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Pancreatic cancer driver mutations are targetable through 
distant alternative RNA splicing dependencies

Ryan R. Kawalerski1, Steven D. Leach2 and Luisa F. Escobar-Hoyos3,4,5

1Medical Scientist Training Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
2Departments of Molecular and Systems Biology, Surgery, and Medicine, Dartmouth Geisel School of Medicine and Norris 
Cotton Cancer Center, Lebanon, NH 03766, USA

3Department of Therapeutic Radiology, Yale University, New Haven, CT 06513, USA
4Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06513, USA
5Department of Pathology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA

Correspondence to: Luisa F. Escobar-Hoyos, email: luisa.escobar-hoyos@yale.edu
Keywords: pancreatic cancer; RNA splicing; targeted therapy; KRAS; TP53
Received: January 20, 2021 Accepted: February 03, 2021 Published: March 16, 2021

Copyright: © 2021 Kawalerski et al. This is an open access article distributed under the terms of the Creative Commons Attribution License 
(CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT
Pancreatic ductal adenocarcinoma (PDAC), the most common histological 

subtype of pancreatic cancer, has one of the highest case fatality rates of all known 
solid malignancies. Over the past decade, several landmark studies have established 
mutations in KRAS and TP53 as the predominant drivers of PDAC pathogenesis 
and therapeutic resistance, though treatment options for PDACs and other tumors 
with these mutations remain extremely limited. Hampered by late tumor discovery 
and diagnosis, clinicians are often faced with using aggressive and non-specific 
chemotherapies to treat advanced disease. Clinically meaningful responses to targeted 
therapy are often limited to the minority of patients with susceptible PDACs, and 
immunotherapies have routinely encountered roadblocks in effective activation of 
tumor-infiltrating immune cells. Alternative RNA splicing (ARS) has recently gained 
traction in the PDAC literature as a field from which we may better understand and 
treat complex mechanisms of PDAC initiation, progression, and therapeutic resistance. 
Here, we review PDAC pathogenesis as it relates to fundamental ARS biology, with 
an extension to implications for PDAC patient clinical management.

INTRODUCTION

PDAC epidemiology and treatment

Pancreatic ductal adenocarcinoma (PDAC) accounts 
for approximately 90% of all tumors of the pancreas, 
while the remaining 10% is comprised of predominantly 
pancreatic neuroendocrine tumors [1]. According to the 
most recent Surveillance, Epidemiology, and End Results 
(SEER) Program data, pancreatic cancer remains one of 
the deadliest solid malignancies in the United States, with 
a five-year survival of approximately 10% [2]. Routine 
screening is not practiced for early detection of pancreatic 
tumors, although high-risk patients with familial 
pancreatic cancer or known germline cancer-predisposing 
syndromes, accounting for 5–10% of all pancreatic cancer 

patients, may benefit from pancreatic screening and 
germline mutation testing [3–5]. 

Current therapy for PDAC patients includes surgical 
resection with adjuvant chemoradiation, increasing 
5-year patient survival to approximately 20%, by some 
estimates [6, 7]. For over 80% of patients, however, 
PDAC is diagnosed as either borderline resectable, locally 
advanced, or metastatic disease, limiting eligibility for 
surgery [8–11]. Patients receiving systemic medical 
therapy either independent of surgery or in the adjuvant 
setting see significant yet minimal improvements in 
survival, though treatment options are often limited by 
patient tolerance [12–14]. While some PDACs harboring 
susceptibility-conferring mutations (e.g., BRCA1/2, ATM) 
are treatable via targeted medical approaches, such as 
poly (ADP-ribose) polymerase inhibition for PDACs with 
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DNA repair gene mutations, these constitute a minority of 
all PDACs [15–17]. Even the most successful systemic 
medical treatments, gemcitabine plus nab-paclitaxel 
or FOLFIRINOX (a combination of 5-fluorouracil, 
leucovorin, irinotecan, and oxaliplatin), have demonstrated 
only a modest improvement in median patient survival of 
about 2-4 months beyond the gemcitabine control arm 
median survival of about 6 months [18–20]. Nevertheless, 
there is strong evidence suggesting a role for neoadjuvant 
systemic therapy to improve resectability of borderline 
resectable lesions [9, 21, 22]. 

PDAC driver mutations and non-mutational 
driver-phenocopying mechanisms

Non-hereditary PDAC, accounting for about 90% 
of cases, is predominantly characterized by a well-
established progression of mutational burden beginning 
with activating point mutations in the KRAS gene (about 
90% of PDACs) [23–25]. Mutations in KRAS are often 
accompanied by secondary mutations, most commonly 
in tumor protein p53 (TP53, > 60% of cases), cyclin-
dependent kinase inhibitor 2A (CDKN2A), and mothers 
against decapentaplegic homolog 4 (SMAD4) genes, 
conferring unique advantages to PDACs in therapy 
resistance and tumor aggression [26, 27]. Recent evidence 
via novel small molecule intervention and genetic ablation 
has shown that loss of oncogenic KRAS function, for 
example, is prone to initial tumor volume loss followed 
by tumor regrowth, either as a consequence of cancer 
cell heterogeneity in KRAS dependency or the presence 
of highly KRAS-dependent cells harboring the ability 
to undergo a stress-induced clonal escape mechanism 
mediated through advantageous functional alterations 
[28–32]. Epigenetic, metabolic, and immuno-modulatory 
processes have all been implicated in drug resistance and 
tumor maintenance in KRAS-mutant PDACs [33–37]. This 
suggests that even the most potent anti-KRAS targeted 
therapies are susceptible to mechanisms of therapy 
resistance.

Over the past decade, a wealth of information on 
PDAC RNA expression has contributed to a rapidly 
advancing understanding of the mechanisms by which 
these tumor cells may harbor treatable characteristics, 
either dependent or independent of tumor mutational 
status. Many studies of human tumor samples have led 
to a growing consensus on a two-subtype transcriptomic 
disease model described by the ‘Basal-like’ and ‘Classical’ 
gene signatures, which have been shown to correlate 
well with systemic therapy response, tumor aggression, 
and patient survival [38–46]. Work is ongoing to 
describe genetic characteristics of the PDAC stromal 
compartment, though early studies have shown a strong 
relationship between disease severity and stromal cell 
gene expression [39, 47, 48]. Even after subtyping PDACs 
by gene expression and mutational status, there still exists 

substantial variety in tumor therapy response and cellular 
characteristics in the preclinical setting [43, 44, 49], as 
recently reviewed in Du et al. [50]. Thus, there are likely 
other mechanisms, either epigenetic or otherwise hidden 
in summary gene expression data, by which tumors are 
initiated, maintained, and able to evade therapy that must 
be uncovered to effectively treat PDACs from several 
dependency-inspired angles. 

Alternative RNA splicing in normal and cancer 
cells

Alternative RNA splicing biology/functions

As mentioned above, recent literature has focused 
on using gene expression data to characterize PDACs, 
such as for determination of tumor transcriptomic 
subtypes, evaluation of potential disease biomarkers, 
and discovery of novel targetable disease mechanisms. 
Concurrently, substantial work has been conducted to 
describe the epigenetic, proteomic, and broadly metabolic 
characteristics of the disease. Nevertheless, there exists 
a comparable lack of investigation into alternative RNA 
splicing (ARS), an extremely plastic genetic control 
mechanism by which cells monitor and respond to stress, 
regulate gene expression, and influence intra- and inter-
cell communication [51–57]. 

Alternative RNA splicing is a choreography by 
which RNA is processed to expand the protein diversity 
of eukaryotic organisms, via activity of the spliceosome, 
an RNA-protein complex. Exons, introns, and other 
noncoding RNA segments are recognized by RNA binding 
proteins (RBPs, including SR proteins and hnRNPs, 
among others) at conserved cis-regulatory RNA sequences 
to promote or suppress – in a summative fashion – RNA 
segment retention in the final mRNA product [58–60]. 
Estimates suggest that most genes with multiple exons 
undergo ARS to produce multiple distinct protein isoforms 
[61], and significant variation exists across tissue types 
as to the predominance of a given isoform, likely due 
to tissue-specific RBP expression and conditional RBP 
activity [62]. 

Several studies have posited that most alternative 
splicing events seen in next generation sequencing studies 
result from noisy aberrant splicing, leading to non-
functional protein products [63–65]. Nevertheless, there 
is a growing basis of evidence for this noise and also for 
regulated diversification of isoform expression specifically 
contributing to organism and tissue development, 
normal cellular physiology, and pathology that might 
provide insight into cancer pathophysiology and therapy 
development [66, 67]. An active field of study is centered 
on the development of novel programmatic methods 
for assessing expression of annotated or novel protein 
isoforms using RNA sequencing platforms, though many 
investigators have also found success in home-brewed 
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pipelines for analysis of this data [68–72]. This, along with 
the development of reliable long-read RNA sequencing 
technologies to enable precise quantification of transcripts 
at the whole mRNA level as well as continually advancing 
paired-end RNA sequencing at the single cell level, 
positions studies of ARS at a uniquely opportune time to 
uncover meaningful biochemical knowledge necessary for 
biomedical advancement.

ARS mechanisms in cancer pathogenesis

ARS has been implicated in the initiation and 
maintenance of solid and non-solid malignancies 
[73–75]. There are several ways that ARS may be 
modified in cancer, including mutations in cis-regulatory 
RNA sequences, splicing protein post-translational 
modifications, and alterations in splicing protein primary 
sequences as well as expression levels, as reviewed in 
Escobar-Hoyos et al. [76]. While recent studies have 
demonstrated that RBPs known to interact with the 
spliceosome and globally alter ARS are mutated at a 
low rate in PDACs and two of the most common PDAC 
precursor lesions, pancreatic intraepithelial neoplasia 
and intraductal papillary mucinous neoplasm [77, 78], 
mechanistic understanding of their role in pathogenesis 
of PDACs and other solid tumors is extremely limited. 
Furthermore, there is a notable dearth of knowledge on the 
splicing-regulatory roles of the most commonly mutated 
genes in PDAC, TP53 and KRAS.  

To address this lack of knowledge, we recently 
uncovered a novel mechanism by which PDACs with 
KRAS and TP53 mutations (a combination found in 
most PDACs) promote cancer pathogenesis via modified 
splicing of GTPase-activating protein (GAP) mRNAs 
and subsequent amplification of KRAS signaling [32]. 
Increased hnRNPK expression downstream from mutant 
p53 leads to increased retention of cytosine-rich exons 
in GAP mRNAs, thus leading to dysfunctional GAPs 
that are limited in their ability to transition KRAS from 
its active GTP-bound state to its inactive GDP-bound 
state. In the study, we show that KRAS- and TP53-
mutant PDACs are selectively susceptible to spliceosome 
inhibition using H3B-8800 (an inhibitor of the SF3B 
complex, critical in spliceosome function and currently 
in phase I clinical trials) [79, 80], induction of hnRNPK 
functional loss, and correction of the cytosine-rich 
GAP splicing alterations using targeted oligonucleotide 
delivery. Thus, through this oncogenic dependency, 
it is likely that PDAC cells with both KRAS and TP53 
mutations could be targeted in the clinic, though more 
work must be conducted to evaluate whether or not 
these findings of efficacy will translate to studies on 
primary human pancreatic tumors. Importantly, TP53 
and KRAS mutations commonly co-occur in several 
solid malignancies, including lung adenocarcinoma and 
colorectal cancer, opening the possibility that tumors 

harboring this combination of mutations might also carry 
the same ARS oncogenic mechanisms and therapeutic 
susceptibilities as KRAS/TP53-mutant PDACs [81, 82].

Others have also demonstrated that aberrant mRNA 
splicing in PDACs may generate meaningful tumor 
biomarkers while also contributing to tumor progression 
and drug resistance [83–91]. For example, CD44, a cell-
surface glycoprotein that undergoes extensive splicing 
of its 20 exons, is differentially spliced between PDAC 
and normal pancreas tissue [88]. Furthermore, expression 
of the ‘standard’ CD44 isoform (CD44s) as opposed to 
‘variant’ forms (CD44v) is strongly associated with an 
epithelial-to-mesenchymal transition process in PDAC 
cells, and inclusion of variant exons v3 and v6 in the 
CD44 mRNA product is uniquely associated with cancer 
metastasis [89, 90]. Other studies have shown that ARS 
alterations in PDACs strongly target extracellular matrix 
components [86, 91]. In another instance, the pyruvate 
kinase (PKM) gene was shown to predominantly produce 
the PKM2 isoform in gemcitabine-resistant PDAC cells, 
for which metabolic gemcitabine sensitivity could be 
restored following targeted antisense oligonucleotide 
delivery to promote production of the alternative PKM1 
isoform [85]. Some studies have recently presented large-
scale analyses of PDAC splice variant expression, though 
there is yet substantial work needed to harmonize these 
findings with the growing biomedical understanding of 
PDAC as well as routine clinical practice [84, 86].  

Treating alternative RNA splicing defects

ARS dependencies are targetable in PDACs, other 
malignancies, and non-malignant diseases

Both targeted oligonucleotide delivery and small 
molecule inhibition of the spliceosome have been shown 
to be effective at treating several carcinomas in preclinical 
models, in addition to other splicing-focused therapies [32, 
73]. Targeted oligonucleotides can be quickly generated 
to correct mutated, improperly spliced, or otherwise 
defective mRNA products with high specificity and 
efficacy when properly delivered to target cells [92]. 
Perhaps the most famous example of dysfunctional mRNA 
gene product correction is that of nusinersen (Spinraza), 
approved by the FDA in 2016 as the first medical 
treatment for spinal muscular atrophy, offering strong 
proof-of-concept for clinical efficacy of this treatment 
modality [93, 94]. New oligonucleotide delivery methods 
have improved clinicians’ abilities to deliver therapeutic 
doses into difficult-to-reach tumors, like PDACs, taking 
advantage of tumor microenvironmental factors such as 
acidic pH, for example [75, 95, 96]. As an alternative 
method for targeting ARS pathogenic mechanisms, small 
molecule spliceosome modulators have demonstrated 
efficacy in treating cancers preferentially susceptible to 
spliceosome dysfunction [80], such as those harboring 
heterozygous mutations in SF3B1, a critical component 
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of the spliceosome for which complete functional loss is 
synthetic lethal [97]. 

The therapeutic utility of a targeted anti-cancer drug 
relies heavily on rapid and accurate tumor profiling, often 
in practice requiring immunohistochemical staining of 
fixed tissue to inform clinical decision-making. Currently, 
gene expression and subtyping methods for PDACs, 
though holding high potential for clinical translation, 
rely on a days-to-weeks-long approach involving RNA 
quantification and subsequent analysis. Evaluation of 
splicing changes, however, may be feasibly conducted 
through simple RT-PCR methods, enabling highly specific 
and rapid identification of actionable ARS dependencies. 
Our recent work, together with the corpus of evidence 
supporting clinical translation of ARS events for cancer 
therapy, provides a compelling vision of future oncology 
practice involving targeted ARS tumor profiling through 
scalable RNA amplification and visualization methods 
[98]. 

FUTURE PROSPECTS

Advancements in high-throughput RNA sequencing 
technologies over the past decade have led to substantial 
growth in the understanding of RNA splicing in cancer, 
and specifically PDAC. While ours and other studies 
have established strong connections between well-
studied molecular alterations and splicing changes, 
several fundamental questions remain unanswered about 
the role of ARS in PDAC and, more broadly, cancer 
pathogenesis as whole. Evidence is limited on the capacity 
of ARS alterations to phenocopy mutational signatures 
as well as the role of ARS in cellular transformation 
downstream from bona fide cancer-initiating genomic 
mutations. The recent expanse of data on non-malignant 
pancreatic tumor co-conspirator cells – including 
cancer-associated fibroblasts and tumor-infiltrating 
immune cells, for example – further opens an exciting 
opportunity to understand how ARS might contribute 
to tumor cell immune evasion as well as the drastic 
desmoplastic collagen deposition in PDACs. Further 
investigation of these mechanisms may likely translate to 
clinically effective therapeutics, in addition to enabling 
a well-rounded understanding of cancer pathogenesis, 
maintenance, drug resistance, and immune evasion.
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