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ABSTRACT
Cytochrome P450 (CYP) epoxygenases, a multi-gene superfamily of heme-

containing enzymes, are commonly known to metabolize endogenous arachidonic acid 
(AA) to epoxyeicosatrienoic acids (EETs). The role of CYPs is mostly studied in liver 
drugs metabolism, cardiac pathophysiology, and hypertension fields. Particularly, the 
biological functions of these enzymes have increasingly attracted a growing interest 
in cancer biology. Most published studies on CYPs in cancer have been limited to 
their role as drug metabolizing systems. The activity of these enzymes may affect 
drug pharmacokinetics and bioavailability as well as exogenous compounds turnover. 
Some CYP isoforms are selectively highly expressed in tumors, suggesting a potential 
mechanistic role in promoting resistance to chemotherapy. Majority of drugs elicit 
their effects in extrahepatic tissues whereby their metabolism can significantly 
determine treatment outcome. Nonetheless, the role of extrahepatic CYPs is not fully 
understood and targeting these enzymes as effective anti-cancer therapies are yet to 
be developed. This review article summarizes an up-to-date body of information from 
published studies on CYP enzymes expression levels and pathophysiological functions 
in human normal and malignant gastrointestinal (GI) tract tissues. Specifically, we 
reviewed and discussed the current research initiatives by emphasizing on the clinical 
significance and the pathological implication of CYPs in GI malignancies of esophagus, 
stomach, and colon.

INTRODUCTION

The increasing incidence of gastrointestinal (GI) 
malignancies may be linked to a Westernization of 
lifestyle and risk behavior [1–3]. According to the World 
Health Organization estimate for the last few years, 
cancers of different parts of GI tract are considered among 
15 most common malignancies with the highest rates of 
mortality [4–6]. Cytochrome P450 (CYP) epoxygenases 
include a superfamily of enzymes generally expressed in 
the liver, kidney, and the cardiovascular system [7]. Up 
to 18 mammalian CYP gene families and 44 subfamilies 
that include 57 human CYP genes have been identified 
[8]. CYP2, CYP3, and CYP4 are the largest human 
gene families [9]. These enzymes catalyze reactions 

involved in the metabolism of xenobiotics and lipids 
synthesis such as of cholesterol, bile acids, fatty acids 
and steroids [10]. Particularly, endogenous arachidonic 
acid (AA) as a substrate [11] is converted by CYP 
ω-hydroxylases to hydroxyeicosatetraenoic acids (HETEs) 
and by CYP epoxygenases to 5,6-, 8,9-, 11,12-, and 14,15 
epoxyeicosatrienoic acids (EETs) [12]. EETs are potent 
endogenous vasodilators [13, 14], inhibitors of vascular 
inflammation [15], and contribute to blood pressure 
homeostasis through the regulation of Na+ transport in 
kidney epithelium [16, 17]. The role of CYPs and their 
metabolites in oncogenesis, angiogenesis, and metastasis 
is a popular field of research in eicosanoid biology [18]. 

CYPs highly expressed in the liver [19] play an 
important role in oxidative metabolism of xenobiotics and 
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clearance of toxic drugs [20]. However, extrahepatic CYP 
enzymes and their biologically active lipid products might 
exhibit different tissue-specific functions. For instance, 
CYP-mediated metabolism in the gut wall affects the 
bioavailability of oral drugs [21, 22]. Orally administered 
xenobiotics undergo the bioactivation processes in target 
tissues following further detoxification through the 
digestive system associated CYPs [7]. While metabolism 
of xenobiotics commonly leads to detoxification of 
exogenous compounds, the CYP-mediated reactions 
can also produce toxic metabolites that increase risks of 
pathologies, including development of cancers and birth 
defects [10]. Therefore, alteration in CYPs function within 
alimentary canal could contribute to GI carcinogenesis and 
affect the response of tumors to chemotherapy. 

Expression of CYP epoxygenases in human GI 
tract

The differential expression of CYPs in different parts 
of alimentary canal suggests different biological functions 
of these enzymes and their products outside of the liver 
[23]. In fact, studies of CYPs expression, localization, 
and function in human esophagus highlight the capacity 
of these enzymes to activate DNA-reactive carcinogens. 
For instance, the protein expression of CYP1A, CYP2A, 
CYP2E1, CYP3A, and CYP4A enzymes has been shown 
in 25 normal tissue specimens of human esophageal 
mucosa [24]. Early immunohistochemical evidence 
of CYPs expression in intestinal mucosa suggested 
that human intestinal wall, in addition to its absorptive 
function, might metabolize exogenous substances [25]. 
Therefore, members of the CYP1A, CYP2C, CYP2D, 
CYP2E, and CYP3A subfamilies have been shown to be 
constitutively expressed in the human intestinal mucosa 
[26, 27]. The highest CYPs expression was detected in 
the duodenum and it progressively decreased distally to 
the ileum [28]. Interestingly, most highly expressed CYPs 
were detected from mid-villus to villous tip, with little 
expression in the crypts of Lieberkühn [26]. However, 
crypt-specific expression of CYP2W1 was demonstrated 
by immunohistochemical analysis of human fetal colon 
[29]. Notably, in the small intestine, CYP3A has been 
found as the most abundant isoform with 50–82% 
expression of the total intestinal CYPs [30].

Studies of RNA preparations from the human and 
rat intestine revealed the mRNA expression of CYP2J2 
and its corresponding rat homologue CYP2J3 mostly 
in the small intestine and colon, while CYP2J proteins 
were expressed throughout the entire GI tract [31]. 
Particularly, high levels of CYP2J2 protein were detected 
in nerve cells of autonomic ganglia, epithelial cells, 
intestinal smooth muscle cells, and vascular endothelium 
[31]. Furthermore, NADPH-dependent AA conversion 
to EETs was demonstrated in microsomal fractions 
from human jejunum, and gas chromatography/mass 

spectrometry analysis confirmed the presence of EETs. 
The authors suggested that CYP2J associated products 
may be involved in the release of intestinal neuropeptides, 
regulation of intestinal motility, and transport of intestinal 
electrolytes [31]. 

Rylander and co-authors characterized CYP2S1 
isoform, which is selectively expressed in the intestine, 
demonstrated its importance for extrahepatic xenobiotic 
metabolism [32]. Notably, using subcellular fractionation 
and immunostaining methods, CYP2S1 protein expression 
was localized in the endoplasmic reticulum [32]. 
Expression of several CYPs is frequently induced by 
accumulation of a specific substrate [33]. Tissue specific 
CYPs produce different ratios of EET regioisomers [34], 
thereby alterations in CYPs activity could reduce the 
availability of AA for other metabolic pathways. This 
affects the synthesis of other bioactive metabolites such as 
proinflammatory prostaglandins. Particularly, the changes 
in AA metabolism through cyclooxygenase (COX) and 
lipoxygenase (LOX) pathways is a common feature of 
numerous malignancies and has been shown to play key 
roles in cancer progression [35]. The synthesis of AA-
derived biologically active lipid metabolites can take place 
in the tumor and inflamed stromal tissues [36]. A summary 
of CYP enzymes expression in normal GI tissues is shown 
in Table 1.

Role of CYP epoxygenases in GI cancers 

Multiple factors, including diet, infectious agents, 
environmental toxins and oral drugs have been associated 
with GI carcinogenesis [37]. Because CYP pathways mediate 
the effect of exogenous factors, studying the expression 
patterns and the activity changes of these enzymes in GI 
cancer tissues could lead to the development of new clinical 
and therapeutic approaches based on extrahepatic CYPs 
expression and activity in various GI cancers.

Esophageal cancer

Esophageal cancer, which consists of two 
histological subtypes, esophageal squamous cell 
carcinoma (ESCC) and esophageal adenocarcinoma 
(EAC), represents the eighth most frequently occurring 
malignancy and the sixth most common cause of cancer-
related death worldwide [6]. The known risk factors 
of ESCC include cigarette smoking, alcohol beverage 
consumption, and low intake of fruits and vegetables [38]. 
Chronic gastroesophageal reflux disease (GERD) and 
precancerous Barrett’s esophagus are major risk factors 
of EAC [39]. Disparity between phase I drug metabolism 
mediated by CYPs and phase II detoxification by other 
enzymes such as glutathione-S-transferases (GST) has 
been suggested as a contributing factor to pathogenesis 
of these cancers [40]. In fact, early immunohistochemical 
studies of esophageal cancer and non-neoplastic 
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esophageal tissue samples revealed the expression of 
CYP1A, CYP2C, CYP3A and the functionally associated 
enzymes Epoxide Hydrolase (sEH) and GST in 60% of 
studied cancer samples [41]. Western blot analysis showed 
that CYP3A4, CYP3A5, and CYP2C8 protein levels in 
ESCC patients were significantly higher than in control 
group of healthy patients. Conversely, CYP2E1 protein 
level was significantly lower in ESCC patients than in 
healthy control group [42].

Surprisingly, the analysis of CYP1A, CYP2A, 
CYP2E1, CYP3A, and CYP4A protein levels in 25 non-
neoplastic surgical tissue specimens of human esophageal 
mucosa did not reveal any significant associations with 
the patients’ medical history data and known esophageal 
cancer risk factors, such as tobacco smoke and GERD 
[24]. These unexpected results were explained by the small 
number of studied samples that impeded the authors from 
making any conclusions regarding the connection between 
CYPs expression and esophageal cancer. Studies of CYPs 
expression in esophagectomy specimens demonstrated 
the expression of CYP1A2, CYP3A4, CYP2E1, and 
CYP2C9/10 proteins in esophageal squamous mucosa 
and in the basal glandular actively proliferating areas 
of Barrett’s esophagus [43]. Another study showed that 
mRNA levels of CYP3A4 and CYP2C were significantly 
lower in malignant tissue than in normal tissue in ESCC 
patients [42]. 

CYP2J2, a well-characterized epoxygenase, is 
highly expressed in the cardiac tissues and vascular 
endothelium [15, 44]. In addition to its cardioprotective 
functions, the implication of CYP2J2 in carcinogenesis 
has been investigated intensively. Notably, abundant 
mRNA and protein expression of CYP2J subfamily has 
been demonstrated through the entire human and rat GI 
tract from esophagus to colon [31]. Moreover, high and 
selective CYP2J2 expression was demonstrated in various 

human tumor tissue samples and cancer cell lines [3, 45]. 
In fact, Jiang and co-authors [3] characterized CYP2J2 
expression in tissue samples obtained from 130 patients 
with different types of cancer. In 77% of the patients, 
CYP2J2 mRNA and protein levels were markedly higher 
in tumors than surrounding noncancer tissues. The 
CYP2J2 expression was observed in most samples from 
all tumor types, including ESSC (20 of 31) and EAC (4 
of 4) [3]. The data demonstrated that CYP2J2 plays an 
important role in the pathogenesis and progression of 
several types of human cancers [3]. Notably, CYP2J2 has 
been associated with inflammation and the pathogenesis of 
Crohn’s disease [46]. Interestingly, inhibition of CYP2J2 
with terfenadine-related compounds decreased EET 
production and suppressed growth and proliferation in 
human tongue carcinoma cells and in murine xenograft 
models [45]. Together, these findings suggest that 
CYP2J2 might contribute to neoplastic pathogenesis of GI 
epithelium. Alterations of CYP expression in patients with 
ESCC support a potential role of these enzymes in the 
pathogenesis of esophageal malignancies. Additionally, 
the known ability of CYP system to activate carcinogens 
could lead to oncogenic transformation in metaplastic 
esophagus. 

Gastric cancer

Gastric cancer is one of the most frequent 
malignancies in the world and the third leading cause of 
cancer mortality [47]. Helicobacter pylori infection in 
combination with genetic polymorphisms associated with 
a predisposition to cancer development are risk factors for 
gastric carcinogenesis [48]. Based on early histochemical 
data, protein expression of CYP1A and CYP3A was 
detected in 51% and 28% of studied gastric cancer cases, 
respectively, and undetected in normal stomach tissues 

Table 1: Overview of CYP protein expression in normal GI tract tissues
GI organ/tissue localization  CYP isoforms References

Normal tissues  
Esophagus Mucosa: CYP1A, CYP2A, CYP2E1, CYP3A, 

CYP4A
CYP2J2
C1A1, 1A2, 2A, 2E1, 2J2, 3A5

[24]

[31]

Stomach CYP2J2
CYP2S1

[31]
[32]

Intestine Mucosa: CYP1A, CYP2C, CYP2D, CYP2E, 
CYP3A
Enterocytes: CYP 3A4. CYP3A5, CYP2J2, CYP 
2C9, CYP2C19, CYP2D6
Autonomic ganglion cells, epithelial cells, smooth 
muscle cells, and vascular endothelium:
CYP2J2
Fetal colon: CYP2W1, CYP2S1

[26, 49]
[30]

[31]
[29, 32]
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[49]. Additionally, the increased expression of CYP2J2 
relative to adjacent normal tissue was shown in 5 out of 
5 studied human gastric cancer samples [3]. These data 
support the CYP2J2 expression trend observed in other 
cancerous tissue samples [3]. Interestingly,  a new report 
showed that  elevated expression of CYP3A4 could 
be associated with the progression of chronic atrophic 
gastritis to gastric cancer and might predict poor prognosis 
[50]. A recent study has shed some light on the role of 
CYP2E1 in the development and progression of gastric 
adenocarcinoma [51]. Overexpression of CYP2E1 in 
gastric cancer cells enhanced proliferation, invasion, and 
survival. Mechanistic investigations showed that CYP2E1 
overexpression upregulated the oncogenic PI3K-AKT-
mTOR signaling pathway in gastric cancer cells [51]. 
Notably, little research on CYPs in the stomach was done 
because CYPs are generally expressed less in the normal 
gastric mucosa than in the other parts of the GI tract. The 
fact that gastric epithelium has rather a secretory than 
absorptive function in addition to the mucous barriers 
suggests that the stomach may be protected from chemical 
agents [52]. Therefore, the role of CYPs in driving gastric 
carcinogenesis remains largely unknown. Additional 
studies will be required to gain more information on the 
potential implication of CYPs in gastric cancer.

Colon cancer

Colon cancer is the third occurring malignancy 
and the second leading cause of cancer mortality in 
the United States [53]. Hereditary syndromes, such as 
familial adenomatous polyposis and Lynch Syndrome, 
and inflammatory bowel disease are major predisposition 
risks for the development of colon cancer [54]. Tumor-
specific expression of CYP2W1 was detected in 
approximately 30% of higher-grade colon cancers, 
while the expression of this enzyme was insignificant in 
normal colon tissues [55–57]. Interestingly, mouse and 
human developmental studies showed that CYP2W1 is 
expressed in the small intestine and colon tissues in the 
early stages of embryonic development and silenced 
shortly after birth [29]. Postnatal silencing of both murine 
and human CYP2W1 gene was associated with increased 
methylation of CpG-rich promoter regions [58]. CYP2W1 
expression can be induced by the treatment with the 
antitumor agent imatinib, linoleic acid and its derivatives 
in the colon adenocarcinoma cell line HCC2998 [29]. 
Although activation of CYP2W1 by demethylation in 
colorectal cancer (CRC) has been confirmed [58], the 
precise mechanisms of epigenetic modifications of 
CYP2W1 gene remain unclear. The positive correlation 
of the increasing CYP2W1 expression with tumor 
progression and metastasis in CRC [59–61] could be used 
as a diagnostic tool.  Larger scale clinical studies will be 
required to validate the potential application of CYP2W1 
as a prognostic cancer biomarker. 

A recent study based on a metabolomics 
approach demonstrated that epoxygenated fatty acids, 
which are eicosanoid metabolites produced by CYP 
epoxygenases, were elevated in the plasma and colon of 
azoxymethane (AOM)/dextran sodium sulfate (DSS)-
induced colon cancer mouse model [62]. Genetic 
knockdown or pharmacologic inhibition of CYPs 
decreased AOM/DSS-induced colon tumorigenesis in 
mice. Unlike other eicosanoid metabolites, treatment 
with 12,13-epoxyoctadecenoic acid (EpOME) increased 
AOM/DSS-induced colon tumorigenesis in vivo. These 
findings demonstrate that the previously understudied 
CYP epoxygenases and their lipid metabolites contribute 
to colon tumorigenesis [62]. CYP enzymes expression in 
neoplastic GI tissues is summarized in Table 2.

CYP epoxygenases in the activation of pro-
carcinogens

The GI tract is exposed to various exogenous 
compounds, including pro-carcinogens and orally 
consumed drugs. CYPs expressed in GI tissues might 
be involved in the metabolic activation of potential 
carcinogens [63]. Extrahepatic tissues play a key role in 
the CYP-mediated metabolism of xenobiotic compounds 
affecting the susceptibility of certain organs to neoplastic 
transformation [64]. It is established that chronic exposure 
to cigarette smoke and chewing tobacco have been 
associated with the development of esophageal cancer 
[65, 66]. The expression of xenobiotic-metabolizing 
CYPs in the esophagus may determine the susceptibility 
of this organ to the carcinogenic effect of tobacco-derived 
nitrosamines [67]. A study of esophageal microsomal 
samples from patients in the United States and Henan 
Province (China), a high-risk area for esophageal 
cancer, demonstrated that CYP3A4 and CYP2E1 are 
involved in the activation of tobacco carcinogens 
N’-nitrosonornicotine and N-nitrosodimethylamine, 
respectively, in the human esophagus [66]. The activities 
of xenobiotic-metabolizing enzymes were decreased by 
30–50% in the squamous cell carcinomas as compared to 
their corresponding non-cancerous mucosa [66]. Another 
potent esophageal carcinogen, N-methyl-N-pentyl-
nitrosamine, was metabolized by CYPs in microsomal 
fractions of human and rat esophagus [68].

CYP epoxygenases as cancer drugs metabolizing 
systems 

Xenobiotic-metabolizing CYPs in GI tissues are 
involved in the first-pass clearance and could contribute to 
the activation of anticancer drugs [7, 63]. The limitation to 
the current knowledge is that CYP-mediated metabolism 
has been investigated mostly in the liver and the drug-
metabolizing function of GI CYPs remains incomplete. The 
anticancer drugs  tamoxifen and cyclophosphamide have 
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been shown to be metabolized by CYP2D6, CYP2C19 and 
CYP2B6 [63]. Notably, the CYP3A subfamily enzymes 
play a key role in the metabolism of approximately 30% 
of all clinically used drugs [69, 70]. Anticancer drugs 
metabolized by CYP3A include paclitaxel, ifosfamide, 
tamoxifen [69, 71, 72], and irinotecan [73]. A potential 
substrate-overlap between CYP3A4 and the multidrug 
resistance protein 1 (Mdr1) has been proposed [30, 74]. 
While selective expression of CYPs in GI tumors suggests 
a mechanism for drug resistance, both CYP- and Mdr1-
mediated pathways may synergistically contribute to the 
metabolism and detoxification of oral drugs.

Gene-Directed Enzyme Prodrug Therapy (GDEPT) 
utilizing drug metabolizing CYPs that activate bio-
reductive cytotoxins is a novel approach in increasing 
the efficacy of targeted therapy of drug-resistant hypoxic 
tumors. Hypoxia is a restricting factor in the clinical 
outcome of conventional cancer therapies, and promotes the 
malignant tumor progression [75]. The anti-cancer prodrug 
AQ4N [1,4-bis [2-(dimethylamino-N-oxide) ethyl] amino 
5, 8-di-hydroxyanthracene-9, 10-dione] (banoxantrone) is 
converted by CYPs to the cytotoxin AQ4 in the hypoxic 
tumor microenvironment. AQ4N does not bind to DNA, 
while its derivative AQ4 has a high DNA affinity and is 
a potent topoisomerase II inhibitor [76], preventing tumor 
cells from proliferating [77, 78]. Targeting topoisomerase 
II, a key player in cell cycle regulation, may also sensitize 
tumors to radiotherapy. AQ4N, as a potential hypoxia-
activated cancer chemotherapy drug, underwent clinical 
trials (NCT00394628) [79]. It has been shown that intra-
tumoral injection of CYP3A4, CYP2B6 [77] and CYP1A1 
[80] gene constructs in combination with AQ4N and 
radiation suppresses the growth of tumors in RIF-1 sarcoma 
mouse model. To our knowledge, there are no known 
GDEPT studies on GI cancer models. Indeed, because 
of their bio-metabolic characteristics, GI tumors may be 
a good candidate for radio-sensitization by exogenous 
CYPs-mediated drugs activation in a hypoxic tumor 
microenvironment.  

Tumor-specific expression of CYP2W1 and 
its ability to activate multiple prodrugs to cytotoxic 
metabolites in mouse xenograft models of colorectal 
carcinoma (CRC) suggest that this enzyme may be an 
important target for CRC treatment [57, 60]. An approach 
was proposed to use CYP2W1 as a new tumor-associated 
antigen for cancer immunotherapy [57]. Notably, the 
imatinib-induced expression of tumor CYP2W1 followed 
by activation of duocarmycin prodrugs was suggested 
as an adjuvant therapy of CRC [57]. Additionally, 
CYP2W1 was reported to metabolize high affinity 
exogenous indolines, especially chloromethylindolines, 
into cytotoxic metabolites that inhibit growth of human 
colon tumors in a mouse xenograft model [60, 61]. The 
CRC specific expression of CYP2W1 and its effective 
activation of prodrugs makes it a valuable target for 
novel cancer therapeutics. Although CYP2W1 substrates 
comprise various endogenous compounds, including 
arachidonic acid, retinoic acid, and lysophospholipids 
[60, 61], additional substrates for this enzyme need to be 
investigated and further studies are required to verify if 
CYP2W1 is a specific drug target in CRC treatment. 

An increasing body of evidence indicates that many 
medications, including those used in cancer treatment, are 
substrates for CYP2J2 [81]. CYP2J2 and CYP3A4 play 
a key role in the metabolism of cancer drugs known to 
cause cardiotoxicity [82]. The most studied case is the 
chronic and irreversible dose-dependent toxicity induced 
by Doxorubicin (DOX), an anthracycline used for the 
treatment of solid tumors and hematologic carcinomas. 
Frequent adverse side effects related to DOX include acute 
cardiomyopathy, chronic heart failure, and arrhythmias 
[82, 83]. Production of reactive oxygen species has 
been shown as the underlying mechanism of DOX 
cardiotoxicity [84]. Furthermore, DOX and its metabolite 
7-deoxydoxorubicin aglycone (7-de-aDOX) have been 
shown to inhibit CYP2J2-mediated synthesis of EETs 
through binding to the active site of the enzyme [85]. It 
is highly possible that the metabolic activity of GI tract 

Table 2: Overview of CYP protein expression in neoplastic GI tissues
GI organ/tissue localization  CYP isoforms References

Neoplastic tissues
Barrett’s esophagus/esophageal squamous 
mucosa

CYP1A2, CYP3A4, CYP2E1, CYP2C9/10 [43]

ESCC CYP1A↑, CYP2C↑, CYP3A↑ 
CYP3A4, CYP3A5, CYP2C8, CYP2E1
CYP2J2↑

[41]
[42]

[3]
EAC CYP2J2↑ [3]
Gastric cancer CYP1A, CYP3A

CYP2J2↑
[49]
[3]

Colon adenocarcinoma CYP2J2↑
CYP2W1↑

[3]
[55, 59]
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associated CYPs could also contribute to the cardiotoxicity 
of anti-cancer drugs. More studies on how the expression 
and activity of CYP2J and CYP4A in the digestive system 
affect drug concentration, production and elimination of 
toxic metabolites can help in the development of new 
effective cancer drugs. A summary of GI associated CYP 
enzymes that are important for the cancer drug metabolism 
is shown in Table 3. 

CYP polymorphisms and gastric cancer risk

The drug-metabolizing function of CYPs can be 
affected by genetic polymorphism of these enzymes. 
Adverse side effects and cancer therapy failure are 
associated with individual CYPs variability in drug 
pharmacokinetics and response [69, 86]. Most of human 
CYPs implicated in xenobiotics turnover belong to CYP1, 
CYP2, CYP3, and CYP4 families [10]. Multiple allelic 
variants within each of these gene families generate a 
high level of pharmacogenetic heterogeneity. Although 
several studies have established a link between genetic 
polymorphisms of CYPs and various pathologies, it 
remains unclear whether genetic polymorphisms of CYPs 
are associated with increased risks of GI cancers. 

While multiple studies have shown that CYP1A1 
genetic polymorphisms (CYP1A1 Msp I and CYP1A1 
Ile/Val) could be risk factors for esophageal, gastric, 

and colorectal cancers [87], the current data remain 
controversial. Notably, a meta-analysis of the published 
data of CYP1A1 and CYP1A2 polymorphisms in different 
ethnicities revealed possible associations between CYP1A1 
MspI and CYP1A2*1F polymorphisms and gastric cancer, 
and no significant associations between CYP1A1 Ile462Val 
polymorphism and gastric cancer [88]. Conversely, a meta-
analysis of available clinical data in the Chinese population 
performed by Liu and colleagues demonstrated that 
CYP1A1 Ile/Val genetic polymorphisms, but not CYP1A1 
MspI polymorphisms, are associated with an increased 
GI cancers risk [87]. Particularly, the study of single 
nucleotide polymorphisms (SNPs) of CYP1A1 (rs4646421, 
rs4646422, and rs1048943), GSTM1, and GSTT1, the 
key enzymes in the carcinogen metabolizing pathway, 
revealed that CYP1A1 (rs4646422) polymorphism could 
be implicated in gastric carcinogenesis in the Japanese 
population [89]. Interindividual variation in CYP2J2 
expression has been assessed in relation to genetic 
polymorphism. Notably, 10 distinct star alleles have been 
identified [69]. The most common CYP2J2 allele variant 
with functional relevance is CYP2J2*7, which arises at 
frequencies of 2–17% in various populations. The key SNP, 
rs890293, is in the proximal promoter at (−76 G>T) and 
disrupts one of the SP1 binding sites, which results in 50% 
decrease of promoter activity as compared to the wild-type 
promoter [90]. 

Figure 1: A schematic representation depicting the role of extrahepatic GI system CYPs in carcinogenesis. Exposure 
of normal GI tissues to xenobiotics and endogenous substrates (AA, PUFA & sterols) alters expression of CYPs, leading to production of 
toxic and proinflammatory metabolites that contribute to development of GI cancers. For illustration, protein of CYP2J2 was evaluated by 
IHC in normal and cancer GI tissues.
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Pharmacogenetic studies in patients with gastric 
ulcers under H. pylori eradication therapy demonstrated the 
effect of CYP2C19 polymorphism on pharmacokinetics of 
proton pump inhibitors (PPI), omeprazole, lansoprazole, 
pantoprazole, and to a lesser extent, rabeprazole [91, 92]. 
Therefore, genotypes of CYP2C19 were classified as rapid 
metabolizers (RM: *1/*1), intermediate metabolizers (IM: 
*1/*X), and poor metabolizers (PM: *X/*X). *1 and *X 
represent the wild-type and mutant allele, respectively 
[93]. The pharmacokinetics and pharmacodynamics 
of PPIs varied among these three CYP2C19 genotype 
groups. The lowest plasma PPI levels and intragastric 
pH following PPI treatment were the lowest in the RM 
group, intermediate in the IM group, and the highest in 
the PM group [93]. Several pharmacogenomic studies 
that include patients of different ethnicities demonstrated 
that PPI induce the increase of intragastric pH, promote 
ulcer healing, and improve efficacy of the antibiotics and 
overall treatment outcome according to the CYP2C19 
polymorphism [93–96]. Since PPIs are commonly used in 
the treatment of reflux esophagitis, gastroesophageal reflux 
disease (GERD), Zollinger–Ellison syndrome, non-ulcer 
dyspepsia, and NSAID-related damage, the healing process 
in the therapy of these diseases was predictably affected 
by CYP2C19 genotype [91, 93, 96, 97]. Surprisingly, 
esomeprazole-induced healing of GERD was not associated 
with the CYP2C19 polymorphism and was explained by the 
CYP3A4 metabolic activity [98]. Therefore, personalized 
H. pylori eradication protocols that include inhibition of 

excessive acid secretion and antimicrobials can achieve 
higher eradication rates, improve healing process, and 
prevent neoplastic transformation of gastric epithelium. 

Knowledge of the intrinsic and extrinsic factors that 
regulate expression and function of the CYP enzymes is 
a requirement for predicting variable pharmacokinetics 
and drug treatment response. While monogenic 
polymorphisms explain the variability for only few 
enzymes, most enzymes are controlled by several factors 
that include additional polymorphisms in regulatory genes 
and factors such as sex, age, disease, and hormones [69].

CONCLUSIONS AND PERSPECTIVES

There is a growing body of evidence that changes 
in the CYPs expression and enzymatic activity may 
play a major role in the GI cancer pathogenesis and 
progression. The expression of CYPs varies throughout 
the different parts of alimentary canal and this pattern 
is altered in cancerous tissues. Xenobiotics following 
absorption through intestinal wall and their metabolism by 
intestinal CYPs pass to liver through the portal vein [55, 
99]. Hepatic CYPs in a coordinated fashion perform the 
final stages of drug metabolism to maintain the capacity 
of the digestive organs for first-pass clearance of orally 
administered drugs [99]. Some studies have recently 
implicated the CYP metabolites in inflammation and 
tumorigenesis [62]. The published data strongly suggest 

Table 3: CYPs of clinical importance for cancer drug metabolism and clearance expressed in the 
GI tract
CYP isoforms Substrates References
CYP3A, CYP3A4 Taxol, Ifosfamide, Tamoxifen

Irinotecan
Docetaxel
Cyclophosphamide

[71] 
[72]
[73]
[100]

CYP2B6 Tamoxifen
Cyclophosphamide

[71, 100, 101]

CYP2C19 Tamoxifen
Cyclophosphamide

[63, 100]

CYP2C9 Cyclophosphamide [100]
CYP2D6 Tamoxifen

Cyclophosphamide
[70, 72, 100]

CYP2J2 Tamoxifen
Doxorubicin 

[102]
[84, 85]

CYP2S1 1,4-bis [2-(dimethylamino-N-
oxide) ethyl] amino 5, 8-di-
hydroxyanthracene-9, 10-dione 
(AQ4N)
N-hydroxylamine drug 
2-(4-amino-3-methylphenyl)-5-
fluorobenzothiazole

[103–105]

CYP2W1 Chloromethylindolines [59, 60]
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that exposure of GI tract-associated tissues to endogenous 
and exogenous substrates alters expression of CYPs, 
leading to production of proinflammatory metabolites that 
play a key role in tumorigenesis (Figure 1). 

The available clinical data point to an important role for 
GI tract associated extrahepatic CYPs in cancer pathogenesis. 
Notably, increased expression of individual CYPs in GI 
cancer cells provides an opportunity for development of 
compounds that would be specifically metabolized. In 
addition, selective expression of CYPs in GI tumors strongly 
suggests a mechanism for drug resistance. Targeting CYP-
mediated mechanisms of cancer drugs breakdown could help 
to address the major challenges in current chemotherapies, 
especially drug toxicity and resistance. The CYP2C19 
genetic polymorphism has been shown that it could predict 
the clinical outcome of patients with gastric ulcers or GERD 
treated with PPIs [91, 93, 96, 97]. This pharmacogenetic 
approach could be applied to individual GI cancer patients 
to predict sensitivity or resistance to anti-cancer drugs. The 
development of this precision medicine strategy requires 
extensive genotyping of highly expressed CYPs in GI tumors 
and assessing the pharmacokinetics of various drugs and 
response to treatments. It is plausible that metabolizing drugs 
by specific CYP genotypes could lead to drug neutralization 
or generation of more toxic metabolites for tumors. 
Additionally, activation of bio-reductive cytotoxins through 
CYP gene-directed prodrug therapy is another potentially 
highly effective approach in the targeted treatment and radio-
sensitization of drug-resistant hypoxic GI tumors. More 
studies investigating the mechanisms of CYPs expression and 
activity in the digestive tract system in relation to the drug-
metabolizing functions will be required for the development 
of new and effective targeted cancer therapeutic approaches. 
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