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ABSTRACT
Chronic lymphocytic leukemia (CLL) is a malignancy disease characterized by the 

expansion of CD5+ B-1 cells. The NZB mouse model of CLL shows similarities to human 
CLL, has age-associated increase in malignant B-1 clones and decreased expression 
of miR-15a/16. It was demonstrated that systemic lentiviral delivery of miR-15a/16 
ameliorates disease manifestations in this mouse model. Nowadays, new therapeutic 
approaches have been focus on miRNA in cancer cells. Natural compounds like 
quercetin can modulate these miRNAs, consequently, suppress oncogenes or stimulate 
tumor suppressor genes by altering miRNA expressions. Here we investigate the 
effects of quercetin on miRNA15a/16 expression by radio-resistant B-1 cells. It has 
been described that a small percentage of B-1 cell survives to irradiation in vitro, and 
these cells show similarities to B-CLL cells. In these cells, the level of miR15a/16 is 
diminished and Bcl-2 is overexpressed. Quercetin treatment restore both, miR15a/16 
and Bcl-2, to normal levels. Furthermore, transference of radioresistant B-1 cells 
to NOD/SCID mice causes an expansion of this population and also a migration to 
the liver. However, after quercetin treatment, even radioresistant B-1 cells are not 
able to expand or disseminate in vivo, and the levels of miR15a/16 and Bcl-2 are 
also normalized. Our data support the hypothesis that quercetin is an important 
adjuvant molecule that acts on miRNA15a/16 level and leads cells more permissive to 
apoptosis. This work could help to design new approaches to therapy in CLL patients.

INTRODUCTION

Chronic lymphocytic leukemia (CLL), the most 
common leukemia in the Western world, is clinically 
defined by the accumulation of dysfunctional CD5+ B 
cells [1]. Heterogeneity of mutations can be associated 
with CLL pathogenesis. Survival and proliferation 
of CLL cells depend on intrinsic alterations and also 
microenvironmental signals [2, 3]. However, it is a not 
solved puzzle of how the perturbations between signals 
that promote proliferation and apoptosis could cause the 
clonal expansion of CD5+ B cells.

Several signaling pathways are deregulated in CLL. 
Wnt/beta-catenin pathway regulates hematopoiesis by 
controlling the survival, proliferation and differentiation 

of hematopoietic cells [4]. Consequently, disturbances 
in the Wnt signaling pathway have an important role in 
many hematopoietic system malfunctions. Mangolini 
M et al. [5] show microenvironment-dependent 
mechanisms of Wnt activation in malignant B cells [5]. 
Pharmacological inhibition of the Wnt pathway impairs 
the microenvironment-mediated survival of tumor cells. 
In comparison to normal B and T cells, B-CLL cells 
show elevated levels of Wnt3 gene expression [6]. Lu 
D et al. [4] also described that at least six Wnt genes 
are overexpressed in CLL cells (Wnt 3, Wnt5b, Wnt6, 
Wnt10a, Wnt14, and Wnt16) and also Fzd3 and its co-
receptor LRP5 and 6. These authors also show that partial 
inhibition of Wnt/pathway by R-etodolac shortened the in 
vitro survival of the CLL cells, contrariwise to SB-216763 
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(GSK-3β inhibitor) treatment that enhances CLL survival. 
However, the translation of this to in vivo application 
was unsuccessful due to its high doses greater than 250 
µM. Other small molecule inhibitors (PKF115-584 and 
CGP049090) of Wnt/beta-catenin pathway succeed to 
diminish both in vitro and in vivo CLL survival [7]. These 
authors stated that these compounds did not affect health 
B cells in vitro and also are well tolerated at doses that 
are effective for CLL cell killing in vivo in the CLL-like 
xenograft model in nude mice.

Quercetin (3,3′,4′,5,7-pentahydroxyflavone) is 
another well described inhibitor of Wnt/beta-catenin 
pathway. It is a natural flavonoid widely present in fruits 
and beverages [8]. The flavonoid anticancer activity is 
correlated to its ability to induce apoptosis in tumor cells 
by increase pro-apoptotic proteins, such as BAX and 
caspase families, and decrease of the antiapoptotic proteins 
like Bcl2 [9]. In association with ABT-737, quercetin 
synergistically induced apoptosis in B-CLL cells [10]. It is 
also been described that quercetin functional mechanisms 
are its influence in different miRNA expression [11]. 
Sonoki et al. [12] demonstrated that quercetin increased 
miR-16 expression dose-dependently in lung A549 
adenocarcinoma cells.

Interestingly, quercetin shortened murine B-1 cell 
survival in vitro and also diminishes the proliferation of 
these cells [13]. B-1 cells are a subtype of B lymphocytes, 
that are originate from a fetal precursor and are maintained 
in adult life mainly by self-renewal of mature B-1 cells. 
The proliferation and maintenance of B-1 cells are related 
to constitutively elevated levels of STAT-3, and IL-6 and 
IL-10 are important cytokines in this process [14]. Novo 
et al. [13] suggested that reduction in B-1 cell survival 
after quercetin treatment could be due to a decrease in 
IL-6 levels in the cultures. B-1 cells express the main 
Fzd receptors and LRP5 and 6 co-receptors, with high 
expression of Fzd6 and Fzd9. Wnt3 stimulates B-1 cells 
to proliferate in vitro and also increases the expression of 
IL7R. Furthermore, B-1 cell precursor in the presence of 
Wnt3a ligand is induced to differentiate into B-1a cells 
[15].

In an Eµ-TCL1 mouse model of chronic lymphocytic 
leukemia, it was described that Wnt16, Wnt10a, Fzd1 
and Fzd6 are pronounced increased in CD5+ B cells. By 
crossing Eµ-TCL1 mice with Fzd9−/− or Fzd6−/− mice, 
the authors observed that Fzd6 impacts on the course of 
leukemogenesis, but not Fzd9−/− [16]. Besides transgenic 
mouse models, New Zealand Black/White (NZB/NZW) 
mouse strain is characterized by age-associated CLL-like 
symptoms such as splenomegaly and CD5+ B1 cell hyper-
proliferation with aberrant expression of Pax5, Bcl- 2 
and Cyclin-D1 among others [17]. NZB/NZW B-1 cells 
survive for a long time and increase malignant potential 
[18]. Also, NZB/NZW B-1 cells are radioresistant to high 
doses (8 Gy) of ionizing in vitro and in vivo [19]. Otero et 
al. [20] demonstrated that high doses of irradiation deplete 

completely B-2 lymphocytes from peritoneal cavity, but 
not all B-1 cell populations. Corroborating to this, it has 
been described that a small percentage of healthy B-1 cells 
survive to irradiation in vitro [21, 22]. Furthermore, this 
selective radio-resistant B-1 cell population has increased 
in survival and proliferation activity in vitro and also 
presents hyperploid and CLL morphology [21].

Herein, radioresistant B-1 cells were treated 
with quercetin in vitro, which reduces cell survival and 
proliferation. This study aimed to determine if quercetin 
could block the anti-apoptotic profile of radioresistant B-1 
cells by interfering in miRNA levels and Bcl-2.

RESULTS

Radio-resistant B-1 cells survives and 
proliferates in vitro

Observed resistance of a small population of B-1 
cells to radiation prompted us to investigate the role of 
miR15a/16 in this phenomenon. Firstly we confirmed that 
phenotype of B-1 cells and also that part of B-1 cells are 
able to survive in vitro, at least for 7 days after irradiation 
(Figure 1A–1C). It is important to mention that B-2 cells 
do not survive in vitro after irradiation (data not shown) 
[20, 23, 24]. It is clear that the number of viable cells 
after irradiation decreases in relation to control group, 
however it is important to note that the proliferation of 
these cells augments after 7 days (Figure 1D–1E). At day 
7, it is possible to observed a ~6 fold increase in control 
group, while irradiated B-1 cell pool increase ~14 fold. 
This result suggested that despite a large population of 
B-1 cells has been affected by irradiation, radio-resistant 
B-1 cells that survive in culture are resistant to apoptosis 
and also able to proliferate. The apoptosis resistance is 
corroborated by elevated levels of Bcl-2 expression in 
radio-resistant B-1 cells (4 fold increased in comparison 
to control group – Figure 1F).

Quercetin treatment facilitates apoptosis of 
radio-resistant B-1 cells

Several pathways are involved in lymphocyte 
proliferation, further it is known that some pathways are 
involved in the increase proliferation status or resistance 
of apoptosis in neoplastic cells. Previous work has 
shown that Wnt/beta-catenin pathway is important to 
B-1 cell survival in vitro [13]. The blockage of Wnt/beta 
catenin pathway by quercetin reduces B-1 survival and 
proliferation in vitro [13]. To focus on this pathway, it was 
analyzed the expression of the main components of Wnt/
beta-catenin pathway after irradiation. Interestingly, the 
irradiation increase the expression of the main components 
of Wnt/beta-catenin signaling in B-1 cells, such as the 
receptors Fzd6, Fzd9, LRP5 and also the Wnt3a ligands 
(Figure 2).
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Next, quercetin treatment was used to block the Wnt/
beta-catenin pathway. In comparison to radiated B-1 cells, 
the presence of quercetin diminishes levels of Wnt3a, 
Wnt5a, Fzd9, LRP5 (Figure 3A–3D). Despite of Fzd6 is 
increase in RAD and RAD+QUER group in relation to 
control group; it was no observed difference between these 
two experimental group (Figure 3E). As demonstrated 
previously [13], quercetin treatment decreases the viability 
of B-1 cells in culture after 3 days in comparison to 
control. This effect was also observed in radio-resistant 
B-1 cells. Addition of quercetin to radio-resistant B-1 cell 
culture abolishes its resistance to apoptosis (Figure 4A 
and 4B). Furthermore, quercetin treatment of irradiated 
B-1 cells provokes a reduction in Bcl-2 expression 
(Figure 4C). One of mechanism that regulated Bcl-2 
expression is miR15/16a [25]. Corroborating the previous 
result, the levels of miR15a-16 are reduced when B-1 cells 
were irradiated, but it is increased when these cells are 
treated with quercetin (Figure 4D). Taking together, these 
data suggest that quercetin treatment could influence the 
levels of Bcl-2 and also restore the levels of miR15a-16.

Quercetin treatment is able to reduce B-1 cell 
expansion in vivo

It has been demonstrated that radio-resistant B-1 
cells acquire some characteristics of CLL-like cells [21]. 
Based on previous results, we investigated if irradiated 

B-1 cells could survive in vivo. Radio-resistant B-1 
cells and quercetin-treated radio-resistant B-1 cells 
were adoptively transferred to peritoneal cavity of 
immunodeficient mice. As observed in Figure 5A, after 
adoptive transference irradiated B-1 cells are able to 
survive in vivo in the peritoneal cavity. However, when 
these cells were treated with quercetin the number of cells 
recovered from peritoneal cavity was at least 3× time 
decreased (Figure 5A). It was also detected that quercetin 
treatment restored the levels of miR15a/16 in irradiated 
B-1 cells (Figure 5B), even after 72 hours of transference 
in vivo. Corroborating to this, it was observed that BCL-
2 expression is decreased in irradiated B-1 cells after 
quercetin treatment (Figure 5C).

Besides to survive to adoptive transference, 
irradiated B-1 cells enlarge and migrate to other organs. 
To demonstrate that irradiated B-1 cells acquire resistance 
to apoptosis, multiple passages in vivo were made after 
irradiation. Firstly, B-1 cells were submitted to irradiation 
and culture for 72 hours. After this, these cells were 
injected in the peritoneal cavity of immunodeficient mice. 
After 15 days cells from peritoneum were collected and 
GFP+ cells are counted (Figure 6B). These cells were 
separate by cell sorting and inoculated to other mice. 
As observed in Figure 6A, after 4 passages, despite B-1 
cells were recovered from peritoneal cavity, no expansion 
of B-1 cell population was observed. It is important to 
mention that B-1 cells from control group (non-irradiated) 

Figure 1: Enlarge of cell survival and proliferation of B-1 cells after irradiation. Peritoneal B-1 cells were submitted to 
culture after irradiation (3,5Gy–RAD) or not (control group – CTL). These cells were collected and the parameters were analyzed after 
1 and 7 days in culture. (A) Representative dot plots of B-1 cell phenotype in control and irradiated group, after 7 days in culture. (B) 
Percentage of viable B-1 cells. (C) Absolute number of viable B-1 cells. (D) Histogram represents the cell proliferation after 7 days in 
culture. CTL – red, RAD – blue, the cut-off for dye dilution – gray. (E) Absolute number of B-1 cells in proliferation. (F) Bcl-2 expression 
by B-1 cells. Data are representative of two independent experiments performed in triplicate. *p < 0,05, **p < 0,01, ***p < 0,001, and #p < 
0,01 when results in 1 day was compared to same group at 7 days. Student’s t-test was performed.
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Figure 2: Radio-resistant B-1 cells have higher expression of Wnt3a, Fzd6 and LRP5. Relative expression of some 
components of Wnt pathway. Expression was normalized by control group (non irradiated cells). Student’s t-test was performed. *p < 
0,01. All values are statically different from control group, except axin2, Fzd6 (7days), LRP6. Data are representative of two independent 
experiments performed in triplicate.

Figure 3: Quercetin treatment reduces expression of Wnt pathway components. Relative expression of Wnt3a (A), Wnt5a 
(B), LRP5 (C), Fzd9 (D) and Fzd6 (E). Expression was normalized by control group (non irradiated cells). Student's t-test was performed. 
*P < 0,01. Data are representative of two independent experiments performed in triplicate.
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were also transferred to mice as control, but non expansion 
was observed along the time, meaning that same amount 
of cells (~5 × 105 cells) was recovered along the time 
(Figure 6A). However, after P10 it was observed a huge 
expansion of irradiated B-1 cells. Furthermore, irradiated 
B-1 cells were also detected on liver after P7 (Figure 6C). 
GFP+ cells were not detected in the liver when control 
B-1 cells were transferred. B-1 cells derived from control 
group were also not found in bone marrow, peripheral 
blood and spleen.

It was also observed that quercetin treatment of 
irradiated B-1 cells abolish the ability to expand in vivo, 
and also to migrate to other organs. In this group only 
5 passage were performed because the number of cells 
recovered in P5 was less than 100 cells per mice (Figure 
6D). This result suggest that restoration of miR15a/16 by 
quercetin treatment could be an important factor to the 
restitution of apoptosis sensibility of B-1 cells.

DISCUSSION

One of the challenges against CLL is the purpose 
of new therapeutic strategies to bypass the acquired 
resistance to apoptosis cells. Several reports bring 
evidences that quercetin treatment is able to reduce 
CLL survival in vitro [10, 26–28]. The novelty in the 
data showed here is that it is clearly demonstrated that 

quercetin shortened the survival of radioresistant B-1 cells 
in vitro by restored miRNA 15a/16 levels and reduce the 
expression of BCL-2.

In human CLL, some previous studies suggested 
that Wnt signaling components are significantly up 
regulated compared with their expression in normal 
B cells [4, 29]. Wu et al. [16] demonstrated that up-
regulation of Fzd6 is important, although not essential, to 
leukemogenesis. Corroborating to this, Eµ-TCL1 animals 
lacking the Fzd6 gene show decreased levels of beta-
catenin and delay in tumor growth [16]. Herein, it was 
demonstrated that radioresistant B-1 cells could be more 
responsive to Wnt signaling considering that several Wnt 
components; mainly Fzd6 receptors and co-receptors are 
higher expressed in these cells in comparison to normal 
B-1 cells. Besides to this, radioresistant B-1 cells also 
augment the levels of Wnt3, which could amplify the Wnt 
signaling and maintain the cell survival.

Antagonizing Wnt signaling in radioresistant B-1 
cells with quercetin results in diminish of cell survival in 
vitro and in vivo. Corroborating to this we demonstrate that 
levels of miR15a/16 are restored and Bcl-2 are diminished. 
It has been described that quercetin directs bind to the BH3 
domains of Bcl-2 and Bcl-x proteins, causing inhibition 
of their anti-apoptotic activity [30]. The mechanisms 
involved in the augment of antiapoptotic Bcl-2 factors in 
CLL are still unclear. Some patients carry del13q14, which 

Figure 4: Quercetin treatment reverts the anti-apoptotic effects of irradiation. Peritoneal B-1 cells were submitted or not to 
irradiation and cultivated for 3 days in the presence or not of quercetin (100 µM). (A) Representative dot plot of Annexin V/7-AAD staining 
of control, quercetin, irradiated and irradiated + quercetin groups. (B) Percentage of viable B-1 cells. The cell viability was assessed by 
Annexin V Apoptosis Detection Kit. (C) Relative expression of BCL-2. (D) Relative expression of miR15a/16. Control group (non-treated 
cells) is the normalizer sample. *p < 0,01, **p < 0,001. Data are representative of two independent experiments performed in triplicate. 
Student's t-test or One-Way ANOVA with Bonferroni post hoc test.
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causes the deletion of microRNAs miR-15a and miR-16, 
which down-regulate Bcl-2 expression [25, 31]. Liu et 
al. [32] demonstrated that p53-miR-15a/16-Mcl-1 axis 
may be a critical pathway in the regulation of apoptosis 
and drug resistance in CLL, considering the impact of 
quercetin in decrease the viability of radioresitant B-1 
cells by modulate the levels of miR15a/16-Bcl-2 could 
point an important adjuvant in the CLL treatment.

Interestingly, radioresistant B-1 cells were able to 
expand in vivo and also disseminate to other organs such 

as liver. Quercetin treatment reverts this phenomenon, 
because quercetin-treated radioresistant B-1 cells 
transferred to a peritoneal cavity of mice were not 
recovered after 72 hours. The levels of miR15a/16 in these 
cells are augment. Furthermore, when these quercetin-
treated radioresistant B-1 cells were submitted to a 
multiple passage in vivo, few cells were recovered and no 
expansion or dissemination was observed. Corroborating 
to this, Underbayev et al. [33] demonstrated that both 
miR-15a deficient HSC and B-1 cell progenitors are 

Figure 5: Quercetin blocks survival of radio-resistant B-1 cells in vivo. Peritoneal B-1 cells were submitted to irradiation and 
cultivated for 3 days in the presence or not of quercetin (100 µM). These cells were inoculated i.p. in NOD/SCID mice. After 24 and 72, 
peritoneal cells were collected and the amount of B-1 cells recovered was analyzed. (A) Number of viable B-1 cells. (B) Relative expression 
of miR15a/16. (C) Relative expression of BCL-2. In B and C, control group (non-treated B-1 cells) normalized the samples. *p < 0,01, *p 
< 0,001. Data are representative of two independent experiments performed in triplicate. One-Way ANOVA with Bonferroni post hoc test.
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capable of repopulating irradiated recipients and produce 
higher numbers of B1 cells than sources with normal miR-
15a/16 levels.

It has been showed that miR15a down-regulates a 
number of critical genes relate to lymphocyte survival, 
such as IL10 and Mmp10. Studies with NZB IL10 

knockout mice evidence the IL10 role in B-1 cell 
expansion and development of CLL [33, 34], whereas 
Mmp10 works by accelerating the tumor growth [35]. 
Despite of quercetin did not influence IL-10 levels in 
B-1 cell culture, it was detected high levels of IL-6 after 
quercetin treatment [13]. Considering all these data 

Figure 6: Irradiated B-1 cells survival and disseminate in vivo after multiple passages. Peritoneal B-1 cells (GFP+) were 
submitted to irradiation and cultivated for 3 days in the presence or not of quercetin (100 µM). These cells were inoculated i.p. in NOD/
SCID mice. After 15 days, peritoneal cells were collected, peritoneal B-1 cells (GFP+) was recovered and inoculated in another mice. This 
procedure was repeated each 15 days for 22 passages. (A) Number of B-1 cells (GFP+) recovered in each passage from peritoneal cavity. 
(B) Representative plots of GFP+ gate from passage 1 (P1) and passage 22 (P22) from peritoneal cavity of mice that received irradiated 
B-1 cells. (C) Number of B-1 cells (GFP+) recovered from liver. It is important to note that only irradiated B-1 cells (GFP+) were found 
in the liver, B-1 cells from control group were not detected. (D) After quercetin treatment, B-1 cells are not able to survive and expand in 
vivo. Number of B-1 cells (GFP+) recovered from peritoneal cavity from mice inoculated with radio-resistant B-1 cells (RAD) or quercetin-
treated radio-resistant B-1 cells (QUER+ RAD). n = 2 for each experiment.
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together, we could postulate that quercetin acts on miR15a 
and suggest that it could interferes in several mechanisms 
of B-1 cell survival.

Alterations in the primary mir-15a/16-1 loci were 
associated to the development of CLL in the New Zealand 
Black murine model (14), and exogenous miR-16 levels 
restored levels of cyclin D1 in B cells from NZB mice. 
Furthermore, restoration of miR-16 levels enhances 
the ability of nutlin and genistein to promote apoptosis 
of malignant B-1 cells [36]. Based on this, quercetin 
treatment could be an adjuvant to increase the sensibility 
of malignant cells to therapy.

Several small molecules has been described to 
inhibit Wnt pathway and for this reason controls CLL 
growth [7]. In this context the main concern is a usage 
dose that have more efficiency than deleterious effects. 
Herein, we demonstrated a non-toxic and prolonged 
effect of quercetin in control radio-resistant B-1 cells. We 
postulate that this approach could be important for those 
patients that have a reduction on miR15a/16 levels, but 
not ch13q14 deletions. Of course, this study must have 
to be more detailed before to be extrapolated to human 
therapy. However it is an important clue of how molecular 
mechanisms in a malignant cell could be explored in 
benefit to development of new therapies or improvement 
of existing ones.

MATERIALS AND METHODS

Animals

C57Bl/6, C57Bl/6 GFP and NOD/SCID mice 
from 6 to 8 weeks of age were obtained from the Centro 
de Desenvolvimento de Modelos Experimentais para 
Biologia e Medicina (CEDEME) of the Universidade 
Federal de São Paulo (UNIFESP, Brazil) and housed under 
specific pathogen-free conditions at animal facility of the 
Discipline of Immunology / UNIFESP. This project was 
approved by the research ethics committee of UNIFESP 
(CEUA N° 4035240615 and 2014/8832030914).

Peritoneal B-1 cell culture

Peritoneal cells were obtained and submitted to 
irradiation (3.5 Gy). Then, these cells were dispensed 
into 24-well plates (Corning Costar, Tokyo, Japan) and 
incubated at 37°C in 5% CO2 for 40 min. Non-adherent 
cells were discarded, and RPMI-1640 containing 10% fetal 
calf serum (Cultilab, Campinas, SP, Brazil) (R10) was 
added to the adherent fraction, followed by incubation at 
37°C in 5% CO2. Accordingly to Almeida et al. [37], after 
24 h B-1 cells are the main cell type in the non-adherent cell 
populations. Herein, non-adherent cells (B-1 cells) were 
collected and used in some experiments. Nonirradiated B-1 
cells were cultivated in the same conditions and were used 
as control. Quercetin (100 µM) was added daily to cultures 

in quercetin-treated group (QUER) and quercetin-treated 
irradiated group (RAD + QUER).

Viability analysis

B-1 cells from peritoneal cell culture were collected 
and resuspended in 1 ml of PBS with 1 ul of the marker 
LIVE/DEAD Fixable Aqua Dead Cell Stain Kit (Life 
Technologies) and incubated for 30 min at 4°C. After 
this, cells were stained with the following antibodies: 
phycoerythrin (PE) rat anti-mouse CD19, fluorescein-
isothiocyanate (FITC) rat anti-mouse CD23 and peridinin 
chlorophyll protein complex (PerCP) rat anti-mouse 
CD11b. All antibodies were from BD Biosciences 
(Pharmingen, San Diego, CA). Cells were maintained 
for 25 min at 4°C. Fifty thousand events were acquired 
on Attune®Acoustic Focusing Flow Cytometer (Life 
Technology, Applied Biosystems), and analysis was 
performed using FlowJo software (Tree Star). For the 
analysis, CD19+CD23−CD11+CD5+/− cells (B-1 cells) 
number was determined. Considering this population, 
viable or non-viable cells were counted based on the 
LIVE/DEAD staining.

Apoptosis detection

B-1 cells were cultured in the conditions described 
previously, collected and stained for cell death using 
Annexin V Apoptosis Detection Kit (BDPharmingen), 
accordingly to manufacturer’s instructions. Briefly, cells 
were resuspended in the Binding Buffer, and 100 μl of cell 
suspension were used for apoptosis staining. These cells 
were incubated with 5 μl/sample of PE Annexin-V and 
5 μl/sample of 7-AAD for 15 min at room temperature in 
the dark. After this, 400 μl of Binding Buffer was added 
and cells were submitted to acquisition by FACSCantoII 
(BD Biosciences). The analysis was performed using 
FlowJo software (Tree Star).

Cell trace violet proliferation assay

B-1 cells were cultured in the conditions described 
previously and proliferation was measured using Cell 
Trace Violet Proliferation Kit (Life Technology), 
accordingly to manufacturer’s instructions. The acquisition 
was performed in the Attune®AcousticFocusing Flow 
Cytometer (Life Technology, Applied Biosystems) 
instrument and analysis were performed using FlowJo 
software (Tree Star).

B-1 cell enrichment

Cells from the peritoneal B-1 cell culture, submitted 
to conditions described in each experiment, were 
submitted to separation by selection in FACSAriaII (BD 
Biosciences). Cells in the non-adherent fraction were 
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harvested, labeled with biotin-conjugated rat anti-mouse 
CD19 (BD Biosciences) and the CD19+ population 
enriched by using Anti-Biotin MicroBeads and MS 
Columns (Milteny Biotec) accordingly to the manufacturer 
instructions. Enrichment of ≥ 98% of CD19+ cells was set 
as the minimum acceptable experimental condition. The 
percentage of B-1 cell enrichment was verified by the 
addition of streptavidin-PE (BD Biosciences) and analysis 
in a FACS CantoII system (BD Biosciences).

RNA isolation and quantification

Total RNA was extracted using Tryzol (Invitrogen, 
Carlsbad, CA, USA) according to the manufacturer’s 
instructions. miRNA specific cDNA was prepared using 
the TaqMan® MicroRNA Reverse Transcription (Applied 
Biosystems, Foster City, CA, USA). The following pre-
made TaqMan Assays (Applied Biosystems) were used 
for real-time quantification: mmu-miR-15a-5p (Assay ID 
000389), U6 (Assay ID 001973).

Bcl-2, FZD receptors gene, Wnt3a, Wnt5a, AXIN2 
transcripts were quantified using the cDNA was obtained 
using FAST Sybr Green Reagent (Thermo Fisher Scientific, 
Carlsbad, CA, USA), from cDNA obtained using the 
Superscript IV cDNA Synthesis (Thermo Fisher Scientific, 
Baltics, Lithuania). RPLP0 expression was used as a 
normalization housekeeping control. Relative quantification 
was determined according to the 2−∆∆Ct method. Each 
reaction was carried out in triplicate using at least 3 biologic 
samples. The sample used as normalizer was B-1 control.

B-1 cell transference

B-1 cells were obtained from peritoneal cavity of 
C57Bl/6 GFP mice. The culture of peritoneal cells was 
performed as described before, and cells were submitted to 
irradiation and/or quercetin treatment. Quercetin (100 µM) 
was added daily in cultures. After 72 hours, B-1 cells were 
enriched by cell sorter as described earlier. Approximately, 
6 × 105 cells were injected intraperitoneally (i.p.) in NOD/
SCID mice. After 24 and 72 hours, peritoneal cells were 
collected and the amount of GFP+ cells was analyzed. 
These cells were sorted and submitted to RNA extraction 
to analyses of miRNA and Bcl2 expression.

For multiple passage experiments, the same protocol 
above as performed. After 15 days cells from peritoneum 
were collected and GFP+ cells are counted. These cells were 
separated by cell sorting and inoculated i. p. to another NOD/
SCID mice. A total of 22 passages were performed. The 
passage was stopped at 22nd in respect of humane endpoint 
because at this time the animals show a 30–40% weight loss.
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