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ABSTRACT
Tumor mutational burden (TMB) is a promising tool to help define patients 

with triple-negative breast cancer (TNBC) most likely to benefit from immune 
checkpoint blockade (ICB) therapies. Roughly reflecting the degree of neo-antigens 
that tumors present to immune cells, TMB associates with multiple measures of 
tumoral immunogenicity and has proven clinically useful in cancers with relatively 
high mutation burden. TNBC carries higher TMB than other breast cancer subtypes, 
and recent data suggest that high-TMB TNBC cases may derive particular benefit 
from ICB in combination with chemotherapy (GeparNuevo, IMpassion130) or even 
ICB alone (KEYNOTE-119, TAPUR). Given the recent approval of pembrolizumab and 
atezolizumab in combination with chemotherapy for PD-L1-positive, metastatic TNBC, 
standardizing TMB calculation methods and cut-off values is of critical importance to 
deploy this clinical biomarker.

INTRODUCTION

Defining patients most likely to derive durable 
benefit from immune checkpoint blockade (ICB) is 
critical to the progress of immuno-oncology. Recent 
approval of both pembrolizumab and atezolizumab in 
combination with standard chemotherapy for programmed 
cell death 1 ligand 1 (PD-L1)-positive, metastatic triple-
negative breast cancer (TNBC) represents an important 
step forward for the use of ICB in breast cancer [1, 2]. 
However, PD-L1 expression has technical limitations 
as a biomarker due to its dynamic and heterogeneous 
expression in the tumor microenvironment, variable 
assay interpretation, and a lack of standardization across 
platforms [3–5]. Pembrolizumab has now been approved 
for metastatic TNBC with combined positive score (CPS) 
≥ 10 using the 22C3 assay, while atezolizumab carries 
approval for immune cell score (IC) ≥ 1 with SP142. 
Additionally, only a fraction of patients with PD-L1-
positive, metastatic TNBC respond to ICB [6, 7]. DNA 
instability has emerged as a predictor of response to ICB 
alone and in combination with chemotherapy and DNA-
damaging agents [8]. These observations culminated in the 

U.S. Food and Drug Administration (FDA) pan-approval 
of pembrolizumab for unresectable or metastatic cancers 
of any tissue origin with microsatellite instability (MSI+) 
or mismatch repair deficiency (MMR-) [9]. 

Although TNBC generally carries higher mutation 
rates than other breast cancer subtypes, less than 2% of all 
breast cancer cases are classifiable as MSI+, suggesting 
that TNBC may accumulate mutations through alternate 
pathways [10]. Tumor mutational burden (TMB), more 
generally quantifying the number of non-synonymous 
somatic mutations, also predicts benefit to ICB in 
melanoma, lung, urothelial, and colon cancer [11–14]. 
Whereas other biomarkers of ICB response, including 
PD-L1 expression, T-cell inflammation signatures, and 
tumor infiltrating lymphocyte (TIL) counts, directly 
measure immune activity, TMB indirectly reflects tumor 
immunogenicity by approximating neoantigens presented to 
major histocompatibility complexes (MHC). Therefore, we 
address the question: can TMB be utilized as a biomarker of 
immunotherapy response in metastatic TNBC?

Breast cancer carries an intermediate TMB 
compared to cancers in which immunotherapy is widely 
used. Studies of large cancer databases have reported a 
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median of 2.63 mutations per genomic megabase (mut/
MB) among all breast cancers, compared to 7.2 mut/MB 
in lung cancer and 13.5 mut/MB in melanoma [15, 16]. 
In general, cancers with high TMB also carry higher TIL 
counts, higher expression of immune gene signatures, 
and substantial survival benefits from anti-PD1 therapies. 
Using a common definition of TMB-high as ≥ 10 mut/MB, 
approximately 5% of all breast cancer cases (including 
all breast cancer subtypes) are considered TMB-high, 
compared to 4% TIL-predominant (defined by ≥ 50% 
lymphocyte infiltration) and 10% PD-L1-positive (defined 
by ≥ 1% tumor or immune cell expression) [7, 15, 17, 18]. 
Approximately 40% of metastatic TNBC are PD-L1-
positive [1, 2]. 

Nonetheless, among breast cancer cases, TMB 
varies greatly with histopathologic and clinical variables. 
TNBC, particularly of basal subtype, carries higher 
TMB than estrogen receptor (ER)-positive or HER2-
positive breast cancers [19, 20]. Consistent with this 
observation, PD-L1-positive TNBC also is associated 
with higher TIL counts and higher response rates to 
anti-PD1 therapies [21]. Evidence suggests that lobular 
carcinomas contain higher TMB than ductal [15]. 
Beyond the mutational load, differences in mutational 
signatures are thought to influence immunogenicity as 
well. For example, carcinogen-related DNA damage, 
dominated by C>A transversions, is thought to be most 
predictive of ICB response [22] in melanoma and lung 
cancer. Tumors associated with BRCA1 and BRCA2 
germline mutations, which are disproportionately 
TNBC, acquire distinctly high mutational loads through 
homologous recombination deficiency and contain high 
PD-L1 expression [23]. Evidence has suggested that the 
APOBEC mutation signature, associated with cytidine 
deaminase dysregulation, may be the driving mutational 
process in breast cancer, dominant in more than half of 
hypermutated cases [15]. Durable response to ICB not 
achieved with standard chemotherapy has been reported in 
high-TMB breast cancer with APOBEC signature, despite 
low TIL counts and PD-L1 negatively [24]. Notably, the 
approval of pembrolizumab for MMR- or MSI+ cancers 
would miss a substantial number of these cases. Only 
0.04–1.53% of all breast cancers are classifiable as MSI+, 
while approximately 33–46% of metastatic breast cancers 
demonstrate APOBEC mutagenesis [25–27]. In June, 
2020, based on results from phase II KEYNOTE-158, 
pembrolizumab was FDA approved for non-MMR-/MSI+ 
TMB-high previously treated, advanced solid tumors 
[28]. Breast cancer was not included in this study; eligible 
tumor types were anal, biliary, cervical, endometrial, 
mesothelioma, neuroendocrine, salivary, small-cell lung, 
thyroid, and vulvar. 

Metastatic breast cancers also contain higher 
TMB than primary cancers (estimated 8–11% versus 
2–5% TMB-high, respectively), which may be related 
to the tendency of more genomically unstable cells to 

metastasize or the acquisition of additional mutations 
over time [7, 15, 24]. Importantly, there does not seem to 
be an association between TMB and the risk of primary 
tumor metastasis [15]. In fact, high TMB has been 
associated with prolonged overall survival (OS) in de 
novo, treatment-naïve metastatic TNBC [29]. Potentially 
as a result of up-regulation of immune-escape mechanisms 
and complex clonal pruning, metastatic cancers are known 
to be less immunogenic than their primary counterparts, 
including relatively lower PD-L1 expression [30–32]. 
While the established benefit of ICB in metastatic TNBC 
has led to several FDA approvals, there is increasing 
evidence that ICB also has benefit in early-stage disease, 
potentially independent of PD-L1 expression [33]. 
This may be attributable to the more active immune 
microenvironment in early-stage tumors. Analyses of 
recent neoadjuvant trial data from GeparNuevo suggest 
that TMB may have clinical utility in predicting pathologic 
complete response (pCR) from ICB in early-stage TNBC 
as well [34]. This analysis included 149 early-stage TNBC 
receiving neoadjuvant durvalumab and chemotherapy 
(n = 74) or chemotherapy alone (n = 75). Median TMB 
was significantly higher in patients with pCR (median 
1.87 versus 1.39, p = 0.005), and odds ratios for pCR 
per mut/MB were 2.06 (95% confidence intervals [CI] 
1.33–3.20) among all patients, 1.77 (95% CI 1.00–3.13) in 
the durvalumab arm, and 2.82 (95% CI 1.21–6.54) in the 
chemotherapy arm. Although the association between pCR 
and TMB was present in both the ICB dual therapy and 
chemotherapy arms, it was stronger in the cohort treated 
with chemotherapy alone.

In contrast, in the metastatic setting, multiple 
exploratory, retrospective analyses of recent clinical 
trials support the benefit of ICB monotherapy in TMB-
high TNBC. The KEYNOTE-119 trial compared 
pembrolizumab monotherapy to chemotherapy in 622 
patients with pre-treated, metastatic TNBC [35]. Of the 
253/601 treated patients with available TMB data (n = 132 
pembrolizumab, n = 121 chemotherapy arm), 26 patients 
(10.3%) were TMB-high (TMB ≥ 10 mut/MB). There was 
a positive association between TMB and clinical response 
to pembrolizumab (overall response rate [ORR] p = 0.154, 
progression free survival [PFS] p = 0.014, OS p = 0.018) 
but not to chemotherapy (ORR p = 0.114, PFS p = 0.478, 
OS p = 0.906). In TMB-high cases, ORR and hazard ratio 
(HR) for OS also suggested a trend towards increased 
benefit with pembrolizumab versus chemotherapy. 
Although suggestive for the clinical utility of TMB in pre-
treated metastatic TNBC, this study was limited by the 
limited sample size and low number of TMB-high cases. 

These findings were supported by the phase II 
TAPUR trial, a prospective study evaluating single-agent 
pembrolizumab in 28 heavily pre-treated metastatic breast 
cancer of all subtypes [36]. This study detected benefit 
from ICB monotherapy in TMB-high (TMB ≥ 9 mut/MB) 
cases with an ORR of 21% (95% CI 8–41%) and PFS rate 
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of 10.6 weeks (95% CI 7.7–21.1 weeks). No association 
was found between increasing TMB and longer PFS. A 
recent retrospective analysis of 62 patients with metastatic 
TNBC also suggests ICB therapy alone may be sufficient 
to treat TMB-high tumors [37]. Patients in this study 
had received either anti-PD-1/PD-L1 alone (23%) or in 
combination with targeted therapy (19%) or chemotherapy 
(58%), and 60% had received one or more prior therapies 
for metastatic disease. TMB-high (TMB ≥ 10 mut/MB) 
cases demonstrated significantly longer PFS (12.5 versus 
3.7 months, p = 0.03), longer OS (29.2 versus 14.2 
months, p = 0.06) and a 4 times higher odds of response 
than patients without high TMB (odds ratio = 4.32, 95% 
CI 1.05–19.89) in multivariate analyses. The association 
between PFS and TMB was independent of monotherapy 
versus combination therapy regimen as well as number 
of prior treatment lines. Notably, the association was also 
independent of PD-L1 status. 

The results described suggest that ICB monotherapy 
may be sufficient to treat TMB-high metastatic TNBC 
as well as relevant for early-line treatment. The rationale 
to combine chemotherapy with immune-modulating 
agents dates back more than 20 years; biologically, DNA-
damaging chemotherapies as well as targeted therapies 
such as PARP inhibitors are thought to sensitize tumors 
to ICB treatment by further disrupting tumor cell DNA 
repair pathways, increasing TMB, promoting neoantigen 
expression, and activating the STING pathway [23, 38]. 
Mutagenesis in hypermutated, metastatic TNBC appears 
to be driven largely by APOBEC processes and associated 
with frequent PIK3CA mutations [15]. Therefore, pairing 
ICB with direct AKT inhibitors that target the PIK3CA 
pathway may provide particular benefit in these cases 
[39]. Results from a recent phase Ib study of the AKT 
inhibitor ipatasertib combined with nab-paclitaxel and 
atezolizumab in 26 patients with metastatic TNBC 
support this hypothesis, demonstrating an ORR of 73%, 
independent of PIK3CA/AKT1/PTEN mutation status [40]. 
Other work has suggested that PIK3CA mutations are 
associated with a complete or partial response to ICB in 
MSI+ solid tumors [41]. However, evidence has emerged 
to suggest that chemotherapy does not always confer 
additional benefit and is associated with additional toxicity 
[42]. In some cases, priming with chemotherapy may even 
promote the expansion of less immunogenic subclones, 
reducing ICB effectiveness [43]. Lead-in therapy with ICB 
may an alternative, more effective strategy. In the phase 
II GeparNuevo study, patients with TNBC who received 
durvalumab monotherapy prior to ICB and chemotherapy 
together were more likely to obtain pCR than those who 
received the combination alone [44]. First-line, single agent 
ICB therapies are approved in melanoma (ipilimumab, 
nivolumab, or pembrolizumab), non-small cell lung 
cancer (pembrolizumab) and locally advanced urothelial 
cancer (pembrolizumab, atezolizumab), three cancers with 
among the highest TMB [45]. TMB-high, metastatic TNBC 

may benefit from similar approval. Dual ICB therapy may 
be another strategy to maximize benefit and minimize 
toxicity; to evaluate this hypothesis, we have launched 
a multicenter, single arm, phase II trial (NIMBUS) of 
nivolumab plus ipilimumab in metastatic, hypermutated 
HER2-negative breast cancer (NCT03789110). 

The relationship between the predictive values of 
PD-L1 expression and TMB is of great debate. Several 
studies have shown that PD-L1 and TMB are independent 
predictors of ICB response, and PD-L1 expression 
and TMB have low correlation across multiple tumor 
types [46, 47]. However, the landmark IMpassion130 
trial, investigating nab-paclitaxel monotherapy versus 
atezolizumab plus nab-paclitaxel in previously untreated, 
metastatic or locally advanced TNBC, found that TMB 
predicted increased benefit to ICB only in PD-L1-positive 
tumors [1]. In this study of 579 patients, increasing TMB 
was associated with improved PFS (highest TMB quartile 
HR 0.56, 95% CI 0.38–0.81), but the association was 
primarily driven by the PD-L1-positive subgroup (HR 
0.31 versus 0.84). Increasing TMB was also associated 
with prolonged OS in the PD-L1-positive group alone. It is 
possible that an algorithm integrating T-cell inflammation, 
PD-L1 expression, and TMB biomarkers will best identify 
patients most likely to benefit from ICB monotherapy or 
combination regimens [48]. Other studies have suggested 
ICB response in TMB-high tumors may not be dependent 
on PD-L1 expression in the setting of anti-CTLA4 or 
anti-PD-1/CTLA-4 combination therapy [49]. Due to the 
limitations of PD-L1 as a biomarker described above, 
establishing the independent benefit of TMB in predicting 
response to both anti-PD-1/PD-L1 and anti-CTLA4 
therapies would be a highly useful clinical tool.

A major barrier to the incorporation of TMB into 
clinical practice is standardizing the methods of TMB 
measurement. Although the initial reports showing correlation 
between TMB and immunotherapy response were performed 
using whole-exome sequencing (WES), many studies have 
proven the feasibility of predicting TMB on lower-cost, 
targeted gene panels [16, 50]. However, several challenges 
still remain, including defining the “TMB-high” threshold, 
which varies widely by tumor type, selecting how many 
and which genes to include, standardizing the mutation 
calling pipeline, and accurately removing germline variants. 
Evidence has shown more discordance between WES 
versus targeted panel estimates in tumors with moderate 
to low underlying TMB [51]. Moreover, although many 
clinical trials utilize the FoundationOne targeted gene panel, 
establishing interoperability between panels of different sizes 
is an important step. Measuring TMB on peripheral blood 
provides a unique opportunity to reduce invasive procedures 
for patients and re-test TMB over the course of treatment. 
Although circulating tumor DNA (ctDNA) is not available 
in all cases and may reflect metastatic disease over primary 
tumor biology, TMB values from WES of ctDNA have proven 
consistent with those from WES on tissue biopsies [52].
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In conclusion, there is great potential for TMB to 
define a subset of patients with metastatic TNBC most 
likely to benefit from ICB. With additional investigation, 
TMB may prove to be useful for predicting ICB response 
in early-stage disease as well. Defining the means 
to measure TMB accurately, reproducibly and cost-
effectively is an important task for the implementation of 
this promising clinical biomarker. 
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