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ABSTRACT
Background: Cancer-tumor associated macrophage (TAM)-cancer associated 

fibroblast (CAF) interactions are an important factor in the tumor microenvironment 
of hepatocellular carcinoma.

Materials and Methods: Hepatic stellate cells (HSCs) were cultured with cancer 
cell-conditioned medium (Ca.-CM), TAM-CM and CAF-CM, and the expression of CAF 
markers were evaluated by RT-PCR. Whether HSCs cultured with Ca.-CM, TAM-CM and 
CAF-CM contributed to the enhanced malignancy of cancer cells was examined using 
proliferation, invasion and migration assays. Furthermore, the differences between 
these three types of CM were evaluated using cytokine arrays.

Results: HSCs cultured with Ca.-CM, TAM-CM and CAF-CM showed significantly 
increased mRNA expression of αSMA, FAP and IL-6. All HSCs cultured with each CM 
exhibited significantly increased proliferation, invasion and migration of cancer cells. 
The osteopontin concentration was significantly higher in HSCs cultured with TAM-
CM than the other CAF-CMs. Osteopontin inhibition significantly reduced osteopontin 
secretion from HSCs cultured with TAM-CM and suppressed the proliferation and 
invasion of cancer cells enhanced by HSCs cultured with TAM-CM.

Conclusions: We observed enhanced osteopontin secretion from TAMs, and this 
increased osteopontin further promoted osteopontin secretion from HSCs cultured 
with TAM-CM, leading to increased malignancy. For the first time, we demonstrated 
the importance of cancer-TAM-CAF interactions via osteopontin in hepatocellular 
carcinoma.

INTRODUCTION

The tumor progression has been regarded as a 
multistep process involving genetic and epigenetic changes 
targeting only cancer cells. However, recent research has 
identified that the tumor microenvironment (TME) is an 
equally important factor of tumor behavior [1]. Tumor tissues 
mainly contain not only cancer cells but also fibroblasts, 
macrophages and vascular components that form the TME, 
which regulates interaction and differentiation induction. 

Fibroblast is a multifunctional cell type in 
connective tissue that deposit basement membrane 
components and extracellular matrix (ECM) and regulate 
differentiation in associated epithelial cells. There are a 
large number of cancer associated fibroblasts (CAFs) in 
the TME [2, 3]. In addition to enhancing angiogenesis 
and the proliferation of cancer cells, CAFs have been 
implicated in enhancing cancer cells invasiveness, 
possibly through the induction of epithelial-mesenchymal 
transition (EMT) [4]. 
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Cancer cells are affected by immune cells through 
all stages of the tumor, from the early stage to tumor 
progression and metastasis. In this regard, macrophages 
play a prominent role in and actively contribute to each 
stage of cancer [5]. Macrophages are attracted to and 
activated by TME-derived cytokines, which induce their 
differentiation into tumor associated macrophages (TAMs). 
It has been reported that TAMs support the increased 
malignancy of cancer cells and therapeutic resistance of 
multiple cancer types [2, 6–9]. TAMs can be classified into 
two types: 1) classically activated, proinflammatory “M1” 
and 2) alternatively activated, anti-inflammatory “M2”. 
Generally, during the early stages of tumor development, 
M1 macrophages are mainly responsible for the TH1 cell 
response by secreting pro-inflammatory cytokines. In 
the later stages of tumor progression and metastasis, M2 
macrophages exhibit a low antigen presentation efficiency 
and produce high levels of anti-inflammatory cytokines 
[10–14]. In this study, M2 macrophages are termed TAMs.

We have previously reported the role of the 
transcriptional factor NF-E2-related factor 2 (Nrf2) in 
cancer-TAM interactions in hepatocellular carcinoma (HCC) 
and pancreatic cancer [15] and cancer-CAF interactions 
through IL-6 and CXCL10 in pancreatic cancer [16]. 
Considering our results and previous findings, CAFs and 
TAMs play a central role in the development of the TME, 
and the establishment of cancer-CAF-TAM interactions 
likely increase the malignancy of tumors. Li, et al. [17] 
reported that CAFs effectively attracted monocytes via the 
CXCL12/CXCR4 pathway and induced their differentiation 
into TAM in oral squamous cell carcinoma. Zhang, et al. [18] 
reported that IL-8 produced by CAFs attracted monocytes 
and promoted the polarization of M2 macrophages in 
colorectal cancer. However, there are limited reports on the 
relationship between CAFs and TAMs.

Therefore, this study particularly focused on the 
direct relationship between CAFs and TAMs in HCC. 
We showed that TAMs activated hepatic stellate cells, 
which promoted cancer proliferation and migration. 
Additionally, we identified osteopontin (OPN) as a key 
molecule involved in cancer-CAF-TAM interactions in 
HCC. OPN is an intracellular and secreted chemokine-
like phosphorylated glycoprotein and is frequently 
increased in numerous human cancers. It is an important 
for the regulation of proliferation, invasion, metastasis, 
angiogenesis, stemness, inflammatory responses, ECM 
degradation. [19–23]. In this study, the function of OPN 
in the TME of HCC was elucidated.

RESULTS

HSCs were activated by the CM from cancer 
cells, TAMs and CAFs

First, to induce the activation of HSCs into CAFs, 
we cultured HSCs with Ca.-CM for 48 hours (Figure 1A). 

Similarly, M0 macrophages were cultured with Ca.-CM 
for 48 hours to induce their differentiation into TAMs 
(Figure 1A). CAFs showed significantly increased mRNA 
expressions of CAF markers, such as αSMA and FAP (P 
< 0.05, Figure 1B), and TAMs exhibited significantly 
increased mRNA expressions of TAM markers, such 
as CD163 and CD206 (P < 0.05, Figure 1B). We then 
collected CAF-CM and TAM-CM. To investigate 
whether CAFs could also be induced by TAMs and 
CAFs, HSCs were cultured with TAM-CM or CAF-
CM (Figure 1C). HSCs cultured with TAM-CM, CAF-
CM or Ca.-CM showed significantly increased mRNA 
expression of αSMA, FAP and IL-6 (P < 0.05, Figure 1D). 
Immunofluorescence staining detected FAP and αSMA in 
each CAF. There was no difference in the morphology of 
each CAF (Figure 1E). Together, these results suggest that 
CAFs in the TME may originate from not only cancer cells 
but also TAMs and CAFs.

All CAFs derived from cancer cells, TAMs, and 
CAFs enhanced the malignancy of cancer cells

We investigated the effects of CAFs on cancer cell 
malignancy. All three types of CAF-CMs were collected 
and added to cancer cells (Figure 1C). Compared with 
normal culture medium, all CAF-CMs increased the 
tumor grade, and significantly increased the proliferation, 
invasion and migration capabilities of cancer cells (P < 
0.05, Figure 2A–2C). In cancer cells cultured with each 
CAF-CM, the mRNA expression of vimentin, which 
was the EMT marker, was significantly increased, and 
the mRNA expression of E-cadherin was significantly 
decreased (P < 0.05, Figure 2D).

Only CAFs derived from TAMs secreted an 
increased level of OPN

Next, we performed cytokine arrays of these 
three types of CAF culture supernatants to examine the 
differences in cytokine secretion. The results showed that 
the secretion of OPN and chitinase 3-like 1 was increased 
in CAF (TAM)-CM (Figure 3A). OPN is an integrin-
binding glycophosphoprotein and has been reported to 
be associated with cancer malignancy. Therefore, we 
focused on OPN and conducted the following study. The 
ELISA results also revealed that the OPN concentration 
was significantly higher in CAF (TAM)-CM than the other 
CAF-CMs (P < 0.01, Figure 3B). In addition, when the 
secretion of OPN from cancer cells, M0 macrophages and 
TAMs was examined by ELISA, significantly increased 
OPN secretion from TAMs was observed (P < 0.01, 
Figure 3C). When HSCs were cultured with OPN added, 
the secretion of OPN from HSCs was enhanced in a 
concentration-dependent manner (P < 0.01, Figure 3D). 
From these findings, only CAFs (TAM) had the ability 
to secret OPN, which may depend on the OPN secreted 
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from TAMs. Next, the effect of OPN on cancer cells was 
examined. The addition of the OPN at a concentration 
of 1.0 μg/mL significantly enhanced the proliferation, 
invasion and migration capabilities of cancer cells (P < 
0.05, Figure 3E–3G).

Inhibition of OPN suppressed the proliferation, 
invasion and migration of cancer cells induced 
by CAFs derived from TAMs

To investigate the effects of OPN on cancer cells, 
the examination from here was carried out using Huh-
7 cells. Huh-7 cells were cultured for 48 hours in the 
three types of CAF-CMs with and without the OPN 
antibody (Figure 4A). The addition of the OPN antibody 
significantly suppressed the proliferation and invasion 
of Huh-7 cells that were enhanced by CAF (TAM)-CM 
(P < 0.01). Although there was no significant difference, 
OPN neutralization tended to suppress the migration of 
Huh-7 cells enhanced by CAF (TAM)-CM (P = 0.08). 
These effects of the OPN antibody were observed only 
when cultured with CAF (TAM)-CM, and no inhibitory 
effects were observed when Huh-7 cells were cultured 
with the other CAF-CMs (Figure 4B–4E).

OPN inhibition reduced the OPN secretion from 
CAFs derived from TAMs

Next, to examine the effect of OPN on CAFs, 
HSCs were cultured for 48 hours in the presence of 

Ca.-CM, CAF-CM and TAM-CM with and without the 
OPN antibody when inducing the three types of CAFs 
(Figure 5A). As a result, almost no OPN was detected in 
CAFs cultured in Ca.-CM and CAF-CM, regardless of 
the presence or absence of the OPN antibody. However, 
the secretion of OPN was significantly reduced in CAFs 
cultured with TAM-CM (Figure 5B). When Huh-7 cells 
were cultured with CAF (TAM)-CM in the presence 
of the OPN antibody, their proliferation and invasion 
abilities were significantly reduced (Figure 5C and 5D). In 
contrast, there was no significant difference in migration 
(Figure 5E). 

OPN positive CAFs were expressed in the tissues 
of HCC patients

Immunohistochemical staining revealed OPN 
positive spindle shaped cells in the tissues of HCC patients 
(Figure 6A). In addition, double immunofluorescence was 
carried out in HCC tissues. OPN expression in the cells 
was indicated in green, αSMA positivity was indicated 
in red, and OPN plus αSMA positivity was indicated in 
yellow. OPN and αSMA strongly positive CAFs were 
observed in HCC tissues (Figure 6B).

DISCUSSION

In this study, we hypothesized that CAFs might 
be derived from not only cancer cells but also TAMs 
or CAFs in the TME, and that there may be differences 

Figure 1: HSCs were activated by cancer cells, TAMs and CAFs. (A) The scheme of CAF and TAM induction from cancer 
cells. (B) HSCs and M0 macrophages were cultured with Ca.-CM for 48 hours. αSMA and FAP mRNA expression levels in HSCs, and 
CD163 and CD206 mRNA expression levels in macrophages cultured with Ca.-CM were analyzed by PCR analysis. (C) The scheme of 
CAF induction from cancer cells, TAMs and CAFs. (D) HSCs were cultured with Ca.-CM, TAM-CM and CAF-CM for 48 hours. αSMA, 
FAP and IL-6 mRNA expression in these HSCs were analyzed by PCR. (E) Immunofluorescence staining of FAP and αSMA in each CAF. 
Scale bar; 50 μm. The graphs in (B) and (D) show the data as the mean ± SD. *P < 0.01 and **P < 0.05 (one-way ANOVA with the Turkey-
Kramer test, Mann-Whitney U test).
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among these three types of CAFs. We found two novel 
findings regarding CAF characteristics. First, CAFs could 
be derived from the CM of cancer cells, TAMs and CAFs. 
Second, OPN was identified as a key molecule secreted 
from only CAFs induced by TAM-CM, and this OPN 
played an important role in enhancing the malignancy of 
cancer cells via cancer-CAF-TAM interactions. 

Teng, et al. [24] reported that CAFs promoted 
cancer progression via the SDF-1/CXCR4 axis in 
endometrial cancer, and Jia, et al. [25] reported that 
hepatocyte growth factor secreted by CAFs played a 
key role in HCC proliferation. There have been many 
reports that cancer-educated fibroblasts contribute to the 
increased malignancy of tumors [24–34]. Cancer cells 
and CAFs release similar inflammatory cytokines such 
as IL-6 and TNF-α, and it is considered reasonable that 
CAFs are induced by Ca.-CM and CAF-CM. However, 
there are few reports that macrophages activate fibroblasts. 
Ueshima, et al. [35] demonstrated that TGF-β1 secreted 
from macrophages promoted fibroblast differentiation and 
scar formation in the ureter. To the best of our knowledge, 
this study is the first to confirm the activation of CAFs by 
TAMs in the TME. In the present results, CAFs (TAM) 
showed the highest mRNA expression of αSMA, but 
mRNA expression of IL-6 was significantly lower than 
that of other CAFs. This is because the phenotype of CAF 
(TAM) is CAF-like, but its functionality may be different 
from other CAFs like the difference in OPN. More detailed 
investigation is needed to clarify this difference.

Cho, et al. [11] reported that CAFs played a key 
role in polarization of TAM via the increased secretion of 
IL6 and GM-CSF in response to cancer cell stimulation. 

Andersson, et al. [36] reported that CAFs secreted high 
levels of IL-33, which induced TAMs to undergo M1 to 
M2 transition, and they provided mechanistic insight into 
the IL-33/NF-κB/MMP9/laminin axis that mediates CAF-
TAM-committed cancer metastasis. However, the detailed 
mechanisms underlying cancer-CAF-TAM interactions 
have not been fully elucidated.

To investigate the difference in cytokine release from 
the three types of CAFs, which were derived from cancer 
cells, TAMs and CAFs, we performed a cytokine array for 
each CM. As a result, OPN secretion was identified as the 
characteristic difference between the three types of CAFs 
in this study. OPN was first reported as a phosphoprotein 
secreted by transformed, malignant epithelial cells [37]. 
OPN binds to integrin and CD44 receptors to mediate 
cellular signaling and cell-matrix interactions [38]. OPN 
has been identified as a key non-collagenous bone matrix 
protein, and it plays a prominent role in diverse systems, 
such as immune and vascular systems. OPN regulates the 
production of cytokine and cell trafficking and inhibits 
ectopic mineralization and macrophage accumulation in 
vascular and immune systems, respectively [39]. It also 
mediates cell migration, adhesion [40] and, the production 
of cytokine in macrophages and acts as a survival factor 
[41]. Furthermore, OPN has been reported to contribute to 
the promotion of various cancers, such as HCC [42–45] 
and intrahepatic cholangiocarcinoma [23]. 

Regarding the mechanism of increased OPN 
secretion, Qin, et al. [46] reported that IL-6 secreted by 
CAFs was the main upstream molecule triggering the 
induction of neoplastic OPN in head and neck cancer. 
Konno, et al. [47] reported that the expression of OPN 

Figure 2: All CAFs derived from cancer cells, TAMs and CAFs enhanced cancer malignancy. (A–C) The (A) proliferation, 
(B) invasion and (C) migration of cancer cells with each CAF-CM or normal medium (control; Ctrl) were monitored for 3 days, 24 hours 
and 12 hours, respectively. (D) Cancer cells were cultured with each CAF-CM for 48 hours. E-cadherin and vimentin mRNA expression 
levels were analyzed by PCR analysis. The graphs show the data as the mean ± SD. *P < 0.01 and **P < 0.05 (one-way ANOVA with the 
Turkey-Kramer test).
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in monocytes and monocyte-derived dendric cells was 
induced by IL-10. In addition, Zhang, et al. [48] reported 
that the mRNA expression of OPN and OPN protein level 
in TAM were enhanced compared to M0 macrophage 
in lung cancer, supporting our result of increased OPN 
secretion from TAM. However, there are few reports on 
the mechanism contributing to the enhanced secretion of 
OPN from fibroblasts. Shimodaira, et al. [49] reported 
that the secretion of OPN from macrophages upregulated 
OPN expression in fibroblasts, which supports our results. 
Therefore, in the TME, OPN secreted from TAMs might 
enhance the secretion of OPN from CAFs. Furthermore, 
we confirmed that the inhibition of OPN suppressed the 
malignancy of cancer cells enhanced by culture with 
CAF (TAM)-CM. It was suggested that upregulated OPN 
contributed to the enhancement of cancer malignancy 
in HCC. Specifically, lactate produced by cancer cells 
induced M0 macrophages to polarize into TAMs as we 
previously reported [15], which increased the mRNA 
and protein expression of OPN and promoted the OPN 
secretion. The OPN secreted from TAMs enhanced the 
OPN secretion from CAFs, which subsequently increased 
the malignancy of cancer cells. It is also possible that 
OPN, which was highly secreted from TAMs, enhanced 
the malignancy of cancer. For the first time, we report that 
OPN is a key molecule for cancer-CAF-TAM interactions 
in the TME of HCC.

In this study, our results demonstrated that OPN 
was involved in the enhancement of cancer proliferation, 
invasion and migration. However, as a limitation to this 

study, the mechanisms underlying the increased secretion 
of OPN from TAMs and the OPN-induced malignancy of 
HCC cells were not elucidated. In addition, the findings 
were not investigated in vivo. Further considerations are 
required in the future.

In conclusion, we identified that the release of OPN 
from TAMs in the TME was increased, and this OPN 
further promoted the secretion of OPN from CAFs (TAM), 
leading to increased cancer cell malignancy (Figure 6C). 
In this study, we demonstrated the importance of cancer-
TAM-CAF interactions via OPN for the first time. It has 
been suggested that OPN inhibitors might be useful in 
the prevention and treatment of hepatic inflammation 
and fibrosis in NASH [50]. Therefore, OPN might have 
potential as a new therapeutic target to inhibit cancer-
CAF-TAM interactions in HCC.

MATERIALS AND METHODS

Cell culture

The HCC cell lines, Huh-7 and HepG2 were bought 
from the Riken Cell Bank (Tsukuba, Japan). Cancer cells 
were cultured in DMEM (Life Technologies Japan Ltd., 
Tokyo, Japan) containing 10% FBS (Life Technologies 
Japan Ltd., Tokyo, Japan). The human monocyte cell 
line THP-1 was bought from the Culture Collections of 
Public Health England and grown in RPMI-1640 (Wako, 
Osaka, Japan) containing 10% FBS. THP-1 cells were 
treated with 150 nM phorbol-12-myristate-13-acetate 

Figure 3: CAFs (TAM) secreted a significantly higher amount of osteopontin than other CAFs. (A) Cytokine arrays of CAF 
(Ca.), CAF (TAM) and CAF (CAF) culture supernatants. HSC-CM was used as the control. (B) OPN secretion from all CAFs was analyzed 
by ELISA. (C) The secretion of OPN from cancer cells, M0 macrophages and TAMs was examined by ELISA. (D) After adding OPN to 
HSCs at concentrations of 0.1, 0.5 and 1.0 μg/mL, the medium was exchanged once and the CM was collected. The secretion of OPN from 
HSCs was examined by ELISA. (E–G) The (E) proliferation, (F) invasion and (G) migration of cancer cells with the addition of the OPN at 
a concentration of 1.0 μg/mL or normal medium (control; Ctrl) were monitored for 3 days, 24 hours and 12 hours, respectively. The graphs 
show the data as the mean ± SD. *P < 0.01 and **P < 0.05 (one-way ANOVA with the Turkey-Kramer test, Mann-Whitney U test). 



Oncotarget338www.oncotarget.com

(PMA) (Sigma, St. Louis, MO, USA) for 48 hours to 
induce macrophages. The LX2 human hepatic stellate 
cell (HSC) line was obtained from Sigma-Aldrich. HSCs 
were cultured in DMEM containing 10% FBS. These 
cell lines were passaged for fewer than 6 months after 
resuscitation.

Preparation of conditioned medium (CM)

Cancer cells were cultured in a 10-cm dish to 
80% confluency. The cells were washed with PBS and 
then incubated with FBS-free medium. After 48 hours 
of incubation, the medium was collected, centrifuged 
(2000 rpm, 10 minutes) and filtered using a 0.2-μm 
filter to obtain cancer cell conditioned medium (Ca.-
CM). The CM was used without additional FBS. CAF-
derived cancer [CAF (Ca.)] and TAM-derived cancer 
media were prepared by adding Ca.-CM to HSCs or M0 
macrophages for 48 hours (Figure 1A). Then, the medium 
was exchanged once, and the supernatant was collected. 
These supernatants were used as CAF conditioned 
medium (CAF-CM) and TAM conditioned medium 
(TAM-CM). CAFs derived from TAM-CM [CAFs (TAM)] 
and CAF-CM [CAFs (CAF)] were prepared in the same 
way (Figure 1C). To neutralize OPN in the CM, an OPN 
antibody (AF1433; R&D Systems, Inc., MN, USA) was 

added at a concentration of 1.0 μg/mL. In the examination 
of adding OPN, OPN (1433-OP; R&D Systems, Inc., MN, 
USA) was added to HSCs at concentrations of 0.1, 0.5 and 
1.0 μg/mL, the medium was exchanged once in the same 
manner as above, and the CM was collected.

Cell proliferation assay

Cell proliferation was investigated using a cell 
counting kit-8 (CCK-8) (Dojindo Molecular Technologies, 
Inc., Tokyo, Japan) in accordance with the manufacturer’s 
protocol. Briefly, cells were incubated with 10% CCK8-CM 
for 2 hours. Sample plates were used to measure the optical 
absorbance at 450 nm. The optical absorbance was measured 
using a SpectraMax i3 (Molecular Devices, LLC, San Jose, 
CA, USA) and SoftMax Pro 7 (Molecular Devices, LLC.).

Migration assay

Transwell inserts (Corning, NY, USA) with an 
8-μm pore size were used for migration assays. Cancer 
cells (2.0 × 104) were seeded in the upper chamber. After 
cell attachment, the medium in the upper chambers was 
removed and fresh medium containing 1% FBS was added. 
Each CM containing 10% FBS was added to the lower 
chamber. After 24 hours incubation, the cells on the bottom 
of transwell inserts were fixed in 4% paraformaldehyde and 

Figure 4: Inhibition of OPN suppressed cancer proliferation, invasion and migration. (A) The scheme of the experiment 
examining the effects of OPN inhibitors on cancer malignancy. Cancer cells were cultured for 48 hours with each CAF-CM in the presence 
or absence of the OPN antibody. (B) The proliferation of cancer cells cultured in each CAF-CM with or without the OPN antibody was 
analyzed at day 2. (C) The proliferation of cancer cells cultured in CAF(TAM)-CM with or without the OPN antibody was monitored for 
4 days. (D) The invasion of cancer cells cultured in each CAF-CM with or without the OPN antibody for 24 hours was analyzed. (E) The 
migration of cancer cells cultured in each CAF-CM with or without the OPN antibody for 12 hours was analyzed. The graphs show the data 
as the mean ± SD. *P < 0.01 and **P < 0.05 (one-way ANOVA with the Turkey-Kramer test). 
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Figure 5: OPN inhibition reduced OPN secretion from CAFs (TAM). (A) The scheme of the experiment examining the effects of 
OPN inhibitors on CAFs. HSCs were cultured for 48 hours with each CAF-CM (Ca.-CM, TAM-CM and CAF-CM) in the presence or absence 
of the OPN antibody. (B) The secretion of OPN from CAFs cultured in each CM with or without the OPN antibody for 48 hours was examined 
by ELISA. (C) The proliferation of cancer cells cultured in CAF (TAM)-CM with or without the OPN antibody and CAF (TAM-CM+OPN 
inhibitor)-CM, which was prepared by culturing HSCs with TAM-CM in the presence or absence of the OPN antibody for 48 hours, was 
monitored for 4 days and analyzed at day 2. (D) The invasion of cancer cells in CAF (TAM)-CM with or without the OPN antibody and CAF 
(TAM-CM+OPN inhibitor)-CM with or without the OPN antibody for 24 hours was analyzed. (E) The migration of cancer cells in CAF (TAM)-
CM with or without the OPN antibody and CAF (TAM-CM+OPN inhibitor)-CM with or without the OPN antibody for 12 hours was analyzed. 
The graphs show the data as the mean ± SD. *P < 0.01 and **P < 0.05 (one-way ANOVA with the Turkey-Kramer test).

Figure 6: OPN positive CAFs were expressed in the tissues of HCC patients. (A) Immunohistochemical staining of OPN in the 
tissues of HCC patients. Scale bar; 50 μm. (B) Double immunofluorescence was carried out in HCC tissues. OPN expression in the cells 
was indicated in green, αSMA positivity was indicated in red, and OPN plus αSMA positivity was indicated in yellow. Scale bar; 50 μm, 
scale bar of large image; 25 μm. (C) The proposed model of cancer-TAM-CAF interactions via OPN.
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stained with 0.2% crystal violet. The stained cells in three 
random microscopic fields (×100) were counted.

Scratch assays

For scratch assays, cancer cells were seeded at a 
density of 2.0 × 104 cells/well in 6-well plates. Once the 
cells were grown to confluency, a plastic pipette tip was 
scraped across the center of the well to produce a 1-mm 
wide wound area. The medium was removed, and each 
CAF-CM with or without the OPN antibody (AF1433) 
was added, and cancer cells were cultured for 12 hours. 
After culturing, a phase-contrast microscope was used to 
examine cell movement into the wound area.

Cytokine array

The supernatants of LX2 cells, CAFs (ca.), 
CAFs (TAM) and CAFs (CAF) were collected, and the 
particulates were removed by filtration through a 0.2 μm 
filter. Cytokines in the supernatants were detected with a 
Proteome Profiler Human Cytokine Array Kit (ARY005B; 
R&D Systems, Inc., MN, USA), and membranes were 
developed following the manufacturer’s protocol. After 
blocking, membranes were incubated with the samples 
and antibody cocktail overnight at 4°C. After incubation, 
the membranes were washed and then incubated with 
streptavidin-HRP at room temperature for 30 minutes. 
Chemiluminescent detection reagents were incubated with 
the membrane for 1 minute, and the signal intensities on 
the membranes were detected with chemiluminescence 
(GE Healthcare, Little Chalfont, UK).

Enzyme-linked immunosorbent assay

The level of OPN was detected using a human 
osteopontin Quantikine ELISA kit (DOST00; R&D 
Systems) in accordance with the manufacturer’s protocol. 
Absorbance at 450 nm was measured using a plate reader 
(SpectraMax i3; Molecular Devices) with a reference 
wavelength at 540 nm.

Polymerase chain reaction analysis

The total ribonucleic acid (RNA) in each sample 
was extracted using a RNeasy Mini Kit (Qiagen, Hilden, 
Germany) in accordance with the manufacturer’s 
instructions. cDNA was synthesized using a reverse 
transcription kit (Applied Biosystems, Thermo Fisher 
Scientific Inc., Waltham, MA, USA). The following 
primers from TaqMan gene expression assays (assay 
identification number) were used: ACTA2 (Hs00426835_
m1), FAP (Hs00990791_m1), IL6 (Hs00985639_m1), 
CD163 (Hs00174705_m1), CD206 (Hs00267207_m1), 
CDH1 (Hs01023894_m1) and VIM (Hs00185584_m1). 
GAPDH (4326317E) was selected as an internal control. 

The StepOnePlus Real-Time PCR System (Applied 
Biosystems) was used to perform RT-qPCR.

Immunohistochemistry

We used immunohistochemistry procedures in our 
department that were previously reported [51]. Anti-
OPN antibody (dilution 1:100, ab8448; Abcam plc., 
Cambridge, UK) was used as the primary antibody. This 
study was approved by Tokushima University Hospital 
ethics committee and with the approval of corresponding 
regulatory agencies, and all the experiments were 
carried out in accordance with the approved guidelines 
(Tokushima Clinical Trial Management System Number; 
3215). All the patients involved in this study signed 
informed consent forms and agreed to participate. 

Immunofluorescence

We used immunofluorescence procedures in our 
department that were previously reported [52]. Anti-OPN 
antibody (dilution 1:1000, ab8448; Abcam plc.), Anti-
αSMA antibody (dilution 1:100, ab7817; abcam plc.), and 
Anti-FAP antibody (dilution 1:1000, ab28244; abcam plc.) 
was used as the primary antibody. Anti-rabbit Alexa 488 
(1:500, A-11008; Thermo Fisher Scientific, Inc.) for Anti-
OPN antibody and Anti-FAP antibody, and Anti-mouse 
Alexa 594 (1:500, A-11005; Thermo Fisher Scientific, 
Inc.) for Anti-αSMA antibody were used as the secondary 
antibody.

Statistical analysis

All statistical analyses were performed using 
statistical software (JMP software, version 13; SAS 
Campus Drive, Cary, NC). All data were expressed as 
the mean ± SD. Comparisons between 2 groups were 
performed by the Mann-Whitney U test. Comparisons 
between more than 3 groups were calculated using one-
way ANOVA with the Turkey-Kramer’s test. A value of P 
< 0.05 was considered to indicate statistical significance.
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