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ABSTRACT
Cancer stem cells (CSCs) have been considered the key drivers of cancer initiation 

and progression due to their unlimited self-renewal capacity and their ability to induce 
tumor formation. Macrophages, particularly tumor-associated macrophages (TAMs), 
establish a tumor microenvironment to protect and induce CSCs development and 
dissemination. Many studies in the past decade have been performed to understand 
the molecular mediators of CSCs and TAMs, and several studies have elucidated the 
complex crosstalk that occurs between these two cell types. The aim of this review 
is to define the complex crosstalk between these two cell types and to highlight 
potential future anti-cancer strategies.

INTRODUCTION

Cancer stem cells (CSCs) constitute a cancer cell 
subpopulation similar to the other stem cell types in terms 
of self-renewal and multilineage differentiation potential 
but drive tumor development besides heterogeneity and 
dissemination of cancer cells [1–9]. CSCs have been 
extensively studied, with some of these studies focusing 
on their identification and their origin from differentiated 
cancer cells due to microenvironment’s influence, which 
contributes to their heterogeneous phenotypes [6, 10]. 

Targeting CSCs for therapeutic purposes is a goal 
of the scientific community. Currently, cancer treatments 
target the bulk population of the tumor cells without 
identifying and targeting CSCs [11–14]. This inability 
of the contemporary therapeutic protocols is significant 
in treatment resistance and metastasis of cancer cells 
[15–19]. The significant problem in this regard is the lack 
of identification marker/s specific for CSCs. Bonnet and 
Dick were the first to report the existence of CSCs in the 

tumor in acute myeloid leukaemia (AML) samples [20]. 
They found that CD34+ CD38- subpopulation cells in 
leukemia were similar to normal hematopoietic stem cells 
(HSCs) and could initiate AML in immuno-deficient mice 
[20]. Since the publication of this report, CSCs have been 
extensively studied for specific markers but with little 
success [21, 22]. Nevertheless, CD34+CD38- expression 
differs between normal and CSCs and may be useful for 
the identification of CSCs [23, 24]. Receptors expressed 
in several cell types bind other molecules and be specific 
for normal, epithelial cancer cells, and CSCs [25, 26]. In 
the recent decades, scientists have often discussed the 
identification of CSCs and the use of a specific superficial 
target that can identify CSCs is the most commonly used 
approach [27–35]. 

The main characteristic of these antigens is the 
capacity to target an endogenous stem cell. However, 
a standard marker specific for CSCs has not yet been 
found, although several gene markers have been recently 
described for CSCs in different tumors, including brain, 
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breast, blood, and lung [36–41]. One of the major 
problems in finding such a marker is that several markers 
are able to detect not only CSCs, but also non-tumor cells, 
which represents an obstacle in developing new therapies 
targeting CSCs [42–44]. 

Indeed, there are currently no markers able to 
distinguish between stem cells and CSCs. Thus far, the 
best markers identified are those of onco-fetal stem cells, 
which are absent in adult organs and present in cancer 
cells [45–48]. Most of the markers identifying stem cells 
are proteins or glycoproteins, i.e., CD15, an embryogenic 
target in glioblastoma [49–51]. These identification 
markers may be subjected to genetic modifications and 
identify specific CSCs subpopulations with different 
molecular characteristics. For example, the upregulated 
ATP-binding cassette (ABC) transporter G subfamily 
(ABCG), absence or presence of mutated NOTCH1, or 
different isotypes as observed for CD44v [33, 52–56]. 

Another essential characteristic of these markers is 
the variability in their localization as they may be on the 
cell membrane like CD133 or in the cytoplasm/nucleus 
like aldehyde dehydrogenase 1 (ALDH1), which is located 
in the cytoplasm and has been observed in several solid 
tumors as well as leukemia [57–61]. The localization 
and the characteristics of these markers reveal that CSCs 
may have different epigenetic and genetic alterations 
[62, 63]. This may be one of the most important reasons 
why scientists are still debating about possible CSCs 
markers in different solid tumors [45, 64]. Despite that, 
these aspects have been investigated in cell lines and 
experimental animals’ models for decades. Sullivan et al. 
(2010) described the role of ALDH as a possible marker 
for lung cancer stem cell, as ALDH+ cells in cancer cell 
lines, as well as those extracted from lung cancer tissue, 
for the properties that it showed as forming spheres in 
culture tumor cells lines as well as in cells extracted from 
lung cancer tissue [65]. However, currently there is no 
specific or standard marker in lung cancer cells that can 
define this subpopulation of cells, probably due to the 
complex localization of these markers and their epigenetic 
regulation.

Different markers for CSCs have been studied in the 
last recent decades, and scientists tried have attempted to 
improve the identification of this better this subpopulation 
by using a double or triple marker [15, 32, 33, 65–70]. 
Masciale et al. reported a novel subpopulation of cells 
expressing CD44+/epithelial cell adhesion molecule 
(EpCAM+) that was positively correlated with ALDH+ 
cells [33]. They compared two similar CSC populations. 
These significant data may form the basis to develop 
new targeted treatments to eliminate CSCs, which are 
considered to be one of the leading causes of tumour 
recurrence and progression [71–75]. 

A theory regarding the role of CSCs in cancer 
progression is based on the premise that tumor tissue 
is hierarchically organized into different types of 

cells wherein CSC subpopulation is at the top of this 
hierarchy [1, 28, 29], with the other levels consisting of 
more differentiated tumor cells or cells with a limited 
proliferative potential [30]. CSCs have many attributes, 
including quiescence, chemotherapeutic resistance, and 
slow cycling [74–76]. Another essential characteristic that 
places CSCs at the top of the tumor cell hierarchy is their 
unlimited proliferation potential, which allows them to 
repopulate the tumor even if bulk tumor cells have been 
removed [18, 77–87]. It is important to note that CSCs 
may represent a dynamic cellular state in which stem cell-
like traits are acquired to mediate resistance and induce 
tumor dissemination [77, 86, 87]. The complexity of cell 
composition, which is the base of cancer heterogeneity, 
has been discussed for a long time due to the different 
mechanisms that are the cause of the cancerization process 
variability [89]. Moreover, the discovery of the plasticity 
of CSCs and the possibility of switching from stem to non-
stem cells led to a more complex picture of the origin of 
tumor heterogeneity [88]. Peter Nowell was the first to 
describe the “clonal evolution theory,” defining cancer 
as a complex process resulting from the development of 
a single out-of-control cell with multiple cell mutations 
that result in the progression of the tumor, which is kept 
viable through the selection of the most aggressive clones 
[89]. He also hypothesized that the dominant clone cells 
showed the most substantial tumorigenic properties [89]. 
An opposing theory is based on the concept that CSCs are 
a group of cells endowed with a high self-renewal capacity 
that can set different phenotypes of tumorigenic cells 
[18, 88]. The CSC theory was the most impressive in solid 
tumors in the absence of another approach to distinguish 
between a tumorigenic and non-tumorigenic cell due to 
similarity in their kinetic properties and because cancer is 
hierarchically organized [21]. One of the main obstacles 
to proving the CSC model is the difficulty in identification 
and isolation of these cells [7, 33, 91]. In fact, scientists 
first tried to define a CSC model using xenografts for 
the testing and identification of markers, and isolation 
of tumor-initiating cells [91, 92]. This model showed the 
existence of highly tumorigenic cells but did not clarify 
the superficial markers that might be useful to define this 
subpopulation compared with non-CSCs. One of the most 
important aspects that require in-depth study in the future 
is the capacity of these cells to survive chemotherapy. 
In addition to these aspects demonstrated in an animal 
models, these cells’ self-renewal capacity, which helps 
the tumor grow, disseminate, and relapse remains a topic 
of intense interest in the scientific community. Although 
the CSC model alone is not supported enough to explain 
functional heterogeneity in cancer, scientists have recently 
considered the role of the tumor microenvironment (TME) 
as a significant factor in CSCs’ plasticity, especially in 
the process of turning from non-CSCs to CSCs [90, 92]. 
This mechanism seems to rely on cell-to-cell interactions 
within the tumor niche [77]. 
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Furthermore, these connections between CSCs and 
other cells is the primary source of protection for this 
subpopulation during induction of cell transformation, 
tumor growth, and resistance to common oncological 
treatments. In this context, the TME seems to play a 
crucial role in tumor progression and metastasis by 
building a synergistic relationship with CSCs [6, 10, 16, 
76, 93] (Figure 1). 

CSCS ARE THE KEY DRIVERS OF TUMOR 
INITIATION AND PROGRESSION 

The role of CSCs in carcinogenesis has not yet 
been well-defined [86, 87, 93, 94]. The process of tumor 
initiation involves the accumulation of mutations that 
facilitate the uncontrolled proliferation of tumor cells. Any 
mutation in these proliferation-promoting genes results in 
the failure of DNA-repair mechanisms [95, 96]. Additional 
mutations induce clonal selection, which selects more 
aggressive phenotypes. Unfortunately, these molecular 
alterations usually take place in the early stages of cancer 
that continue unabated in the absence of any treatment, 
as cancers are rarely identified in early stages [97]; thus, 
cancer grows and disseminate during this time unchecked 
[1, 98]. The most substantial support for metastasis comes 
from the TME, which provides favourable signals to 
support the metastatic cascade. The molecular interactions 
between cancer cells and the TME influence the tumor’s 
capacity to survive and evolve, developing more resistant 
and aggressive phenotypes [6, 10, 16, 76, 93]. This 
is the possible reason that cancer treatments are not 
able to reduce or stop tumor progression, especially in 
advanced stages. The tumour’s aggressiveness is primarily 
determined by the subpopulation of CSCs, as they are 
often resistant to therapies and can re-initiate tumor even 
if the bulk tumor cells are eliminated, resulting in tumor 
relapse [99]. 

The dualistic model explains this capacity to 
mediate tumour progression. By this model, CSCs may 
divide either symmetrically, giving rise to two identical 
CSCs or two differentiated cancer cells, or asymmetrically 
thus resulting in one CSC and one differentiated cancer 
cell. Only the complete extinction of the CSCs population 
would completely eradicate the tumor [100, 101]. 
Alternatively, if we consider the stochastic model in which 
each cell can be tumour-initiating, the path to eradicating 
the tumor is much more complicated [102]. Olmeda et al. 
put forth a tumor initiation model comprised of CSCs, 
differentiated cancer cells, and all the other cells within 
a tumour [103]. Each cell type in the tumour then creates 
an active link with the microenvironment. By this model, 
each cell subpopulation can actively interact with the 
microenvironment via diverse chemical pathways and 
physical interactions [103].

The CSC initiation process is stemness transcription 
factors dependent that drive the expression of genes not 

expressed in normal cells but is highly expressed in 
CSCs, especially during the initiation process [102–
104]. Blanpain et al. demonstrated a vital role for the 
transcription factor sex-determining region Y-Box 2 
(SOX2) in the melanoma initiation and progression [105, 
106]. In this study, they noted that SOX2 was not present 
in normal skin but was clearly expressed at an early stage 
in tumor formation [106]. As these data, two now better 
understand these stemness genes and their potential targets 
during the control of tumor progression. In fact, in the case 
of melanoma, it has been thought that tumor initiation may 
be prevented by the deletion of the SOX2 gene and that the 
removal of SOX2-positive cells from established tumors 
may lead to regression. Potential treatments developed 
based on the study of stemness genes are very promising 
for controlling CSCs and, consequently, tumor resolution 
[106]. Future studies are required in many solid organs to 
identify the genes implicated in the mechanism regulating 
CSCs proliferation, tumor survival, and invasion [107]. 

MACROPHAGES AND TAMS

Macrophages are large specialized phagocytic cells 
that exist in tissues or at infection sites. They arise from 
monocytes in the bone marrow and perform different 
functions and roles in the microenvironments of normal 
and tumor tissue [108, 109]. Macrophages differentiate 
into classically activated subtypes: CD68 expressing 
M1 mainly involved in pro-inflammatory activities, and 
CD163 expressing M2, that promote anti-inflammatory 
processes. In tumors, tumor-associated macrophages 
(TAM) comprise up to 50% of the tumor mass, with M2 
phenotype being most abundant in the TME [110–112]. 
The primary signals provided by TAMs include interleukin 
4 (IL-4) and transforming growth factor-beta (TGF-β). 
TAMs play a key role in tumor initiation, development, 
and cancer cell propagation [113] (Figure 1).

Recent studies have demonstrated that high numbers 
of TAMs correlate with a poor clinical prognosis in lung 
tumors and gastric cancer, among other cancer types 
[114–118]. Another important aspect is the protective role 
of TAMs for tumors undergoing chemotherapy, which 
may impact chemotherapeutic resistance and consequent 
tumor relapse [119]. There is a general reception that 
TAMs decrease the effectiveness of chemotherapy while 
the presence of CD68+ and CD163+ cells correlates with 
a poor prognosis in esophageal and pancreatic cancers 
[120, 121].

Yang et al. have suggested that in breast tumors, 
TAMs are responsible for chemotherapy drug resistance 
via the interleukin 10 (IL-10)/signal transducer and 
activator of transcription 3 (STAT3)/B-cell lymphoma 
2 (Bcl-2) signaling pathway [122]. TAMs are also 
correlated with tamoxifen resistance, which is used in 
endocrine therapy in postmenopausal patients with breast 
cancer [122]. Moreover, TAMs contribute to unfavorable 



Oncotarget233www.oncotarget.com

outcomes during radiotherapy due to their capacity to 
modulate cancer cells’ response to therapy [123, 124]. 
In particular, macrophages are responsible for the side 
effects of radiotherapy [123–125]. These findings explain 
that irradiation, DNA damage, cell death, and hypoxia 
stimulate tumors to produce vascular endothelial growth 
factor (VEGF), stromal cell-derived factor 1α (SDF-
1α), and colony-stimulating factor 1 (CSF-1), which are 
involved in the recruitment of macrophages to the tumor 
[122–126] (Figure 1). The recruitment of TAMs leads 
to the production of proangiogenic cytokines, which 
stimulate blood vessel formation [121, 122]. Irradiated 
macrophages can also promote cancer cell migration 
and tumor angiogenesis (Figure 1). Notably, it has been 
demonstrated that therapies targeted against TAMs can 
improve radiotherapy’s efficacy [127–130]; specifically, 
the inhibition of TAM recruitment can prevent tumor 
regrowth [127].

TUMOR ESCAPE AND TAMS 

Immune system can recognize the presence of 
cancer cells and induce their rejection response. However, 
some specific phenotypes of cells manage to escape the 

vigilant immune surveillance to form tumors despite the 
presence of normal activated immune cells [131–133]. 
Immunoediting comprises all of the immune processes 
that lead to the control of tumor progression, including 
an important phase of immunosurveillance [134]. As a 
consequence of this tumor elimination phase, a specific 
subpopulation of CSCs is able to escape immune 
mechanisms to escape the immune response via, for 
example, the downregulation of antigen-presenting cells 
(APCs) [135, 136]. As the presentation of tumor antigens 
from human leukocyte antigen (HLA)-1 to T cells is 
essential for the recognition phase, the expression of HLA-
1 on CSCs may decrease as reported by Di Tomaso et al. in 
a study on glioblastoma CSCs [137]. This downregulation 
of HLAs has also been observed in melanoma CSCs, in 
which abnormally high expression of HLA-II and low 
expression of the melanoma-associated antigens MART-
1, ML-IAP, NY-ESO-1, and MAGE-A was observed 
[138, 139]. The antigen-processing machinery is defective 
in CSCs; thus, these highly specialized cells exhibit 
low immunogenicity [140]. Some CSCs, particularly in 
melanoma, modulate immune responses by expressing 
ABCB5 gene, conferring chemoresistance [141–143]. 
These mechanisms mentioned above describe the 

Figure 1: Main roles of tumor associated macrophages in cancer development and manteinance. TAMs and their released 
factors are involved in different processes controlling the evolution of cancer. Schematic representation of the role of TAMs in tumor 
growth, angiogenesis, invasion, metastasis and regulation of T lymphocytes. 
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modulation of immune response via the induction of T-cell 
anergy and downregulation of cancer-associated antigens 
to escape immune-mediated tumor clearance [141–143]. 

Another mechanism that can influence immune 
cells presence and function is associated with TAMs 
[121]. TAMs are the predominant immune cells within 
tumors; consequently, they significantly impact the tumor 
initiation process and can affect T lymphocytes, natural 
killer (NK) cells, dendritic cells, neutrophils, and myeloid-
derived suppressor cells (MDSCs) [144]. Also, TAMs 
express chemokines, i.e., CCL5, CCL22, and CCL20 
and cytokines i.e., IL-10 and TGF-β, which recruit and 
activate regulatory T cells (Tregs), thus contributing to 
immunosuppression in the TME [145], and participate in 
tumor cells’ escape and tumorigenesis. In particular, TAMs 
can suppress the antitumor effects of tumor-infiltrating T 
cells and NK cells [148] and inhibit T cell function by 
releasing specific enzymes, such as nitric oxide synthase 
and arginase I [146, 147].

Besides, TAMs inhibit the cytotoxic functions of 
T cells, natural killer T cells, and NK cells through the 
expression of the ligands for the immune checkpoint 
receptors programmed cell death-1 (PD-1) and cytotoxic 
T lymphocyte-associated protein 4 (CTLA-4) [121], 
which are highly expressed on the surface of CSCs in 
various cancer types, allowing CSCs to escape and avoid 
elimination by the immune cells [148]. 

Depending on their phenotype, macrophages have 
a dual role in cancer. M1 macrophages are involved in 
the earlier stages of neoplasia, while M2 macrophages are 
involved in tumor spreading [109]. DNA damage is the 
principal mechanism by which inflammation promotes 
tumorigenesis. TAM-generated free-radicals lead to 
DNA damage, causing alterations that predispose a cell 
to cancer. An example of this macrophage-mediated 
induction of tumorigenesis is Crohn’s disease, which 
significantly enhances the risk of colorectal cancer [149]. 
In the metastatic process, TAMs are responsible for local 
invasion and intravasation into the blood system, as well 
as homing to the pre-metastatic niche (by promoting 
EMT) [150, 151]. TAMs also foster both tumor growth 
and migration by producing a variety of chemokines, 
inflammatory agents, and growth factors. For example, 
CD68+HLA-DR+ TAMs in hepatocellular carcinoma 
(HCC) induce HCC cell migration via the nuclear 
factor kappa B (NF-κB)/ focal adhesion kinase pathway 
[109, 152]. One of the most exciting characteristics of 
TAMs is their capacity to promote angiogenesis and 
lymphangiogenesis that allow tumor growth and the 
spread of cells in the TME.

The formation of new blood vessels or lymphatic 
vessels provides support channels for neoplastic tissues. 
Massive angiogenesis contributes to poor prognosis in 
primary tumors. The principal contributors in angiogenesis 
are hypoxia, hyper-osmosis, and proangiogenic factors 
such as VEGF, TGF-β, cyclooxygenase 2, platelet-

derived growth factor (PDGF), epidermal growth factor 
(EGF), angiopoietins, and chemokines [152]. TAMs 
can also synthesize proteins associated with vascular 
endothelial cells, such as Wnt7b besides VEGF, thereby 
promoting the angiogenetic switch [153]. One of the 
significant angiogenesis-inducing factors, pro-matrix 
metalloproteinase-9 (proMMP-9), is supplied by TAMs to 
the TME [156]. MMP-9 plays a fundamental role in tumor 
angiogenesis and metastasis by activating the angiogenic 
switch that mediates the development and maintenance of 
distinct neovascular networks [154, 155] (Figure 1).

Cross-talk between CSCs and TAMs involves the 
recruitment of TAMs through vascularization and the 
release of chemokines by TAMs to preserve the quiescence 
of CSCs and modification of their antigens to escape from 
recruitment by immune cells. This crosstalk influences all 
the aspects of tumorigenesis to metastasis. Consequently, 
immunotherapies to fight cancer, such as checkpoint 
inhibitors or T-lymphocyte transfer strategies are emerging 
novel therapeutic strategies in the oncology field. 

MECHANISMS LINKING CSCs AND TAMs 

TAMs may constitute more than 50% of the tumor 
mass [109, 112, 156]. They promote tumor growth 
by inducing neoangiogenesis, supporting CSCs, and 
downregulating tumour-targeting immune cells’ number 
and function [125, 153–155]. Due to the significance of the 
tasks in which TAMs are involved, TAMs are increasingly 
becoming principal targets of novel therapeutic 
approaches, especially in the field of nanomedicine. It is 
now generally accepted that the M2 macrophages have an 
essential role in immunosuppression and trophic activity 
in response to Th2 cytokines [121, 156–159]. 

The roles, connections, and functions of the 
crosstalk between TAMs and CSCs have been studied in-
depth during the recent past. [158–160]. The interactions 
may be direct or indirect, and the effects on CSCs 
include chemoresistance, preservation, and the capacity 
to differentiate [161, 162]. TAMs produce cytokines 
including milk fat globule epidermal growth factor 8 
(MFG-E8); interleukin 6 (IL-6), which can activate 
STAT3; and the Hedgehog signaling pathway, which 
seems to be one of the causes of drug resistance [163, 
164]. For example, in hepatocarcinoma, IL-6 promotes the 
expression of CD44+, inducing tumor development [165].

The role of IL-6 in the induction of TAM-mediated 
CSCs has been studied by the inhibition of IL-6 with 
the anti-IL6-R antibody tocilizumab, which was able 
to decrease the number of the tumor spheres and 
chemoresistant cells [166, 167]. IL-6 also plays a role 
in cancer by stimulating the conversion of non-stem cell 
into stem-like cells. In breast cancer, in vitro stimulation 
with IL-6 increases tumor mammospheres and CD44+/
CD24+ breast CSCs. It is also known that IL-6 stimulates 
the conversion of non-stem cell into stem-like cells. In 



Oncotarget235www.oncotarget.com

breast cancer, in vitro stimulation with IL-6 results in 
an increase in the number of tumor mammospheres and 
CD44+/CD24+ breast CSCs [168]. Substantial evidence 
demonstrates the important role of IL-6 in the niche 
microenvironment to guide the metastatic process in 
cancer [164, 165]. Moreover, IL-6 promotes stemness 
in osteosarcoma by upregulating the signalling pathway 
regulating EMT through phosphorylation of the STAT3. 
Further, IL-6 levels are associated with tumor growth and 
metastases [169–172]. The IL-6 release, together with 
CCL5 and IL-8, has been linked to the β-catenin/Wnt 
pathway, leading to the spread of CSCs [173, 174]. 

Another cytokine able to drive EMT in hepatoma 
cells is TGF-β1. This induction promotes the development 
of cancer stem-like characteristics, and it can be reduced 
or stopped by the depletion of TGF-β1 [175, 176]. A 
microarray from 96 patients diagnosed with pancreatic 
ductal adenocarcinoma showed CD44+CD133+ markers 
for CSCs and CD204+ for TAM, suggesting a possible 
connection between CSCs and TAMs in cancers, which 
also appears to be correlated with overall decreased 
disease-free survival [177]. Also, breast cancer CSCs 
appear to interact directly with TAMs through CD90/
CD11b anchoring [178]. This interplay induces EphA4 
receptor-mediated activation of both the nuclear 
factor- kappa B (NF-κB) and Src signaling pathways in 
CSCs. Cytokines and granulocyte-macrophage colony-
stimulating factor (GM-CSF) are secreted by CSCs 
through a cascade of juxtracrine signals. However, the 
interactions between CSCs and TAMs may be facilitated 
by several components of the extracellular matrix (ECM). 
In particular, there are molecules like TGF-β1 responsible 
for EMT, which promotes the development of cells with 
cancer stem-like characteristics [167]. 

In leukemia, several cytokines, growth factors, and 
ECM proteins derived from mesenchymal stromal cells 
promote abnormal proliferation and dissemination of 
cancer cells [179]. Periostin (POSTN) is also involved in 
metastasis of different cancer types by promoting tumor 
niche formation, especially the CSC niche [179], and 
CCL2 was shown to increase the development of CSC in 
breast cancer by acting on cells in the TME [180, 181]. A 
recently identified pro-TME factor, Wnt-induced signaling 
protein 1 (WISP1) has been related with the promotion 
CSCs and TAMs’ survival of both in glioblastoma thus 
affecting the disease course [182, 183]. Moreover, in 
breast cancer, upregulation of hyaluronan synthase 
2 (HAS2) induces the production of the hyaluronic 
component of the ECM, which is can promote TAMs-
released platelet-derived growth factor-BB (PDGF-BB) 
[184]. In turn, PDGF-BB activates stromal cells, which 
induce CSCs’ self-renewal through the secretion of 
fibroblast growth factor 7 (FGF7) and FGF9. Inhibition 
of HAS2 by 4-methylumbelliferone blocks cancer 
development and reduces the incidence of recurrence 
[184]. This finding highlighted that inhibiting HAS2 can 

control the interactions between CSCs and TAMs. This 
could be considered very important in developing a new 
generation of therapeutic approaches targeting both of 
these cell populations [184].

TAMs also indirectly affect CSCs’ differentiation by 
NK cells by secreting IFN-γ [185, 186]. TAMs originate 
from monocytes upon their activation in the TME. The 
tumor actively recruits monocytes and favor the M1-
to-M2 conversion, a local tumor-associated event that 
becomes more frequent with tumor development [112, 
121, 156, 157, 187]. Efforts are underway to reprogram 
or inhibit the tumor-protective properties of TAMs, 
and develop potential strategies to increase the efficacy 
of conventional chemotherapy by combining it with 
macrophage-associated delivery of nano-drugs [121, 
156, 157, 187]. The potential link between monocyte 
activation and macrophage conversion into TAMs, and 
the interactions between M2 macrophages and CSCs, 
are not well understood. It appears that CSCs should 
promote the conversion from M1 to M2, induce neo-
vascularisation via VEGF release, and create CSCs niches 
through tissue repair pathways [188]. Molecular studies 
have demonstrated a crosstalk between TAMS and CSCs 
wherein TAMs release milk fat globule–EGF factor 8to 
activate the CSC-associated pathways STAT3 and Shh and 
amplifies the drug resistance and tumorigenicity of CSCs 
[189]. Indeed, the drug resistance of murine mammary 
CSCs was linked with the EGFR/STAT3/SOX2 signaling 
pathway by Yang et al., who reported paracrine activity 
established through a complex interplay between CSCs 
and TAMs [189–191]. 

In glioma, macrophages of the microglia and 
brain also produce high levels of TGF-β, thus rendering 
glioma stem-like cells (GSLCs) more invasive. This 
was accompanied by a substantial amount of MMP-9, 
a serine protease that contributed to the invasiveness of 
GSLCs [191–193]. However, there is insufficient data 
to identify all of the tumor-associated factors engaged in 
macrophages’ conversion to TAMs. The participation of 
M2 macrophages in tumor development is similar to their 
role in wound healing. The wound healing process has four 
programmed phases including hemostasis, inflammation, 
proliferation, and remodeling [194]. Wounds trigger 
mobilization of bone marrow MSCs and EPCs involved 
in neovascularization. These steps share similarities with 
tumorigenesis, in which CSCs initiate the formation of 
the primary tumor or metastatic nodes and, perhaps, play 
an essential role in the M1-to-M2 conversion. Therefore, 
tumorigenesis is often considered as a deviated natural 
healing process involving the participation of transformed 
stem cells (CSCs) and macrophages (TAMs) [109, 156]. 
CSCs release factors that attract macrophages and convert 
them into TAMs. CSF-1, a significant growth factor 
involved in this process, helps recruit macrophages to the 
tumor site, promoting tumor progression to malignancy. 
Inhibition of TAM recruitment by a CSF-1 may likely 
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improve the ability of chemotherapeutic agents to reduce 
tumor progression and metastasis [109, 156, 195, 196]. 
Resting CSCs populate the hypoxic areas of tumor and get 
activated after chemotherapy-induced injury, when most 
peripheral cancer cells are eliminated. When macrophages 
are recruited to remove debris, they activate dormant 
CSCs. TAMs participate in reparative mechanisms after 
radiotherapy or antiangiogenic treatment [152–154]. 
Depending on various factors, they either enhance or 
antagonize the efficacy of radiotherapy or chemotherapy 
and immunotherapeutic agents such as tumor-targeting 
antibodies [67, 156]. 

One of the metastasis hypotheses suggests that 
metastasizing cells move to the peripheral niches occupied 
by CSCs [196]. According to this hypothesis, TAMs form 
cell hybrids with tumor cells and travel to distant sites to 
initiate metastases [197]. The theory of forming a hybrid 
cell was proposed in 2006 by John Pawelek. He explained 
this phenomenon as a fusion between a myeloid cell and a 
tumor cell, leading to a genomic hybridization [198]. This 
theory was further expanded to include fusion between 
macrophages and tumor cells in general and TAMs in 
particular.

It is pertinent to mention that the hybrid cells have 
a reduced proliferative ability as compared to the parental 
cell lines. According to the CSCs hypothesis, CSCs form 
spheroids that migrate out of the primary tumor site via 
the bloodstream or lymphatic circulation and undergo 
metastases in the niches with appropriate conditions. 
Macrophages associated with the repair of the injured 
lesions may serve as niche-forming cells attracting CSCs. 
Metastatic foci can be further supported by the mutual 
interaction of these two cell types and the acquisition of 
TAM characteristics by M2 macrophages to allow tumor 
growth [199].

The presentation of an antigen is a standard process 
by which the immune cells eliminate the abnormal cells. 
However, the hybrid cells have a reduced proliferative 
potential compared to their parental cell lines. According 
to the CSC-hypothesis, CSCs form spheroids that migrate 
out of the primary tumor site via the bloodstream or 
lymphatic circulation and form metastases in niches under 
conducive conditions. Macrophages associated with the 
repair of the injured lesions may serve as niche-forming 
cells attracting CSCs. Metastatic foci can be further 
supported by the mutual interaction of these two cell 
types and the acquisition of TAM characteristics by M2 
macrophages to allow tumor growth [200–203]. 

As antigen presentation is an essential part of the 
immune response against tumor cells, immune cells such 
as CD4+ T helper cells and CD8+ cytotoxic T lymphocytes 
represent one of the most considered and studied processes 
to eliminate cancer cells. Experimental studies have been 
done on CSCs and their interactions with lymphocytes in 
the tumor. For example, in 2019, Masciale et al. described 
two interesting correlations between CSCs and tumor-

infiltrating lymphocytes in NSCLC; between CD3+ T cells 
and CSCs and between CD8+ T cells and CSCs. These 
findings are useful for defining the antitumor effects of 
the cytotoxic CD8+ T cells, and the regulatory CD8+ 
T cells since CD8+ and CD3+ T cells support the host 
defense against cancer [5]. In several tumors, cytotoxic T 
lymphocytes are important predictors of outcomes, both 
for the disease progression and immunotherapy response 
[203–205]. 

CSCs from head and neck squamous cell carcinoma 
that were positive for CD44 have reduced MHC-I 
expression compared with the CD44-negative epithelial 
cancer cells [206]. Similarly, the expression of MHC is 
lower in CSCs in other cancers [207–210]. On the other 
hand, no differences in MHC-I expression between 
CSCs and epithelial cancer cells have been reported 
[211]. However, the downregulation APCs impede the 
targeting of CSCs by T cells. This aspect is an essential 
feature of CSCs in the TME [212]. The ability to regulate 
APC expression reduces the cell differentiation process 
and is generally caused by an epigenetic process, such 
as suppressing histones or DNA methylation. Using a 
drug-induced DNA demethylation protocol, upregulation 
of antigen-presenting cells in glioblastoma CSCs has 
been reported, although the expression remained less 
than in epithelial cancer cells. This is likely due to the 
distinct molecular mechanisms that cause different gene 
expression patterns [208]. However, despite the reduced 
expression of MHC-I, CSCs remain targets of the immune 
system, particularly NK cells.

In summary, equilibrium of various signals defines 
the destiny of CSCs and cancer epithelial cells, and their 
ability to eradicate or evade an immune response. APCs 
alone are generally not enough to stimulate T cells. 
Hence, in the absence of additional signals; T cells destroy 
themselves or remain inactive. This stimulation is derived 
from molecules on APCs, i.e., CD80 or CD86 that can bind 
with T cells. On the other hand, a mechanism of inhibition 
is PDL1 (B7-H1) presented on tumor cells or APCs. 
PDL1 binds PD1, inducing the apoptosis or inactivation 
of T cells. Overexpression of PDL1 is commonly used by 
cancer cells to inhibit T cells [213]. This aspect has been 
observed in many cancer types, including glioblastoma 
and head & neck squamous cell carcinoma [208, 214, 
215], thus suggesting an interaction between CSCs and 
immune cells to have a meaningful impact on promoting 
or inhibiting T cells. In particular, high levels of PDL1 on 
CSCs may be interesting to investigate as possible CSC 
immunotargets [216]. 

FUTURE PERSPECTIVES IN CANCER 
REGARDING TAMs AND CSCs

Surgery is the gold-standard treatment only for 
cancer in early stages, whereas treatment of advanced 
cancer stages requires chemotherapy and radiotherapy 
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alone or in combination [217, 218]. However, in many 
cases, all treatments (chemo-, radio-, and immunotherapy), 
fail to prevent cancer recurrence [219]. The primary 
cause of failure in cancer treatment is the emergence of 
drug resistance that promotes the tumor spreading [220]. 
Several clinical trials investigate the best cell target to fight 
cancer, including, but not limited to, CSCs, since CSCs 
are sustained by other cells, including TAMs (Table 1). 
Indeed, anti-macrophage drugs such as trabectedin [14, 
221, 222], RG7155 (anti-CSF-1R) [223], and an anti-
MIF (macrophage migration inhibitory factor) antibody 
have been developed. However, CSCs are still considered 
as the most important subpopulation of cells as a novel 
target due to their integral participation in cancer relapse 
[224–226]. A recent study has demonstrated that CSCs 
release cytokines in pro-tumor microenvironment through 
the generation of CD163+ macrophages like myeloid cells 
[227]. Moreover, targeting TAMs together with CSCs 
offer another possible option in treating pancreatic ductal 
adenocarcinoma to better control cancer progression and 
avoid tumor dissemination [228]. An important finding is 
the inhibition of phagocytosis by macrophages through 
the interaction between signal regulatory protein alpha 
(SIRPα) and CD47, specific for epithelial cancer cells 
[229, 230]. Weissman et al. used a monoclonal antibody 
to block in vitro the activity of CD47 for increasing the 
phagocytosis of the tumor cells leading to a reduction of 
the tumor growth in vivo [228, 229, 231–233]. 

Cioffi et al. have extended this concept in a 
pancreatic cancer model, describing a novel therapy that 
induced phagocytosis of CSCs [230]. This approach has 
been tested in pancreatic cancer with encouraging results 
and hence necessitates further studies must be performed 
in other solid tumors. 

Another approach recently taken into consideration 
as a prospective approach in cancer therapies is 
nanomedicine. The term “nanos” refers to preparations 
with non-sized particles ranging in size between 1–100 
nm in diameter [229–235]. Their main composition of 
such preparations may include lipids, proteins, or polymer 
[236, 237], and they may be used as a loader of drugs 
or genes or for diagnostic purposes [237, 238]. Ex vivo 
loading of patients’ cells, i.e., macrophages, monocytes, 
or MSCs, with a loaded nanodrug, are considered to be 
the most effective approach for nanodrug delivery without 
compromising the cell viability and mobility [239]. These 
drug-loaded cells can home-in to the tumor site or areas 
of inflammation [240] focusing on immunocytes and stem 
cells due to their intrinsic neoangiogenic capacity around 
inflammatory or tumor sites. 

The cell-based targeted nanoparticles have been 
described in several studies and can adhere to antibodies, 
peptides, etc. [235, 239, 241, 242–255]. Their targets are 
generally membrane-bound and intracellular receptors 
[256, 257], or mitochondria [258]. The most complicated 
aspect of this interaction is the space between the target 

and the molecules that needs to be bound: This space 
must be no larger than a few nm [259]; otherwise, the 
interaction would not be effective. This aspect is easier 
to address in vitro. It may represent a problem in vivo, 
as the characteristics of the TME are more varied and 
are different from the media commonly used in vitro. 
It has been shown that the target of nanoparticles does 
not produce an increment of the particles able to bind 
cancer cells in vivo [260]. This aspect suggests that the 
target of cell-based nanoparticles in oncology has been 
over-considered, while the physical characteristics of 
nanoparticles must receive more focus [261]. In addition 
to these aspects, the microenvironment, particularly the 
cell-to-cell interactions and the cell-immune system 
interactions, should also be taken into consideration, as 
they may constitute a huge obstacle for the optimization 
of this approach against cancer. The synthesis of oral 
nanodrugs will likely be more useful than intravenous 
solutions, and this may represent the main factor in the 
clinical use of nanodrugs to treat cancer [262, 263]. 
However, several barriers are required to be overcome 
before interaction between nanoparticles and the 
components of the TME.

Interestingly, the intrinsic phagocytic activity of 
macrophages has been exploited to load anti-cancer 
nanodrugs. One of the first accepted therapies in this field 
involved the innovative delivery of bioactive proteins into 
macrophages to treat neurodegenerative diseases [264, 
265]. This therapeutic approach is based on nanozymes, 
which can be rapidly internalized by monocyte-derived 
macrophages and released in an active form within 24 
hours. In a mouse model of Parkinson’s disease, the 
injected monocyte-derived macrophages were able to 
home-in to the brain, and there was an overall reduction in 
oxidative stress. Macrophages loaded with a DNA plasmid 
encoding for catalase had a similar effect as exosomes 
secreted by the macrophages and attenuated oxidative 
stress in neurons [266]. This strategy exhibits promise in 
improving motor neuron functions in mouse models of 
Parkinson’s disease. These nano-carriers are particularly 
useful due to their ability to cross the blood–brain barrier 
(BBB) [267]. The same approach has been used for 
antiretroviral drugs against HIV, encapsulating them in 
biodegradable nanoparticles loaded ex vivo into monocyte-
derived macrophages. These macrophages were able to 
deliver drugs across the BBB and inhibit HIV infection 
in the brain. More recently, given these promising effects, 
macrophage-loading with drugs has been extended to 
antiviral drugs such as ritonavir, indinavir, and efavirenz 
[268].

A novel approach to improving nanodrug capture 
efficiency by macrophages for anti-HIV therapy is being 
developed [269]. This approach uses a well-known 
chemoattractant for macrophages, N-formyl-methionyl-
leucyl-phenylalanine peptide conjugated onto PEGylated 
nanoparticles. This approach was useful for nanodrug 
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internalization by peritoneal macrophages, which are the 
primary HIV reservoirs. At molecular level, macrophage 
scavenger receptors are actively involved in capturing 
circulating nanodrugs [270]. These studies demonstrated 
the importance of using nanoparticles that can be captured 
by macrophage scavenger receptors. 

CONCLUSIONS

In-depth understanding of interaction between TAMs 
and CSCs is needed to develop novel treatment strategies 
in future. In this direction, researchers have already 
reported the presence of CSCs in many solid tumors as 
the leading cause of cancer relapse and chemotherapeutic 
drug resistance. In addition to this subpopulation of cells, 
macrophages and other immune cells also participate in 
interactions that may aid or impede the fight against cancer. 
For this reason, the targeting TAMs offer a novel treatment 
option against cancer. The different therapeutic approaches 
developed to target TAMs include the depletion, blockade 
of monocyte/macrophage recruitment, reprogramming of 

TAMs into pro-inflammatory M1-like macrophages, and 
neutralizing the products of TAMs [271]. Although most 
TAM-targeting strategies are in the pre-clinical stages, 
several factors used for TAMs depletion have already been 
tested in clinical trials [271, 272]. However, the effects 
of these novel treatments targeting TAMs on checkpoint 
blockade-based immunotherapies must be further 
investigated [273]. We believe that targeting TAMs may 
trigger various stromal reactions in the tumor milieu that 
are difficult to predict, even if the variability from patient 
to patient is kept as a consideration. Targeting TAMs could 
not only inhibit the TME, but also renovate the tumor 
“soil” to build a tumor-suppressive microenvironment, 
thereby suppressing tumor development. This strategy may 
become an effective therapeutic intervention that may be 
used either alone or in combination with other therapeutic 
strategies to treat cancer [273]. 

In summary, generating new information about the 
interaction between TAMs and CSCs will be one of the 
most important challenges for the development of more 
effective targeted cancer therapies.

Table 1: Clinical trials targeting CSCs
Drug name Mechanism Condition or disease NCT Number Current Status
Vismodegib (GDC-0449) Hedgehog Pathway Inhibitor Ovarian Cancer NCT00959647 Completed

Hedgehog Pathway Inhibitor Basal Cell Carcinoma NCT00959647 Completed

Hedgehog Pathway Inhibitor Metastatic Colorectal Cancer NCT00959647 Completed

Sonidegib (LDE225) Hedgehog Pathway Inhibitor Medulloblastoma  NCT01708174 Completed

BMS-833923 Hedgehog Pathway Inhibitor Leukemia NCT02100371 Completed

MK-0752 Notch pathway inhibitors Metastatic Breast Cancer NCT00645333 Completed

RO4929097 Notch pathway inhibitors Adenocarcinoma of the Pancreas NCT01122901 Terminated

Notch pathway inhibitors Recurrent Adult Brain Tumor NCT01122901 Terminated

Nirogacestat (PF-03084014) Notch pathway inhibitors Desmoid tumors/aggressive fibromatosis NCT01981551 Active, not recruiting

Crenigacestat (LY3039478) Notch signaling pathway Neoplasms NCT01695005 Completed

Notch signaling pathway Lymphoma NCT01695005 Completed

Demcizumab (OMP-21M18) Notch pathway inhibitors Non-Small Cell Lung Cancer NCT01189968 Completed

Ipafricept (OMP-54F28) WNT pathway inhibitors Stage IV Pancreatic Cancer NCT02092363 Completed

WNT pathway inhibitors Pancreatic Cancer NCT02050178 Completed

Vantictumab (OMP-18R5) WNT pathway inhibitors Metastatic breast cancer NCT01973309 Completed

PRI-724 Wnt signaling pathway blocking Advanced Solid Tumors NCT01302405 Terminated

AVID 200 TGF-β inihibitors Malignant solid tumor NCT03834662 Active, not recruiting

Fresolimumab (GC1008) TGF-β inihibitors Metastatic breast cancer NCT01401062 Completed

TGF-β inihibitors Stage IA Non-Small Cell Lung Carcinoma NCT02581787 Recruiting

NIS793 TGF-β inihibitors MPN (Myeloproliferative Neoplasms) NCT02947165 Active, not recruiting

TGF-β inihibitors Lung cancer NCT02947165 Active, not recruiting

TGF-β inihibitors Hepatocellular Cancer NCT02947165 Active, not recruiting

TGF-β inihibitors Colorectal Cancer NCT02947165 Active, not recruiting

TGF-β inihibitors Pancreatic Cancer NCT02947165 Active, not recruiting

Ruxolitinib JAK inihibitors Metastatic breast cancer NCT01348490 Completed

JAK inihibitors Myeloproliferative neoplasms NCT01348490 Completed

AZD4205 JAK inihibitors Advanced non-small cell lung cancer NCT03450330 Completed

SAR245409 PI3K and mTOR inihibitors Advanced or metastatic solid tumors NCT01240460 Completed

Matuzumab (EMD 72000) EGFR inhibitors Non small cell lung carcinoma NCT00753246 Completed

Clinical trials evaluating drugs for the selective inhibition of cancer stem cells in different solid tumors and hematologic malignancies.
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