input DNA (based on Qubit quantification) was 
utilized for library preparation. Exome capture was 
performed using the SureSelect Human All Exon V6 
(target size 60Mb). Library preparation and exome capture 
was performed following the manufacturer’s instructions. 
Exome sequencing was performed on Illumina platform 
according to standard protocol using 150bp paired end 
reads to obtain an average coverage of 100X across all 
the samples. 

Exome sequencing analysis for identification of 
somatic mutations

The raw data was analyzed using the in-house 
developed pipeline as described earlier [6, 26, 40]. 
Variants called by the tumor only mode of both GATK 
and Mutect2 pipelines were combined for further analysis. 
As described earlier [6, 41], FFPE artefact correction was 
applied by removing C>T and G>A variants occurring 
at an allele fraction of < 5%. GATK-Funcotator (https://
gatk.broadinstitute.org/hc/en-us/articles/360046786432-
Funcotator) was used to annotate cancer associated 
variants based on which the analysis was restricted 
only to variants in the coding region. Germline variants 
were depleted based on databases including dbSNP 
(dbSNP_151) [42], ExAC (v0.3.1) [43], TMC-SNPdb 
[44], gnomAD (gnomAD v2.1.1) [45] and Genome Asia 
100K while the variants either present in COSMIC (v90) 
[46] or none of the four databases (the novel variants) 
were retained. Lastly, the deleterious nature of these 

https://gatk.broadinstitute.org/hc/en-us/articles/360046786432-Funcotator
https://gatk.broadinstitute.org/hc/en-us/articles/360046786432-Funcotator
https://gatk.broadinstitute.org/hc/en-us/articles/360046786432-Funcotator
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variants was determined using functional prediction tool 
based analysis on somatic non-synonymous variants 
using seven different tools which are part of dbNSFP 
v4.0a [47]. Variants called deleterious by at least four 
out of seven tools were considered for further analysis. 
The total number of non-synonymous somatic mutations 
within the coding region were extracted for calculation of 
tumor mutation burden across each tumor. The percentage 
of tumor cells in all the samples were computed from 
the exome sequencing data using the tool AITAC [48] 
(https://github.com/BDanalysis/aitac). Signature analysis 
on the exome sequencing data was performed using the 
R/Bioconductor package MutationalPattens [49] (http://
bioconductor.org/packages/MutationalPatterns).

Copy number analysis from exome data

Copy number variations in the whole exome data 
were assessed using CODEX2, a normalization based 
CNV detection method which works with or without 
matched normal samples [50]. We employed fractional 
mode of CODEX2 for segmentation of our data and 
categorized an event to be a high gain (copy number > 
3.3), gain (copy number 2.3–3.3), diploid (copy number 
1.7–2.3), one copy-deletion (copy number 0.7–1.7) and 
homozygous deletion (copy number < 0.7). 

Mass spectrometry-based genotyping 

A custom panel of 53 frequently occurring hallmark 
mutations across 17 cancer associated genes were designed. 
200ng input DNA at a final concentration of 20ng/ul from 
430 Lung squamous samples was submitted to Imperial Life 
Sciences Pvt Ltd, New Delhi, India for validation by Mass 
spectrometry-based genotyping using the iPlex Pro chemistry. 
Using the assay design software, these 53 mutations were 
pooled into four wells. Accordingly, the PCR amplification 
and single base pair extension primers for iPLEX reaction 
were designed as per manufacturer’s instructions. The 
mutation calls were analyzed using the Typer 4.0 software 
and the spectra were also manually revived. 

FGFR1 amplification using quantitative real-
time PCR

Real-time primers designed to specifically amplify 
FGFR1 and GAPDH from genomic DNA were used for 
real time PCR. The specificity of primers was tested by 
using melt cure analysis during real time PCR. The real 
time PCR was performed using 20 ng of genomic DNA 
per 6ul of reaction volume on Light cycler 480 (Roche, 
Mannheim, Germany). The FGFR1 amplification for 
the tumor samples was calculated by normalizing the Ct 
values to the Ct values housekeeping control GAPDH and 
samples with normalized Ct < 1 were considered to harbor 
FGFR1 amplification.

Availability of data 

The FastQ files containing the raw sequence data 
for all the samples have been uploaded on ArrayExpress 
(http://www.ebi.ac.uk/arrayexpress/) hosted by the 
European Bioinformatics Institute under the accession 
number E-MTAB-8801 titled ‘Whole exome sequencing 
of Lung Squamous Carcinoma Patients of Indian Origin’. 

Statistical analysis

For mutation mutual exclusivity analysis, the 
mutant and wildtype status were defined based on the 
genotyping experiment and the statistical significance of 
the exclusivity was computed using CoMET method [51]. 
For correlation of clinico-pathological features and gene 
alterations and comparisons of mutational frequencies 
between different ethnic groups, Fisher exact test was 
used to calculate significance. In both the analysis, P value 
< 0.05 was considered significant. The Kaplan-Meier 
survival data analysis and clinicopathological correlation 
analysis was performed in R as described previously 
[6, 40] using R survival packages (http://cran.r-project.
org/package=survival). The end point was taken as date 
of death wherever available, else the date of last contact 
was used for censoring. Tumors with mutations in genes 
including EGFR, PIK3CA, KRAS, FGFR2, AKT1, NRAS 
and ERBB3 were grouped as therapeutically relevant 
alterations. 
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