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ABSTRACT
Purpose: We develop a multi-centric response predictive model using QUS 

spectral parametric imaging and novel texture-derivate methods for determining 
tumour responses to neoadjuvant chemotherapy (NAC) prior to therapy initiation.

Materials and Methods: QUS Spectroscopy provided parametric images of mid-band-fit 
(MBF), spectral-slope (SS), spectral-intercept (SI), average-scatterer-diameter (ASD), and 
average-acoustic-concentration (AAC) in 78 patients with locally advanced breast cancer 
(LABC) undergoing NAC. Ultrasound radiofrequency data were collected from Sunnybrook 
Health Sciences Center (SHSC), University of Texas MD Anderson Cancer Center (MD-ACC), 
and St. Michaels Hospital (SMH) using two different systems. Texture analysis was used 
to quantify heterogeneities of QUS parametric images. Further, a second-pass texture 
analysis was applied to obtain texture-derivate features. QUS, texture- and texture-
derivate parameters were determined from both tumour core and a 5-mm tumour margin 
and were used in comparison to histopathological analysis for developing a response 
predictive model to classify responders versus non-responders. Model performance was 
assessed using leave-one-out cross-validation. Three standard classification algorithms 
including a linear discriminant analysis (LDA), k-nearest-neighbors (KNN), and support 
vector machines-radial basis function (SVM-RBF) were evaluated.

Results: A combination of tumour core and margin classification resulted 
in a peak response prediction performance of 88% sensitivity, 78% specificity, 
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84% accuracy, 0.86 AUC, 84% PPV, and 83% NPV, achieved using the SVM-RBF 
classification algorithm. Other parameters and classifiers performed less well running 
from 66% to 80% accuracy.

Conclusions: A QUS-based framework and novel texture-derivative method 
enabled accurate prediction of responses to NAC. Multi-centric response predictive 
model provides indications of the robustness of the approach to variations due to 
different ultrasound systems and acquisition parameters.

INTRODUCTION

Locally advanced breast cancer (LABC) is an 
aggressive type of breast cancer with a wide range of 
clinical presentations [1, 2]. Any tumour that is greater 
than 5 cm or that involves the skin and the chest wall 
is locally advanced [1, 2]. Locally advanced breast 
cancer also includes inflammatory breast cancer and 
patients with fixed axillary lymph nodes or ipsilateral 
supraclavicular, infraclavicular, or internal mammary 
nodal involvement [1, 2]. Locally advanced breast cancer 
tumours remain a challenging clinical problem as most 
patients with locally advanced diseases have poorer 
long-term survival compared to those with early stage 
breast diseases [1, 2]. The standard treatment for LABC 
includes a multimodality treatment comprised of systemic 
therapy, surgery, and radiotherapy [1–3]. Neoadjuvant 
chemotherapy (NAC) facilitates tumour shrinkage, thus 
allowing inoperable tumours to be resected in selected 
patients. This is followed by surgery and adjuvant 
radiotherapy and targeted therapy or endocrinal therapy 
as indicated [4]. There continue to be variable tumour 
responses in patients with LABC receiving NAC, with 
only 15–40% ultimately achieving pathological complete 
response to therapy [3]. Several studies have demonstrated 
that tumour pathological response to NAC is an important 
prognostic factor for long-term disease-free survival 
(DFS) and overall survival (OS) in specific group of 
patients [5, 6]. Treatment response of LABC to NAC is 
conventionally evaluated at the conclusion of treatment, 
several months after treatment initiation. This evaluation 
is based on pathology assessments commonly using a 
Miller-Payne (MP) grading system that assesses tumour 
cellularity between pre-treatment core needle biopsies 
and post-treatment surgical specimens [6, 7]. Imaging 
biomarkers that can predict tumour responses at early 
stages NAC could guide individualized treatments.

Different characteristics between responsive and 
non-responsive tumors have been elucidated using 
histopathological analysis and radiomics. Histopathology 
assesses tumor cells proliferation and hormone receptor 
status. On the other hand, radiomics utilizes advanced 
computer-based image analysis and machine learning 
techniques to extract non-invasive imaging biomarkers 
and interpret data [8–10]. As an emerging field in 
medicine and oncology, radiomics allows for the inference 
of biological characteristics associated with treatment 

[8–10]. Tumours that are responsive to chemotherapy 
were shown to present less cell proliferation compared to 
those of non-responsive tumours, as the result of increased 
apoptosis [11, 12]. Human epidermal growth factor 
receptor 2 (HER2) expression has been shown to correlate 
with response to NAC, with HER2-positive tumours 
demonstrating significantly higher rates of achieving 
pathological complete response than those of HER2-
normal tumours [13]. A study that used diffuse optical 
spectroscopic tomography (DOST) techniques for LABC 
patients identified significantly higher haemoglobin 
contents in patients with complete pathological response 
compared to those with incomplete pathological response 
[14]. Other studies that utilized magnetic resonance 
imaging (MRI), DOST [15], and circulating DNA 
and RNA-integrity measurements [16] only predicted 
responses after the initiation of chemotherapy.

Quantitative ultrasound (QUS) spectroscopy has 
been used for characterizing different types of tissue [17–
23], classifying tissue abnormalities, differentiating benign 
from malignant tumours [24–26], and assessing tumour 
responses to treatment [27–32]. In pre-clinical studies, 
QUS spectroscopy has been used to differentiate benign 
versus malignant breast tumours and to differentiate 
types of mammary cancers [33, 34]. QUS spectroscopy 
performs spectral analysis of the raw radiofrequency 
(RF) signal used in generating ultrasound images and 
determines acoustic scattering parameters that reflect 
tissue microstructures. This technique compensates 
for ultrasound attenuation due to propagation through 
intervening tissue layers and the tumor. In addition, a 
normalization procedure was performed such that the 
measured frequency-dependent attenuation-corrected 
normalized power spectrum (NPS) or back-scattering 
coefficient (BSC) truly reflects the characteristics of 
tissue microstructures [35–37]. These microstructures are 
different between tumours that are responsive and non-
responsive to NAC as supported by histopathological 
analysis [5–7]. Linear fit to the attenuation-corrected 
NPS allowed estimation of mid-band fit (MBF), spectral 
slope (SS), and 0-MHz spectral intercept (SI) parameters. 
In addition, parametrization of the measured BSC with 
more complex acoustic scattering models resulted in 
tumor scattering parameters that include average scatterer 
diameter (ASD) and average acoustic concentration 
(AAC) [33–36]. These QUS spectral features have been 
demonstrated to correlate with patients’ response to NAC 
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both a priori and after initiation of chemotherapy [27, 30]. 
Furthermore, QUS spectroscopy has also been used to 
monitor therapy response by evaluating the changes in 
QUS parameters at weeks 1, 4, and 8 after the initiation of 
NAC with respect to the QUS parameters acquired at week 
0 (baseline) [28, 29, 32].

Heterogeneity in tumour micro-environment, 
physiology and metabolism has shown diagnostic and 
prognostic usefulness for characterizing cancer [38–42]. 
Spatial heterogeneities in tumour characteristics have 
been demonstrated using different imaging modalities, 
such as magnetic resonance imaging (MRI) [43], positron 
emission tomography (PET) [44, 45], computerized 
tomography (CT) [46, 47], and diffuse optical 
spectroscopy (DOS) [48]. Texture analysis techniques 
allow quantification of such heterogeneities [49]. In 
the work here texture analysis methods were as before 
applied to QUS spectral parametric images, resulting in 
quantitative textural measures for predicting early patients’ 
response to NAC.

This study improves upon previous investigations 
by limiting the number of selected features for developing 
a response predictive model. Earlier, the model was 
developed using a combination of nine features from 56 
LABC patients [30]. Here, we limit the number of features 
to approximately 1/10th of the number of observations in 
each group in order to prevent overfitting [50]. In addition, 
the model was developed using ultrasound RF data 
collected from multi-centric cancer centers. This work 
is a part of ongoing efforts in the inclusion of artificial 
intelligence tools in diagnostic and predictive models for 
cancer therapies [25–32]. A necessary step in the use of 
artificial intelligence tools in diagnostic and prediction 
is to generalize the model [50]. Consequently, the 
development of response predictive models from multiples 
sites provides an indication towards the generalization of 
the QUS-based framework. This study demonstrates that 
variations in ultrasound imaging systems, acquisition 
system settings, and different operators collecting the 
ultrasound RF data from different sites do not influence 
the ability of QUS spectral parametric imaging and novel 
derivative texture methods framework in developing 
an accurate response predictive model. Findings from 
this study confirm with results from a recent study that 
demonstrated that tissue heterogeneity was the dominant 
feature affecting values of QUS spectral parameters, 
allowing for the development of a treatment response-
monitoring model [32]. Variations in ultrasound system 
parameters were observed to be smaller than the inherent 
tissue heterogeneity [32]. These result from the use of a 
normalization procedure in the QUS spectral analysis that 
removes instrument-dependent effects [51]. 

Previous studies have investigated radiomic 
features of QUS parametric images for predicting 
patients’ responses prior to treatment initiation [30]. In 

this study, the pool of radiomic features was extended to 
include novel texture-derivate features. Texture-derivate 
features were obtained from a second-pass texture analysis 
applied to the texture maps of QUS parametric images. 
These texture maps represent local textural measures of 
QUS parametric images. These potentially elucidated 
more distinction between responders and non-responders 
compared to averaged mean-value and averaged texture 
features of QUS parametric images. Texture-derivative 
features have been demonstrated to provide discriminative 
features in different contexts, for example in the benign 
versus malignant characterization of breast lesions [25], 
and in the response prediction of LABC to NAC [31]. 

In this study, we developed a response predictive 
model using artificial intelligence tools in order to assess 
a priori response to NAC in patients with LABC. Three 
standard classification algorithms in the field of machine 
learning that include linear discriminant analysis (LDA), 
k-nearest neighbours, and support vector machine-
radial basis function (SVM-RBF) were evaluated to 
compare the performance of response predictive models. 
Model performance was evaluated using leave-one-out 
cross-validation (LOO-CV). Peak response prediction 
performance of 84% accuracy and 0.86 AUC was obtained 
from a combination of features determined from tumour 
core and tumour rim using the SVM-RBF classification 
algorithm. The findings here demonstrate the potential 
of a QUS-based framework as a working tool for early 
evaluation of breast tumours response to NAC.

RESULTS

Patient clinical characteristics

Table 1 summarizes the clinical and pathological 
characteristics of the patients included in this study. The 
median age of patients was 51 ± 12 years (range: 27–74 
years). The median tumour size in its longest dimension 
prior to treatment was 3.6 ± 2.5 cm (range: 1.2–11.6 cm). 
The median tumour size in its longest dimension after 
treatment was 2.5 ± 3.5 cm (range: 0.0–15.7 cm). Among 
all the patients, 59 had invasive ductal carcinoma (IDC), 
and 7 had invasive lobular carcinoma (ILC).

The responder group demonstrated a statistically 
significant (p < 0.05) reduction in maximum tumour size 
from 3.6 ± 2.5 cm prior to treatment compared to 1.6 ± 2.2 
cm after treatment. On the other hand, the non-responder 
group did not show a reduction in maximum tumour size 
post-treatment compared to pre-treatment status.

Doxorubicin, cyclophosphamide, and paclitaxel 
(AC-T) chemotherapeutic agents were administered to 61% 
of the patients. 34% of the patients received 5-fluorouracil, 
epirubicin, cyclophosphamide, and docetaxel (FEC-D) 
chemotherapeutic agents. Along with NAC, 30% received 
trastuzumab in the neoadjuvant setting.
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QUS, texture, and texture-derivate parameters

QUS spectroscopy analysis resulted in five QUS 
parameters that include MBF, SS, SI, ASD, and AAC for 
classification. Figure 1 presents representative B-mode US 
images and parametric images of ASD, AAC, MBF, SS, 
and SI from responder and non-responder patient groups. 
Tumour B-mode images had a characteristic hypoechoic 
appearance with parametric maps of QUS features 
demonstrating greater heterogeneity spatially upon visible 
inspection.

In addition, intra- and peri-tumoural heterogeneities 
were quantified using texture and novel derivative texture 
methods. Representative QUS parameters and their 
associated texture features are presented in Supplementary 
Figure 1. Not all features were statistically significantly 
different between the responder and on-responder groups. 
Figure 2 presents representative texture maps of the mid-
band fit and related texture-based parametric images 
from responder and non-responder patient groups. These 
texture maps represent local textural quantification of 
QUS parametric images. The contrast, homogeneity and 
energy texture-features appeared to demonstrate the most 
significant change at the interfaces between tumour core 
and rim regions.

Texture analysis of these texture maps resulted in 
texture-derivate features that potentially better separate 
the two groups. Representative results are presented 

in Supplementary Figure 2 for one QUS parameter 
parametric-map texture-derivate (texture-of-texture) 
feature set. Supplementary Figures 3–16 show all texture-
based, texture-derivate-based parameters, and image 
quality features considered in this study.

Comparison of classification algorithms

Figure 3 presents bar plots of classification results: 
sensitivity, specificity, and accuracy of response predictive 
model developed utilizing tumour core regions, tumour 
rim regions, and a combination of tumour core and 
rim analysis, respectively using different classification 
algorithms. The best performance was attained from 
a model utilizing combined features from the tumour 
core and a 5-mm tumour margin using an SVM-RBF 
classification algorithm.

Table 2 tabulates response prediction results 
from tumour core analysis using different classification 
algorithms. Using a nonlinear algorithm (SVM-RBF) 
achieved the best classification performance of 78% 
accuracy and 0.79 AUC. Table 3 tabulates response 
prediction results using rim analysis using different 
classification algorithms. A response predictive model 
developed using features extracted from tumour rim 
achieved a peak performance of 80% accuracy and a 0.82 
AUC, using an SVM-RBF classification algorithm. Table 
4 tabulates response prediction results from a combined 

Table 1: Patient clinical characteristics
Characteristics Responder

(n = 42)
Non-responder

(n = 32)
Total

(n = 74)
Age:
Median ± std (range) 50 ± 12 (27–74) 54 ± 12 (28–71) 51 ± 12 (27–74)
Histology:
IDC (%) 81 78 80
ILC (%) 7 13 9
Other (%) 12 9 11
ER/PR/HER2:
Triple Negative (%) 17 22 19
Non-triple Negative (%) 83 78 81
Systemic Treatment:
AC-T (%) 64 56 61
FEC-D (%) 29 41 34
Other (%) 7 3 5
Initial Tumour Size (cm):
Median ± std (range) 3.6 ± 2.5 (1.2–11.6) 3.6 ± 2.4 (1.8–9.8) 3.6 ± 2.5 (1.2–11.6)
Residual Tumour Size (cm):
Median ± std (range) 1.6 ± 2.2 (0.0–10.0) 3.4 ± 4.2 (1.4–15.7) 2.5 ± 3.5 (0.0–15.7)

Abbreviations: IDC: Infiltrating ductal carcinoma, ILC: Infiltrating lobular carcinoma, ER: Estrogen receptor, PR: 
Progesterone receptor, FEC-D: 5-fluorouracil, Epirubicin, Cyclophosphamide, and Docetaxel, AC-T: Doxorubicin and 
Paclitaxel. 
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core and rim analysis using different classification 
algorithms. The best response prediction results of 84% 
accuracy and 0.86 AUC were achieved using the SVM-
RBF classification algorithm. A combination of features 
extracted from the tumour core and tumour margin 
resulted in a response predictive model that best separate 
responders from non-responders.

DISCUSSION 

The work here is a radiomics study of QUS 
spectral parametric imaging using artificial intelligence 
tools for the a priori prediction of response to NAC in 
74 patients with LABC. In contrast to previous studies, 
the work here improved study design by limiting the 
number of selected features in developing a response 
predictive model in order to prevent overfitting [50]. In 
addition, novel texture-derivative features of QUS spectral 
parametric images were utilized to build a robust response 

predictive model. Furthermore, the model was developed 
and evaluated using ultrasound RF data that were acquired 
from multiple cancer institutions that include Sunnybrook 
Health Sciences Center (SHSC), MD Anderson Cancer 
Center (MD-ACC), and St. Michaels Hospital (SMH). 
This study represents an ongoing effort towards building 
and validating a response predictive model using an 
external data set in order to assess the generalizability of 
the developed model (geographical validation) [50].

Mean-value, texture, and texture-derivate features 
were determined from QUS spectral parametric images 
that include tumour core and a 5-mm tumour margin. The 
margin size was selected based on previous investigations, 
where it was changed from 0.3 to 1.0 cm [30]. The 
consequent tumour core and margin features were used 
to develop a multi-feature response predictive model 
that classifies responders (‘R’) from non-responders 
(‘NR’) in advance of the initiation of NAC. Ground 
truth clinical response was determined using a modified 

Table 2: Classification results of response predictive model using features from tumour core
Classification Algorithm Sensitivity Specificity Accuracy AUC PPV NPV
LDA 67% 59% 64% 0.58 68% 58%
KNN 81% 75% 78% 0.78 81% 75%
SVM-RBF 88% 66% 78% 0.79 77% 81%

Figure 1: Parametric maps for the two response groups. Representative B-mode US and QUS spectral parametric images of ASD, 
AAC, MBF, SS, and SI from (A) responder (left three columns), and (B) non-responder (right three columns) patients with LABC. QUS 
parametric images include tumour core (central region bounded by closed dotted white curve) and a 5-mm tumour margin (annular region 
bounded by closed dotted white curves). The colour-bar range is 160 µm for ASD, 130 dB/cm3 for AAC, 57 dB for MBF, 10 dB/MHz for 
SS, and 70 dB for SI. The scale bar represents 1 cm. From these parametric images, mean-value, texture, and image quality features were 
determined as potential imaging biomarkers for the prediction of response to NAC.
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RECIST methodology that considers primarily the change 
in tumour size between “pre-treatment” and “post-
treatment” standard clinical diagnostic imaging, with 
the addition of tumour cellularity assessment from post-
surgical histopathology. In order to build a robust response 
predictive model, three standard classification algorithms 
in the field of machine learning were evaluated. These 
included linear discriminant analysis (LDA), k-nearest 
neighbours (KNN), and a support vector machines-
radial basis function (SVM-RBF). The performance of 
each classification algorithm was assessed objectively 
using the ROC analysis, providing metrics of sensitivity, 
specificity, accuracy, AUC, PPV, and NPV. The study 
here demonstrated that a combination of four features 
determined from tumour core and a 5-mm tumour margin 
resulted in an accurate response predictive model with 
88% sensitivity, 78% specificity, 84% accuracy, 0.86 
AUC, 84% PPV, and 83% NPV, using an SVM-RBF 
classification algorithm. Model development from multi-
centric data provided an indication of the potential of 
the QUS spectroscopy and texture analysis approaches 
towards their generalization.

As mean-values of QUS spectral parametric 
images do not provide information about image 
heterogeneity, texture methods were used to quantify 
tumour heterogeneities, which were evident in parametric 

images. Both texture and texture-derivate analyses were 
carried out. Texture-derivate features resulted from the 
creation of intermediary texture maps of QUS parametric 
images, followed by a second-pass texture analysis 
[25, 31]. Texture-derivate analysis quantified local textural 
variations of QUS parametric images that were more 
sensitive to predict response compared to that using mean-
value and texture features alone. Texture-derivate features 
have been demonstrated recently to contribute to hybrid 
biomarkers for the characterization of breast lesions [25] 
and for the response prediction of LABC patients to NAC 
[31]. 

Margin analysis akin to that in this study has been 
demonstrated earlier to have sufficient discriminative 
power to differentiate responders from non-responders 
[30]. In addition, margin analysis has also been explored 
in the characterization of breast lesions [25, 26]. Tumour 
responses to NAC are thought to be different between 
responders and non-responders. Histopathological analysis 
has shown that the tumour margin consists of microscopic 
infiltration from the primary tumour into the surrounding 
normal breast tissues [52, 53]. This makes rim analysis 
of QUS spectral parametric images potentially useful for 
predicting early treatment response.

In this study, a response predictive model developed 
using features determined from tumour core achieved 

Figure 2: Texture maps for the two response groups. Representative B-mode US images, primary MBF parametric images, and 
texture-based maps determined from MBF parametric images from (A) responder and (B) non-responder groups. Texture maps were 
obtained through the application of sliding window analysis that results in: contrast (MBF-CON), correlation (MBF-COR), energy (MBF-
ENE), and homogeneity (MBF-HOM) maps that represent local textural quantification of the primary MBF parametric image. From each 
of these maps, a second-pass texture analysis was applied to come up with four texture-derivate features that were subsequently used to 
predict response to NAC and are presented here.
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the best response prediction of 88% sensitivity, 66% 
specificity, 78% accuracy, 0.79 AUC, 77% PPV, and 
81% NPV using an SVM-RBF classification algorithm. 
Using features extracted from the tumour margin, a peak 
response prediction performance of 78% sensitivity, 81% 
specificity, 80% accuracy, 0.82 AUC, 85% PPV, and 74% 
NPV was obtained using an SVM-RBF classification 
algorithm. Results indicated that the response predictive 
model developed using rim information alone achieved 
better prediction results compared to that developed 
using core information alone, with accuracies of 80% 
versus 78% and AUCs of 0.82 versus 0.79, respectively. 
Furthermore, the combination of discriminating features 
from core and margin resulted in a more robust response 
prediction performance with 88% sensitivity, 78% 
specificity, 84% accuracy, 0.86 AUC, 84% PPV, and 83% 
NPV, also achieved using an SVM-RBF classification 
algorithm. The optimum feature set included CMR-SI, 
Core-SS-ENE-CON, Core-ASD-HOM-CON, and Margin-
ASD-ENE-COR features. Texture-derivate features 
dominated the optimum response predictive model.

Among the classification algorithms evaluated, 
the SVM-RBF performed the best-utilizing features 
from tumour core only, tumour margin only, and the 
combination of tumour core and margin. Using a KNN 
classification algorithm, the best response prediction 
of 81% sensitivity, 75% specificity, 78% accuracy, 0.77 
AUC, 81% PPV, and 75% NPV was achieved utilizing 
core information only. Among the standard classification 
algorithms evaluated, linear discriminant analysis 
performed the poorest. This can be attributed to the fact 
that a linear classification algorithm works best only for 
linearly separable data. Nonlinear classification algorithms 
in the SVM-RBF methodology outperformed the other 
two classification algorithms as has been demonstrated 
previously in various contexts [25, 26, 29].

Previously, a priori response to NAC has been 
evaluated in 56 patients with LABC [30]. In that study, 
the best response prediction of 90% sensitivity, 79% 
specificity, 88% accuracy, and 0.81 AUC with a KNN 

classification algorithm was achieved using mean-values 
and texture features extracted from both tumour core and 
tumour margins [30]. This resulted from a combination of 
nine features obtained from sequential feature selection 
[30]. However, the number of features used in that earlier 
study is likely to introduce overfitting of the developed 
response predictive model [50]. The current study design 
improved this aspect by limiting the number of selected 
features for building the response predictive model to 
a total of only four features. Furthermore, the pool of 
radiomic features was extended through the inclusion of 
texture-derivate features. Texture derivative method has 
demonstrated its utility in the characterization of breast 
lesions [25] and early prediction of therapy responses 
to NAC [31]. In that study, Dasgupta et al. developed 
a response predictive model that achieves the best 87% 
sensitivity, 81% specificity, 82% accuracy, and 0.86 
AUC in predicting responders from non-responders 
prior to initiation of NAC [31]. In contrast to the work 
presented herein, the response predictive model developed 
by Dasgupta et al. consisted of 100 LABC patients’ data 
acquired from a single institution [31]. The development 
of response predictive model from data collected from 
multi institutions and acquired by different operators and 
using different ultrasound system settings indicates the 
robustness of the QUS framework. Recently, Sannachi et 
al. demonstrated the robustness of a response-monitoring 
model with respect to variations in ultrasound system 
parameters [32]. Their study identified tissue heterogeneity 
as the dominant feature causing variations in QUS spectral 
and texture parameters obtained from other clinical 
ultrasound systems [32]. Proper normalization procedures 
result in comparable QUS and texture-based parameters 
from other clinical ultrasound systems and different 
acquisition settings implemented by different operators 
[32]. This permits for the development of a priori response 
predictive model based on those features, as demonstrated 
herein. Recently, DiCenzo et al. also reported a multi-
institution response predictive model utilizing mean-
values and texture features of QUS spectral parametric 

Table 3: Classification results of response predictive model using features from tumour margin
Classification Algorithm Sensitivity Specificity Accuracy AUC PPV NPV
LDA 67% 66% 66% 0.60 72% 60%
KNN 74% 84% 78% 0.72 86% 71%
SVM-RBF 79% 81% 80% 0.82 85% 74%

Table 4: Classification results of response predictive model using features from both tumour core 
and tumour margin
Classification Algorithm Sensitivity Specificity Accuracy AUC PPV NPV
LDA 67% 66% 66% 0.60 72% 60%
KNN 79% 75% 77% 0.74 80% 73%
SVM-RBF 88% 78% 84% 0.86 84% 83%
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images from the tumour core [54]. In that study, the 
best response predictive results of 91% sensitivity, 83% 
specificity, 87% accuracy, and 0.73 AUC were attained 
[54]. The work presented herein expanded this previous 
analysis through the addition of tumour margin analysis 
and the inclusion of texture-derivate features. In addition, 
we also implemented stricter data inclusion criteria that 
result in the exclusion of US RF data from a single site. 
Although, the best selected features in this study do not 
demonstrate p < 0.05 statistical significant differences 
when assessed individually as in [54], a combination of 
some of discriminating features still resulted in a multi-
feature classification model that predict a priori response 
to NAC with 88% sensitivity, 78% specificity, 84% 
accuracy, and 0.86 AUC. In contrast to the results in [54] 
where the best classification algorithm was the instance-
based nearest neighbours, here the SVM-RBF results in 
the best response prediction model by combining features 
from both tumour core and tumour margin. Nonlinear 
classification algorithm in SVM-RBF proves to be more 
robust in separating responders from non-responders.

A priori response predictive model to NAC has 
also been explored using texture assessment of images 
obtained from different imaging modalities. Tran et al. 
developed a response predictive model using textural 
features extracted from pre-treatment diffuse optical 
spectroscopy (DOS) functional maps [55]. In their study, 
univariate parameter of homogeneity of HbO2 map 
achieved the best 86% sensitivity, 89% specificity, and 
88% accuracy from 37 LABC patients undergoing NAC. 
Recently, Moghadas-Dasterdji et al. used quantitative 
textural features extracted from computerized tomography 
(CT) images for developing a priori response predictive 
model using different machine learning classification 
algorithms [56]. Their study included 72 LABC patients 
undergoing NAC and obtained the best classification 
results of 80% sensitivity, 88% specificity, 84% accuracy, 
and 0.89 AUC0.632+ using an Adaboost decision tree (DT) 
classification algorithm [56]. The response prediction 
results of these different imaging modalities are 
comparable with the results presented in this study.

QUS-based response predictive models offer 
oncologists useful imaging tools for potentially enabling 
adaptive chemotherapy for patients with LABC. The types 
of chemotherapeutic drugs administered to specific patients 
potentially can be tailored depending on whether a patient 
is predicted to be a responder or non-responder based on 
QUS-texture-based analyses prediction. Furthermore, 
different QUS-based response predictive models can be 
used to monitor treatment response to NAC in LABC 
patients over the course of chemotherapy. In that setting, 
using a modified approach the chemotherapeutic agents 
can be customized based on patient responses to treatment. 
If a patient is determined to be non-responsive after initial 
treatment or at a particular week based on QUS, the 
oncologist has an option to switch the treatment plan to 
different chemotherapeutic drugs (‘chemo-switch’) that are 
potentially more helpful rather than subjecting the patient to 
systemic agents that are not demonstrating treatment effect. 

MATERIALS AND METHODS

Study design

A total of 74 patients (42 responders and 32 
non-responders) with LABC undergoing NAC were 
enrolled in this study. The cohort consisted of patients 
accrued from three different sites: Sunnybrook Health 
Sciences Center (SHSC) (n = 50), University of Texas 
MD Anderson Cancer Center (MD-ACC) (n = 23), and 
St. Michaels Hospital (SMH) (n = 1). The study was 
performed in accordance with institutional research 
ethics guidelines at each respective site. Patients were 
included in this study after obtaining written informed 
consent. Magnetic resonance images (MRI) were 
acquired as a part of the treatment in order to determine 
pre-treatment tumour size. Core needle biopsy specimens 
were collected from all patients prior to the start of NAC 
in order to obtain histological confirmation, determine 
tumour subtype and hormone receptor status consisting 
of estrogen receptor (ER), progesterone receptor (PR), 
and HER2 expression. A full course of NAC that 

Figure 3: Classification results. Classification performance of the response prediction model from different classification algorithms 
using features determined from (A) tumour core, (B) 5-mm tumour margin, and (C) both core and 5-mm margin.
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lasted typically for 4–6 months was completed by all 
patients. Subsequently, these patients underwent either 
lumpectomy or mastectomy. A board-certified pathologist 
examined the specimens using whole-mount 5” by 7” 
pathology slides digitized using a confocal scanner 
(TISSUEscope™, Huron Technologies, Waterloo, 
ON, Canada). Clinical/pathological tumour response 
was determined at the end of their treatment using a 
modified response (MR) grading system. After surgery, 
adjuvant therapies that consist of radiation, maintenance 
Transtuzumab for HER2 positive tumours or endocrine 
therapy (for hormonal-receptor positive tumours) were 
commenced as per standard institutional practice [30].

The MR grading system was based on a 
combination of histopathological evaluation (of residual 
tumour cellularity) and the Response Evaluation Criteria 
in Solid Tumour (RECIST). The RECIST-based change 
was defined as the percent change of tumour size (in 
its longest dimension) between pre-treatment and post-
treatment times. Magnetic resonance imaging  scans 
were used to determine these sizes as part of patients’ 
standard of care. MR score of 1 was assigned if there is 
no reduction in tumour size. MR score of 2 was assigned 
if there is a diminishment of up to 30% in tumour size. 
MR score of 3 was assigned if the reduction in tumour 
size is between 30–90%. MR score of 4 was assigned for 
diminishment of more than 90% in tumour size. Lastly, a 
MR score of 5 was assigned if there was no evidence of 
residual tumour at all. In addition to these RECIST-based 
criteria, residual tumour cellularity was also considered 
for evaluating response. Residual tumour cellularity 
alone was introduced elsewhere in a new histological 
grading system to assess breast cancers’ response to NAC 
and had demonstrated a potential in predicting overall 
survival and disease-free intervals [5, 6]. In this study, a 
threshold of 5% tumour cellularity was chosen. Tumour 
with residual cellularity less than or equal to 5% (<= 
5%) were deemed a responder, otherwise tumours were 
a non-responder based on cellularity criterion alone. The 
overall response combined both RECIST-based criteria 
in tumour size reduction and residual tumour cellularity. 
A patient was a responder (‘R’) if either the reduction 
in tumour size was greater than 30% or residual tumour 
cellularity was low (<= 5%). A patient was a non-
responder (‘NR’) if there was a reduction in tumour 
size that was less than 30%, or there was an increase 
in tumour size, and there was a high residual tumour 
cellularity (> 5%). These were used as the ground truth 
in the binary classification of response.

Quantitative ultrasound and texture parameter 
estimation

Ultrasound RF data were collected prior to the 
start of NAC using a Sonix RP (Analogic Medical Corp., 
Vancouver, Canada) or a GE-LOGIQ E9 (GE Healthcare, 

Milwaukee, Wisconsin, USA) clinical ultrasound imaging 
system. The RP system was equipped with a linear array 
transducer operating at 6.5 MHz center frequency with 
a bandwidth of 3–8 MHz. The GE system was equipped 
with a 9L-D linear array transducer, operating at 6.0 
MHz center frequency and a bandwidth of 3.5–8.5 MHz. 
Beamformed RF data were acquired using a 40 MHz 
sampling rate.

We performed QUS spectral analysis over ROIs 
that include tumour core and a 5-mm margin. A sliding 
window analysis using a 2-mm by 2-mm kernel was used 
to create parametric images of QUS spectral parameters. 
The size of the window was chosen to include a sufficient 
number of acoustic wavelengths to ensure reliable spectral 
estimation, while preserving image texture. A 94% 
window overlap was used between adjacent windows both 
axially and laterally.

A Hanning gating function was applied on individual 
RF scan lines within the window along the range direction 
for spectral analysis. The power spectrum of the sample 
was estimated using the Fast Fourier Transform (FFT) 
technique. Several independent adjacent RF signals 
within the window were used to obtain an averaged power 
spectrum that better represent the true power spectrum 
of the sample. The normalized power spectrum was 
obtained using a reference phantom technique [51, 57]. 
The reference phantom was composed of 5–30 µm glass 
beads embedded in a homogeneous medium of oil droplets 
that were immersed in gelatin. The measured attenuation 
coefficient and speed of sound of the phantom were 0.8 
dB/cm/MHz and 1,540 m/s, respectively (University of 
Wisconsin, Department of Medical Physics, Madison, WI, 
USA).

Attenuation correction was performed in order 
to compensate for attenuation due to propagation 
of ultrasound through intervening tissue layers. An 
assumed attenuation coefficient of 1 dB/cm/MHz for 
the overlying breast tissues was used [58, 59]. The 
tumour attenuation coefficient was estimated (ACE) 
using a spectral difference method by comparing the 
rate of change in the log spectral power magnitude with 
depth (over the tumour region) of the sample relative 
to the reference phantom for each frequency within the 
frequency bandwidth [57]. The window and the ROI 
axial length sizes conformed to the recommendations 
specified by Labyed et al. [57] for accurate and precise 
attenuation coefficient estimation using a spectral 
difference method on clinical linear array ultrasound 
system. MBF, SS, and SI spectral parameters were 
obtained from linear parametrization of the attenuation-
corrected NPS over the frequency bandwidth. MBF and 
SI parameters correlate with the size, concentration, and 
relative acoustic impedance of acoustic scatterers, while 
SS parameter depends on the size of acoustic scatterers 
[35]. Subsequently, the measured backscatter coefficient 
(BSC) can be estimated via [35], 
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where Sm(f) and Sr(f) are the RF spectra from the 

sample and the reference phantom, respectively. Variables 
αm and αr represent the attenuation functions from the 
sample and the reference phantom, respectively. Parameter 
R is the distance from the transducer face to the proximal 
side of the ROI window, and ∆z is the window length. 
Average scatterer diameter (ASD) aeff and average scatterer 
concentration (AAC) nz parameters can be estimated 
through the fitting of a theoretical BSC from spherical 
Gaussian form factor model σtheor(f) to the measured BSC 
[33–36]. The theoretical BSC is expressed as [33–36]

� �theor eff efff Cf a n F f a( ) ( , ),� 4 6

0

2

 (2)

where 
C

cl
�
� 2

4
36  and cl is the speed of sound. F (f, 

aeff) is the form factor that describes frequency-dependent 
backscattering. The AAC represented the net scattering 
strength [33–36]. It is defined as the product of average 
number density of scatterers n  and squared of the 
fractional difference in the acoustic impedance between a 
scatterer and the surrounding medium γ 0

2

 [33–36]. 
The sliding window was moved across each point 

in the ROI, resulting in parametric images of mid-band 
fit, spectral slope, spectral intercept, average scatterer 
diameter, and average acoustic concentration. Mean-
values from these parametric images were obtained 
from tumour core and a 5-mm tumour margin ROIs and 
subsequently used as potential discriminating features to 
build a response predictive model.

In addition to mean-values, texture and derivative 
texture methods were used to quantify spatial 
heterogeneity of QUS parametric images. We performed 
texture analysis using a gray level co-occurrence matrix 
(GLCM) method to quantify intra-and peri-tumour 
heterogeneities. The GLCM realizes second-order 
statistical analysis by studying the spatial relationship 
between neighboring pixels in an image [49]. The full 
range of gray level intensities in each parametric image 
was linearly scaled into 16 discrete gray levels. Symmetric 
GLCM matrices were created from each parametric image 
at inter-pixel distances: 1, 2, 3, 4, 5 pixels and at four 
angular directions: 0°, 45°, 90°, and 135°. From these 
GLCM matrices, textural features of contrast, correlation, 
energy, and homogeneity were extracted and subsequently 
averaged over distances and angular directions:
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In equations. 3, 4, 5, and 6, the p(i, j) is the 

probability of having neighboring pixels of intensities i 
and j in the image, and Ng denotes the number of gray 
levels. Contrast quantifies local gray-level variations in an 
image. Smoother image features produce a lower contrast, 
while coarser image features result in higher contrast. 
Correlation represents the linear correlation between 
neighbouring pixels. Energy measures textural uniformity 
between neighboring pixels. Homogeneity quantifies the 
incidence of pixel pairs of different intensities.

Texture-derivate analysis was subsequently applied 
to the parametric images. In contrast with a previous 
texture analysis approach that produced averaged texture 
measures, texture-derivate analysis was carried out 
through the creation of intermediary texture-encoded maps 
using a 15-pixel by 15-pixel window that corresponds to 
0.27 mm axially and 0.23 mm laterally. Each pixel in 
these texture-encoded maps represents the quantification 
of local textures across the 15-pixel by 15-pixel window. 
Therefore, the GLCM matrix for the construction of 
texture maps only considers inter-pixel distance of 1. A 
second pass texture analysis was subsequently performed 
on these texture maps, resulting in texture-derivate 
features. Texture-derivate features provided textural 
assessment of the texture maps obtained from QUS 
parametric images.

Analyses included tumour core and a 5-mm margin, 
and image quality metrics consisting of a core-to-margin 
ratio (CMR) and core-to-margin-contrast ratio (CMCR) as 
a manner of comparing pixel intensities between the two 
regions:

CMR
mean ROI
std ROI

Core

Margin

= ( )
( )  (7)
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2
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These two parameters have been used as potential 
imaging biomarkers for assessing treatment response 
[30]. CMR compares the level of desired signal to the 
background noise [30]. CMCR is like CMR but also 
considers bias in an image [30]. 

Classification algorithms

Mean-value, texture, and texture-derivate features 
for tumours were estimated from each scan plane and 
subsequently averaged over all scan planes. These 
weighted averaged measures were used for building 
a response predictive model. Feature selection was 
performed using forward sequential-feature-selection 
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(SFS). F1-score (the harmonic mean of precision and 
recall) was used as the performance metric for measuring 
accuracy. A response predictive model was developed 
using a combination of four features that best predicted 
patient response as either a responder or non-responder. 
The number of features was chosen to limit overfitting 
in which a predictive model customizes itself too much 
to the training data and limits its ability to generalize to 
new data [50]. Leave-one-out cross-validation (LOO-CV) 
was used to develop and evaluate the performance of the 
response predictive model. Leave-one-out cross-validation 
(LOO-CV) involved training the classification model with 
all observations except one while the left-out observation 
was used for testing the developed model. The process 
was repeated until all observations are left out for testing 
at least once.

In order to develop a highly accurate response 
predictive model, three standard computational 
algorithms in the field of machine learning were 
evaluated including LDA, KNN, and SVM-RBF. The 
performance of these algorithms was assessed using 
the receiver operating characteristics (ROC) analysis, 
providing sensitivity, specificity, accuracy, and AUC 
(area under the ROC curve), positive predictive value 
(PPV), and negative predictive value (NPV) metrics. 
LDA using probabilistic generative models can be 
described as estimating the posterior probability of 
assigning an input vector x into one of the two classes by 
assuming that probability density function of each class 
is a Gaussian [60]. A linear classifier works optimally 
for linearly separable data. The KNN method is an 
instance-based classification algorithm that was used to 
predicts class association of a test point in the feature 
space based on most of the points neighbouring the 
test point and the distance between those points to the 
test point. The KNN classifier used k = 1, 3, 5 nearest 
neighbours. The SVM-RBF is a nonlinear classification 
algorithm that maximizes the margin between the two 
classes and predicts class association of the test data 
based on which side of the margin they fall [60–62]. 
Kernel functions are used to map the input data into a 
higher-dimensional space where the data are supposed 
to have better distribution, prior to selecting an optimal 
separating hyperplane in this higher-dimensional feature 
space. A Gaussian radial basis function (RBF) was used 
as the kernel function in this study. The kernel function 
used the soft margin parameter C and the free parameter 
γ. These kernel parameters were optimized using a grid 
search method.

Classification using either features from the core or 
the margin utilized 105 features. These include 5 mean-
value, 20 texture, and 80 texture-derivate features from 
five parametric images. Classification using features 
from both the core and the margin included 220 features 
comprising of 105 features from the core, 105 similar 
features from the margin, and 10 image quality features.

CONCLUSIONS

This study demonstrates a working a priori 
response predictive model (84% accuracy and 0.86 AUC), 
developed using QUS and texture-derivate parameters 
that were determined from US RF data obtained from 
multiple cancer centers. Model development using multi-
centric data provided an indication towards generalizing 
the QUS framework. This work paves the way towards 
an implementation of QUS and texture analyses imaging 
tools for oncologists to provide customized cancer 
treatment adjusted to specific patient. 
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