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The goal of geroscience is life extension
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ABSTRACT
Although numerous drugs seemingly extend healthspan in mice, only a few 

extend lifespan in mice and only one does it consistently. Some of them, alone or in 
combination, can be used in humans, without further clinical trials.

INTRODUCTION

“Although we do not know everything about 
aging, we now know enough to start its pharmacologic 
suppression using clinically approved drugs.” Published 
in 2010, these opening words of the paper entitled 
“Increasing healthy lifespan by suppressing aging in our 
lifetime: preliminary proposal” are still relevant today 
[1]. The proposal was based on hyperfunction theory 
that aging is a continuation of development, driven in 
part by growth-promoting pathways, such as mTOR [2]. 
Hyperfunction (inappropriate activation) of these signaling 
pathways directly drive all age-related diseases, which are 
manifestations of aging. We just need clinically available 
inhibitors (drugs) of these signaling pathways to extend 
both healthspan and lifespan, by slowing aging. 

Here I discuss a practical approach as to how 
to make the current generation of adults live longer 
and healthier, without conducting lifelong randomized 
clinical trials. Even if such trials would be started, only 
the next generation may benefit. But such clinical trials 
are not needed anymore. For practical purposes, it is 
both necessary and sufficient that a drug consistently and 
significantly extend lifespan in mice (and other mammals, 
if tested) and be already approved for any indication in 
humans. Given that no proof of life extension in humans 
(and other long-lived mammals) can be available in our 
lifetime, we need strong evidence in rodents. I will discuss 
that the requirement of life extension must be strict. A 
mere extension of healthspan is not enough: drugs that 
fail to extend lifespan in mice will fail to extend lifespan 
in humans, if used as a monotherapy. Yet, in rational 
combinations with life-extending drugs, “healthspan-only” 
drugs may extend lifespan further. Here I will review 
drugs that extend lifespan and healthspan in mammals 
(e.g., rapamycin), in contrast to those that may affect only 

healthspan without lifespan (e.g., resveratrol), and discuss 
how to proceed with clinical application of lifespan-
extending drugs. 

Failure of anti-oxidants

The goal of longevity research is life extension. 
Instead, most studies are focused on life-shortening. Many 
things can shorten lifespan without causing normal aging. 
For example, car accidents shorten lifespan, but they do 
not cause aging. Knockout of antioxidant enzymes can 
shorten lifespan. But antioxidants do not extend lifespan 
[3–12]. Furthermore, antioxidants increase mortality 
in humans [13–17]. Clinical trials of antioxidants 
have been terminated because of increased cancer 
incidence [13–17]. In agreement, antioxidants promote 
cancer in mice [18, 19]. Yet, thousands of publications 
describe mechanisms of life extension by the exact 
same antioxidants that do not extend lifespan. To study 
mechanisms of life extension, there must be life extension 
at least. 

Certainly, reactive oxygen species (ROS) cause 
molecular damage, and this damage would eventually 
kill the organism. But no organism lives long enough 
to die from accumulation of molecular damage because 
hyperfunctional (in part, mTOR-driven) aging terminates 
life first [9]. If artificially accelerated by knocking out 
genes, molecular damage may become life limiting. But 
in normal animals and humans, it is not. We cannot extend 
life by targeting a non-life-limiting process. 

The goal of geroscience

The goal of geroscience is extension of lifespan 
by extending healthspan. Standard medical interventions 
can prolong lifespan without extending healthspan (e.g., 
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using a ventilator in comatose patient) but anti-aging 
interventions increase lifespan by slowing aging and thus 
delaying age-related diseases (extending healthspan). 
One of the notions of hyperfunction theory is that age-
related diseases can be prevented and treated by slowing 
down aging with anti-aging drugs, such as rapamycin, as 
discussed in 2006–2012 [2, 20–22] and later named the 
geroscience hypothesis [23–26]. 

Lifespan vs healthspan 

Healthspan is a period of life without age-related 
diseases [27]. It is disease-free survival. (Note: A patient 
may view healthspan as a symptom-free survival, a 
subjective well-being, but this definition is not used in 
animal studies.) Since animals and humans die from age-
related diseases, an increase in healthspan is expected to 
increase lifespan. For example, in centenarians, healthspan 
is increased (this is why they are centenarians) [28]. 
Calorie restriction (CR) delays diseases and thus extends 
lifespan in rodents [29]. So healthspan is a surrogate for 
lifespan. 

However, in comparison with lifespan, healthspan 
is difficult to measure, especially in animals [27]. The end 

of healthspan is subjective, because pre-diseases progress 
slowly towards diseases (Figure 1A: gray zone). Besides, 
it’s not one disease but the sum of all diseases. In mice, 
diseases are difficult to diagnose until animal death. 
Given this, why not then measure healthspan and lifespan 
simultaneously? 

So why has healthspan become so popular in animal 
studies? The reason is that only a few drugs were shown 
to extend lifespan in mammals. Other drugs seemingly 
increase healthspan but do not extend lifespan. This is 
considered an acceptable and even desirable effect [27]. But 
it is not. Increased healthspan must automatically increase 
lifespan (Figure 1A and 1B), if healthspan represents good 
health. Animals, including humans, do not die from good 
health, they die from age-related diseases. If diseases are 
delayed, an animal will live longer. (Symptomatic treatment 
(e.g., opioids for pain) and placebo may prolong subjective 
well-being of humans without extending lifespan, but such 
treatments are not a subject of geroscience). 

Consider a scenario in which lifespan is not 
increased, while healthspan is increased. To keep lifespan 
constant, while increasing healthspan, diseases must be 
compressed (Figure 1C): start later but kill faster. For 
example, in this scenario, cancer kills an organism in a 

Figure 1: Extension of healthspan extends lifespan. (A) Healthspan is the period of life without diseases. Diseases (black color) 
terminate lifespan. Subclinical aging (white color) progresses to pre-diseases (gray) and diseases (black). X axis: age. Y axis: loss of health 
(a sum of diseases) in log scale. (B) Longevity intervention slows aging and extends healthspan, automatically extending lifespan. (C) 
Unrealistic scenario “Healthspan without lifespan”. Compressed morbidity (black). Either diseases progress instantly, or animals die from 
“health” rather than from diseases.
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matter of minutes, instead of months. This is impossible 
(Note: One apparent exception is the illusion of disease 
compression in centenarians due to poor diagnostics and 
lack of medical treatment at the oldest age, as discussed 
later). Otherwise, an increase of healthspan must increase 
at least median lifespan (Figure 1B). 

So how is it possible that some senolytics, NAD 
boosters and resveratrol, increase healthspan without 
lifespan? The simplest explanation is that they do not 
increase healthspan at all, because such studies use 
irrelevant or ambiguous markers of health. Ambiguous 
parameters can be associated with either good or bad 
health, depending on the underlying cause. For example, 
similar changes in insulin signaling are associated with 
either slow or fast aging, depending on the mTOR activity 
[30].

The second explanation is that some diseases are 
not deadly, so that their treatment does not extend lifespan 
but improve quality of life. Yet, healthspan should not be 
measured by non-deadly diseases only. After all, aging is 
an exponential increase of death with age and should be 
measured by deadly diseases. 

Third, some age-dependent alterations are not life-
limiting, simply because hyperfunctional aging terminates 
life first. For example, accumulation of mitochondrial 
DNA mutations, telomere shortening, NAD+ depletion 
do not reach lethal threshold during animal life time 
(see Blagosklonny MV. When longevity drugs do not 
increase longevity: Unifying development-driven and 
damage-induced theories of aging, 2021, in press). So, 
their improvement is not translated in life extension. 
They may become life-limiting either when they are 
accelerated or when normal aging is decelerated. For 
example, telomerase-knockout mice die young from 
bone marrow failure. In such mice, testosterone extends 
lifespan by extending telomeres [31]. But, testosterone 
does not extend life in normal animals. As a hypothetical 
possibility, treatment of non-limiting deteriorations with 
“healthspan” drugs may extend lifespan, when life-
limiting aging is sufficiently decelerated and an animal (or 
human) lives long enough to die from this deterioration. 
This is an exciting possibility because then “helthspan 
without lifespan drugs” may increase life even further, 
as will be discussed in detail (Blagosklonny MV. When 
longevity drugs do not increase longevity: Unifying 
development-driven and damage-induced theories of 
aging, 2021, in press). 

If a drug does not increase lifespan in mammals, 
there is no reason to think it would do so in 
humans 

Even if a drug DOES increase lifespan in mice and 
other mammals, gerontologists are still skeptical that 
it will work in humans. Consider an example. Calorie 
restriction (CR) extends lifespan in mice, rats and even 

monkeys [32, 33]. CR must extend lifespan in humans 
because it delays all age-related diseases in humans [29]. 
Still it is debated whether it would extend life in humans. 
Some gerontologists think that it will not [34]. Imagine, if 
CR would not increase lifespan in any mammal including 
mice. Would we then think that it may mysteriously extend 
life in humans? No. But then why are drugs that do not 
extend life in mice still being considered to extend life 
in humans. To reasonably expect that a drug will extend 
lifespan in humans, a drug must extend medium and 
maximum lifespan in genetically heterogeneous mice, 
multiple strains of mice, and cancer-prone mice. (Note: 
Cancer is delayed when aging is slow. For example, cancer 
is rare in long-lived naked mole rats and centenarians). 

Resveratrol

Three studies in mice failed to show life extension 
by resveratrol [35–37]. In one of them, resveratrol 
improved health without extending lifespan [35]. 
Similarly, pharmacological doses of resveratrol delayed 
vascular aging but did not extend lifespan in Wistar rats 
[38]. In 2006 it was shown that resveratrol increased mean 
lifespan in mice on a high-calorie diet [39]. A high-calorie 
diet (HCD) shortened mean lifespan by increasing early 
death, and resveratrol prevented that shortening but did 
not extend lifespan beyond the control standard diet [39]. 
So, resveratrol may reverse life-shortening caused by 
HCD, but does not extend normal lifespan. 

Rapamycin 

Since 2009, dozens of studies showed that 
rapamycin extends medium and maximum lifespan in both 
males and females in all strains of normal mice tested as 
well as in some cancer-prone and short-lived mice [36, 
40–70]. Rapamycin extended life when was given at old 
or young age, constantly with food, intermittently, or even 
transiently. In some short-lived mutant mice, rapamycin 
more than doubled lifespan [50, 54, 60, 61, 64]. The higher 
the dose, the longer lifespan [57, 61, 70]. In one exception 
that emphasizes the rule, rapamycin slightly shortened 
lifespan in artificial mice lacking telomerase that failed to 
grow and die young but not from aging [68]. As predicted 
by theory [2], rapamycin, which slows growth and cell 
proliferation, will be unfavorable during developmental 
growth in mice that fail to grow. mTOR drives growth 
early in life and aging (a continuation of growth) later in 
life. In fact, in the same study, rapamycin dramatically 
extended lifespan in normal parental mice [68].  

Curcumin 

Curcumin, fed to mice beginning at 12 months 
of age, did not extend lifespan in male F1 hybrid mice 
[71]. Also, in genetically heterogeneous mice, curcumin 
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administered beginning at 4 months of age had no effect 
on lifespan of male or female mice [37]. Thus, curcumin 
never was shown to extend lifespan in any mammals.

Quercetin 

As shown in 1982, dietary supplement of 0.1% 
quercetin significantly decreased lifespan of mice [72]. This 
disappointing result is still non-disputed. In a second study, 
quercetin, fed beginning at 12 months of age, did not extend 
lifespan in male F1 hybrid mice [71]. However, a senolytic 
combination of quercetin with dasatinib (Q + D combination) 
increased median lifespan by 6.3% (Figure 6I in reference  
[73]) in C57BL/6 mice [73]. Q alone was not tested in this 
study [73].

(Note: Instead of medium lifespan, the abstract lists 
post-treatment survival, increased by 36%.) The treatment 
was started at age 24–27 months and administered every 2 
weeks by oral gavage for 3 consecutive days. 

Spermidine 

Spermidine is an abundant natural polyamine 
contained in all organisms and human food. Spermidine 
did not extend median and maximum lifespan of the 
middle-aged male Sprague-Dawley rats (although 
spermidine increased “healthspan”) [74]. In C57BL/6J 
wild-type female mice, spermidine increased medium (but 
not maximum) lifespan by approximately 10% when given 
either life-long or late-life [75]. 

NAD boosters 

Nicotinamide riboside (NR), a NAD+ booster, 
extends lifespan in mice by 4.7% (marginally statistically 
significant P = 0.034) [76]. This modest result is the best 
so far. In another study, nicotinamide (NAM), at low and 
high doses, did not extend lifespan in male C57BL/6J 
mice on standard and high-fat diets [77]. Noteworthy, 
NAD boosters dramatically increase lifespan in short-lived 
mice with some progeroid syndromes [78–80]. However, 
these mice die young not from normal aging but from 
pathologies such as liver fibrosis and bone marrow failure 
[78]. In contrast, there was no benefit of NR or NMN in 
normal mice [78, 80].

Berberine 

In one study, berberine extended lifespan in 
C57BL/6J male mice [81]. Of note, berberine inhibits the 
mTOR pathway in cell culture [82].

Fisetin

In old mice, fisetin slightly extended lifespan, but 
only a few mice were used in the study (Figure 5A in 
reference [83]).

Metformin

The effect of metformin on lifespan in mice depends 
on strain, age, sex and other conditions. For example, in 
inbred 129/Sv mice, metformin (100 mg/kg in drinking 
water) decreased the mean lifespan of male mice (by 
13.4%) and increased the mean lifespan of female mice 
(by 4.4%) [84]. In female SHR mice, metformin increased 
mean lifespan by 37.8%, and maximum life span by 10.3% 
[85]. If started early in life, metformin increased lifespan 
in female SHR mice [86]. In another study, lifespan was 
not affected by metformin alone but was decreased by 
a combination of metformin with SRT1720, a sirtuin1-
activator [87]. In 129/Sv mice, neonatal metformin 
treatment at the 3rd, 5th and 7th days after birth extended 
lifespan in male, but not in female, mice [88].

A famous study entitled “Metformin improves 
healthspan and lifespan in mice” actually shows that 
“low” dose of metformin (0.1% w/w in diet) slightly 
extended lifespan in C57BL/6 male mice, while a higher 
dose (1% w/w in diet) considerably decreased lifespan 
[89]. In genetically heterogeneous mice, however, 
metformin (0.1% w/w in diet) did not extend lifespan 
[90]. In this study, metformin combined with rapamycin 
(14 ppm) robustly extended lifespan, but treatment with 
rapamycin alone was not tested in the same study [90]. 
In two studies, metformin increased lifespan in cancer-
prone HER-2/neu transgenic mice [91, 92]. In conclusion, 
metformin consistently increases lifespan in short-lived, 
cancer-prone mice. In normal mice, effects of metformin 
are inconsistent, ranging from life extension to life 
shortening. 

 17-alpha-estradiol 

(17aE2) robustly extended both median and 
maximal lifespan, but only in males [90, 93]. 

Acarbose 

The alpha-glucosidase inhibitor, acarbose, increased 
median longevity in males and 90th percentile lifespan 
in both sexes [90, 93–95]. Acarbose blocks digestion of 
complex carbohydrates. So, the treatment is an equivalent 
of carbohydrate-free diets such as ketogenic diets in 
humans. Low carb-diets may increase lifespan and can be 
used in combination with rapamycin [96].

Enalapril

Angiotensin converting enzyme (ACE) inhibitors 
(ACEi), such as enalapril, lisinopril and ramipril, and 
angiotensin receptor blockers (ARB) such as losartan, 
telmisartan and valsartan are widely used to treat 
hypertension. Both ACE inhibitors and ARBs are 
commonly used in patients with hypertension, heart 
failure, coronary artery disease, diabetes and chronic 
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kidney disease (CKD). In 1993, it was shown that 
enalapril, at various doses, increased survival in mice. The 
authors speculated that enalapril must decrease oxidative 
damage, as required by dogma [97]. Losartan and enalapril 
prolonged lifespan in Wistar rats. All control rats died by 
the age of 28 months. In the treatment groups, 62% of rats 
were alive. Mean survival was increased by 21% and 19% 
for enalapril and losartan respectively (p < 0.001) [98]. 
Enalapril treatment increased lifespan in Wistar rats on 
standard and palatable hyper lipidic diets [99]. Ramipril 
(ACEi) in combination (but not alone) with Simvastatin 
extended lifespan of long-lived, B6C3F1 male mice [100].

Interpretation of mouse longevity data 

Although hundreds of recent reviews proclaim a 
wide arsenal of “emerging” drugs that “promise” to extend 
healthspan and lifespan, these drugs either do not extend 
lifespan in mice, or data is not sufficient. For example, 
resveratrol does not extend lifespan in mammals in any study 
[35–38]. In one study, it reverses life-shortening caused by 
HCD [39]. But reversal of life-shortening does not imply 
anti-aging activity. (Consider an analogy. In animals dying 
prematurely from type 1 diabetes, insulin therapy extends 
lifespan. But insulin cannot extend normal lifespan. Insulin 
is a pro-aging rather than anti-aging hormone.) Similarly, 
numerous flavonoids including curcumin and quercetin were 
not shown to prolong lifespan in mice and rats.

One drug, rapamycin, stands out [101]. Rapamycin 
extends lifespan in all numerous studies in normal 
mice and doubles lifespan in several short-lived mice 
[50, 54, 60, 61, 64]. Unlike other drugs discussed here, 
rapamycin is a gerostatic, a drug that decelerates cellular 
conversion to senescence in cell culture [102–104]. It has 
only one molecular target, the mTOR complex 1. The 
mTORC1 network is involved in aging and age-related 
diseases. Cellular senescence and organismal aging are 
a continuation of growth, which is driven in part by the 
mTOR pathway [2]. It was predicted that rapamycin must 
extend lifespan before it was shown in any animal [105].

In comparison, resveratrol has no relevant molecular 
target at least in mammals, meaning that it has all possible 
targets, especially at super-physiological concentrations 
[106], including mTOR at cytotoxic doses [107, 108] and 
topoisomerase, a target for highly cytotoxic chemotherapy 
[109]. Similarly, flavonoids and metformin have multiple 
potential targets. 

Metformin extends lifespan in some cancer-prone 
mice and two normal strains, depending on doses, sex and 
schedules. Its life-extending effects are limited by toxicity 
at higher doses that may even shorten lifespan. However, 
clinical doses of metformin are well-tolerated in humans. 
Retrospective and prospective data of numerous studies 
indicate that metformin decreases all-cause mortality in 
patients taking it for many different diseases [110–112]. It 
also decreases incidence of cancer, when taking for other 
indications. Potential benefits of a metformin/rapamycin 

combination were suggested [113]. Yet, a combination of 
metformin and rapamycin should be re-tested to include a 
rapamycin-alone group. 

ACE inhibitors (ACEi) decrease all-cause mortality 
in patients with various diseases [114–116]. Although, 
many studies found life-extending benefits of ACEi but 
not ARB, some studies showed equal benefits of ACEi 
and ARB [117]. Animal studies showed consistent life 
extension from ACEi alone [97–99] or in combination 
with statins [100]. Disruption of the Angiotensin II type 1 
receptor increases median and maximum lifespan in mice 
by 26% [118].

A combination of rapamycin, with metformin, 
aspirin, ACEi and other drugs was discussed in detail 
[113].

Gerostatics

Gerostatics are drugs that decelerate conversion to 
cell senescence. Gerostatics are also cytostatics, drugs 
that decelerate cell proliferation [119]. In contrast to 
senolytics, they do not kill senescent or any other types 
of cells. Gerostatics have been predicted by hyperfunction 
theory of aging [2]. Rapamycin and other rapalogs (e.g., 
everolimus), inhibitors of the mTOR kinase (known as pan-
mTOR inhibitors), S6K, PI3K, MEK and MDM-2 all target 
growth- and senescence-promoting networks and decelerate 
cellular senescence in cell culture [102–104, 120–122]. 
Although their gerostatic properties were described more 
than decade ago, they have not been tested on life extension 
in mammals. A MEK inhibitor is a clinically available drug 
and extends lifespan in Drosophila [123], but its effects on 
longevity were not tested in mice. 

I expect that a combination of low doses of pan-
mTOR and MEK inhibitors with high doses of rapamycin 
would extend life further compared with rapamycin alone. 
That could be the next important advance in the anti-
aging field since the discovery of anti-aging properties of 
rapamycin.

Surrogate lifespan trials in humans

In humans, it is nearly impossible to conduct life-
long clinical trials to measure lifespan. In surrogate 
trials, anti-aging drugs can be validated by treating and 
preventing age-related diseases [21]. Aging is a sum 
of all age-related diseases, which terminate life. If all 
diseases are delayed, then lifespan must increase. In other 
words, if healthspan is increased, lifespan is increased 
automatically. Anti-aging drugs such as rapamycin are 
more effective for disease prevention than for their 
treatment [2], as emphasized for cancer prevention [20]. 
While treating one age-related disease, an anti-aging drug 
will delay progression of other diseases (e.g., cancer and 
Alzheimer’s disease) and syndromes (e.g., frailty) and 
cosmetic appearance (e.g., grey hair and winkled skin) 
[21]. 
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In humans, lifespan can be increased without 
increasing healthspan by standard medical interventions 
[124]. In a comatose patient after stroke, a ventilator 
extends lifespan without increasing healthspan. For 
example, defibrillation may resurrect a patient, extending 
lifespan by decades without affecting healthspan. Anti-
aging interventions increase lifespan, primarily by 
increasing healthspan. For example, if stroke is delayed, 
lifespan will be increased. An increased healthspan will 
not compress morbidity, as erroneously suggested by some 
gerontologists. (Note: compression of morbidity can only 
be achieved by denying the very elderly the best medical 
care, which otherwise expands the morbidity phase in 
lesser elderly people. This is observed in centenarians who 
are not even diagnosed with diseases, even less treated.) 
The greatest achievement of modern medicine is dramatic 
extension of lifespan by expanding the morbidity phase, 
not by compressing it. 

Anti-aging drugs are expected primarily work by 
expanding healthspan [124, 125]. But the morbidity period 
will be extended (decompressed) too, because disease 
progression will be decelerated. 

Validation of anti-aging drugs and TAME

Based on the notion that aging is the sum of all age-
related diseases, it was proposed to validate anti-aging 
drugs by treating age-related diseases. Published in 2009, 
the abstract of an article entitled “Validation of anti-aging 
drugs by treating age-related diseases” stated: “Humans die 
from age-related diseases, which are deadly manifestations 
of the aging process. In order to extend lifespan, an 
anti-aging drug must delay age-related diseases. Once 
a drug is used for treatment of any one chronic disease, 
its effect against other diseases (atherosclerosis, cancer, 
prostate enlargement, osteoporosis, insulin resistance, 
Alzheimer’s and Parkinson’s diseases, age-related macular 
degeneration) may be evaluated in the same group of 
patients. If the group is large, then the anti-aging effect 
could be validated in a couple of years.” [21]. So, anti-
aging drugs were suggested to be validated in patients 
with diseases, rather than in healthy individuals [21]. 
Specifically, it was discussed for metformin and rapamycin 
[21]. This proposal has been implemented by Nir Barzilai 
and others in a placebo-controlled, randomized, double-
blind, clinical trial the “Targeting Aging with Metformin” 
or “TAME”, which enrolls patients with any age-related 
disease to determine whether metformin is effective at 
delaying the incidence of a composite of multiple age-
related diseases, geriatric syndromes and functional health 
[126].

The origin of geroscience

By 2006, clinical data became available for 
retrospective analysis of effects of metformin and 

rapamycin on several age-related diseases [2, 21]. The 
concept of treatment of age-related diseases was discussed 
in “Prevention of cancer by inhibiting aging” [20] and 
“Prospective treatment of age-related diseases by slowing 
down aging” [22]. The concept of treatment of age-related 
diseases by slowing down aging [22] was later named the 
geroscience hypothesis [23, 24, 25, 26]. The geroscience 
hypothesis, however, is incomplete, because it assumes that 
aging is caused by molecular damage. Aging is obligatory, 
whereas diseases are not [127]. So, the mechanistic link 
remains elusive. According to the geroscience hypothesis, 
aging is a risk factor for diseases [127]. According to 
hyperfunction theory, in contrast, aging is a sum of all 
age-related diseases, not their risk factors. The molecular 
basis of aging is hyperfunction (unnecessary activation) of 
signaling pathways, such as mTOR, which drive diseases 
directly. Aging and diseases are two sides of the same coin: 
diseases are manifestations of aging.

Senolytics 

By the strict definition proposed by Kirkland and 
Tchkonia, senolytics should prolong life specifically by 
killing senescent cells, not by off-target mechanisms 
[128]. But strictly speaking, such drugs do not exist yet 
[Note: As an example of off-target mechanisms, at high 
doses, some “senolytics” inhibit mTOR.] 

Although a wide variety of compounds are called 
senolytics, most of them do not extend lifespan by 
any mechanism in any mammal. Currently, only two 
senolytics, namely fisetin [83] and a combination of 
quercetin with dasatinib (Q + D combination) [73] 
showed life extension in mice. At the time of writing, life 
extension was shown in just one study for each of them, 
though, the fisetin-treated group included just a few mice 
[83]. However, even these modest results are important, 
because these drugs are clinically available. Especially, 
fisetin and quercetin are available as supplements and 
have already been safely taken by millions of people 
before the term senolytic was even coined. Dasatinib is a 
prescription drug approved in 2006 and is safe for human 
use. A combination of Q + D was tested in humans and, in 
doses that decrease numbers of senescent cells, they were 
safe with minimal side effects [129].

Life extension in mammals and safety in humans 

Kirkland and Tchkonia, who have developed these 
senolytics, warned: “Unless and until such clinical trials 
are completed and demonstrate safety, tolerability, target 
engagement and effectiveness, candidate senolytics should 
not be prescribed or used by general patient populations. 
They should only be administered in the course of 
carefully monitored clinical trials.” [130]. 

Although well intended, this warning is unjustified. 
Fisetin and quercetin have already been sold as 
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supplements for many years. Why should patients stop 
taking them? Just because F and D were recently shown 
to prolong life and health in mice? In Kirkland et al., 
outstanding work, fisetin and a combination of Q plus 
D prolonged life in mice, not shortened life. Why then 
should the entire generation of the elderly stop using 
fisetin, and Q plus D until clinical trials prove that they 
extend life in humans, and, even more, by a specific 
mechanism? 

The same is applicable to any other drugs that have 
been used in humans before any studies showed life-
extension in animals: rapamycin, metformin and ACEi.

Ironically, some mouse research warns of the 
metabolic dangers of rapamycin and a ketogenic diet, 
even though these treatments have been safely used in 
humans for decades. But these metabolic effects are 
life-extending in mice, which live longer and healthier. 
In any case, if data in animals contradict human data, 
it means that an animal model is irrelevant. Animal 
models are most needed in the absence of human data. 
Thus, it is lifespan data that is crucial in mice, because 
it is unavailable in humans. In humans, the proof of life 
extension is practically impossible in a short term. Even 
life extension by calorie restriction (and any diet) was 
not proven (or disproven) in humans despite decades 
of research. In forthcoming clinical trials, we cannot 
expect proof of life extension, only improved health, at 
doses that do not cause side effects in humans. (Note: 
Individual anti-aging doses of rapamycin are side-effect-
free by definition: the highest dose that is tolerated by a 
patient). Healthspan and side-effects in humans. Lifespan 
in mice. Not vice versa.

How to proceed

We have one life to live and cannot wait for results 
in others, if we want to live longer ourselves. Although 
placebo-controlled, randomized, life-long clinical trials 
should be started, we may only know the answer in a few 
decades. However, such trials will not even be started, at 
least not soon. But, fortunately, they are not needed. 

Some life-extending drugs are already approved 
for human use: supplements (fisetin, vitamin B3 and 
its analogs), over-the-counter medicine (aspirin) and 
prescription drugs (rapamycin, metformin, dasatinib, 
enilopril). Do we need to wait for results of future clinical 
trials or must we simply follow the law? Prescription 
drugs are allowed by law to be prescribed and used under 
doctor supervision. That is so simple. 

The law is already strict towards rapamycin and 
metformin, by requiring prescription. In comparison, 
alcohol and tobacco do not require prescription and 
doctor supervision. Smoking has no health benefit and 
dramatically shortens lifespan, accelerating all diseases. 
While smoking causes cancer, rapamycin prevents it, 
including smoke-caused lung cancer. Is it then paradoxical 

that alcohol and tobacco are sold without prescriptions, 
whereas rapamycin and metformin are not. 

Metformin and rapamycin are FDA-approved 
prescription drugs that are safe by FDA definition. 
All necessary clinical trials for safety were conducted 
more than 20 years ago, and then these drugs were used 
by millions. Hundreds of new trials were conducted 
later because applications of rapamycin and its analog 
everolimus were constantly extending. Now is time for 
longevity clinics. This is the last chance for the current 
generation to live longer [131]. 

For example, rapamycin-based personalized 
treatment can be designed as Phase 1 B clinical trial, 
with dose escalation to reach dose-limiting side-effects. 
Then, rapamycin can be used at a lower dose without side 
effects. Thus, anti-aging treatment with rapamycin can 
be without side effects by definition. This is important 
to emphasize. Whatever off-target side effects anti-
aging drugs may have, they will be avoided. Treatment 
is highly individual, because doses of rapamycin must 
be individual: the highest dose that does not cause side 
effect in a particular patient. (Note: Blood levels of 
rapamycin vary widely in different people at the same 
dose). Such trial-like treatments require no funding, 
because they can be paid for by participants. If we want 
to live longer, we have no choice, but to use drugs such 
as rapamycin, which extends life in short-lived mammals 
and is approved for humans use. After all, humans are 
mammals, and there is no reason to think that they will 
not work in humans. 

Disclaimer

This review is intended for a professional audience. 
This article does not represent medical advice or 
recommendations to patients. The media should exercise 
caution and seek expert medical advice for interpretation, 
when referring to this article. Medical doctors interested 
in this topic may e-mail the author at Blagosklonny@
rapalogs.com or follow me at Twitter @Blagosklonny. 
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