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Combination therapies for MPNSTs targeting RABL6A-RB1 signaling
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ABSTRACT
Precision medicine relies on a detailed molecular understanding of disease 

pathogenesis. Here, we consider urgently needed therapeutic options for malignant 
peripheral nerve sheath tumors (MPNSTs) based on emerging insights into druggable 
pathway alterations found to drive this deadly cancer. Recent observations 
demonstrate an essential role for an oncogenic GTPase, RABL6A, in promoting 
MPNST progression through hyperactivation of cyclin-dependent kinases (CDKs) 
and inactivation of the retinoblastoma (RB1) tumor suppressor. Monotherapies with 
CDK4/6 inhibitors have shown limited efficacy and durability in pre-clinical studies 
of MPNSTs and in clinical studies of other tumors. Therefore, we discuss the rationale 
and clinical benefits of inhibiting multiple RABL6A effectors, particularly CDK4/6 and 
MEK kinases, in targeted combination therapies suitable for MPNSTs and other Ras-
driven malignancies.

EDITORIAL COMMENTARY

Malignant peripheral nerve sheath tumors 
(MPNSTs) are aggressive, deadly soft tissue sarcomas 
that lack effective therapies [1–3]. These Schwann cell 
derived tumors arise spontaneously as well as in patients 
with the hereditary cancer predisposition syndrome, 
Neurofibromatosis Type I (NF1). The 5-year survival rate 
for patients with MPNSTs is only 20–35%, and MPNSTs 
are the leading cause of death in NF1 patients. In all 
contexts, loss of the Ras inhibitor, neurofibromin (encoded 
by the NF1 gene), is a defining event in MPNST genesis 
[4]. Current treatment with traditional chemotherapy 
and radiation is highly toxic and does not reduce patient 
mortality, necessitating the development of more targeted 
treatments [5–9]. 

In most MPNSTs, cyclin-dependent kinases 
(CDKs) 2 and 4/6 are hyperactivated due to loss of their 
endogenous inhibitors, p16 and p27, or amplification of 
the cyclin and CDK genes [3]. This results in functional 

loss of the retinoblastoma (RB1) tumor suppressor, 
one of the most important guardians against cellular 
transformation and cancer development [10]. Because RB1 
remains genetically wild type in the majority of MPNSTs, 
its reactivation in tumors represents an exciting new 
approach for treating this disease.

Recent studies of a novel RB1 regulator, named 
RABL6A, strengthens the rationale for RB1 targeted 
therapy in MPNST [11]. RABL6A is an oncogenic, 
RAB-like GTPase previously shown to inhibit RB1 
signaling in pancreatic neuroendocrine tumors via 
downregulation of p27 [12]. Because p27 protein loss is 
a frequent event associated with worse MPNST patient 
survival [13], we explored RABL6A expression and 
function in those tumors. RABL6A protein was found 
to be robustly upregulated in patient MPNSTs relative to 
benign precursor lesions, with p27 expression patterns 
inverse to RABL6A levels [11]. Moreover, RABL6A 
knockdown studies showed it is required for MPNST cell 
viability and cell cycle progression. At the molecular level, 

 Research Perspective

https://creativecommons.org/licenses/by/3.0/


Oncotarget11www.oncotarget.com

RABL6A promotes MPNST proliferation and survival by 
decreasing p27 expression, increasing CDK4/6 activity 
and thereby inactivating RB1 (Figure 1). In addition, 
RABL6A has been shown to activate MEK [14, 15] and 
upregulate Myc mRNA [11, 16]. This can contribute to 
CDK-RB1 dysregulation because MEK and Myc are 
both hyperactivated in Ras-driven MPNSTs, and Myc is 
a transcriptional activator of cyclin D, CDK4, and CDK6 
genes [17–19]. Together, these observations reinforced the 
notion that MPNST growth would be strongly suppressed 
by reactivating RB1. 

At present, the most effective way to reactivate RB1 
in tumors is using drugs that selectively block CDK4/6 
activity. CDK inhibitors were first introduced in the late 
1990s as anti-cancer therapeutics; however, their lack of 
specificity for particular CDKs caused significant toxicity 
and undermined their usage in the clinic [3, 20–22]. Newer 
generation CDK inhibitors with greatly reduced toxicity 
include a group of related drugs with high specificity for 
CDK4/6, namely palbociclib, ribociclib, and abemaciclib 
(see Figure 1). These drugs are FDA-approved for the 
treatment of estrogen receptor-positive/HER2-negative 
metastatic breast cancer in combination with aromatase 
inhibitors [23, 24]. Excitingly, palbociclib and its relatives 
are showing great promise in clinical trials for other 
solid tumors, including another aggressive sarcoma, 
dedifferentiated liposarcoma (DDLPS) [25], which 
frequently harbors amplification of CDK4 (NCT01209598, 
NCT02897375) [26]. 

With the above considerations in mind, we 
examined the efficacy of CDK4/6 inhibition in pre-
clinical models of MPNST [11]. Reactivation of RB1 
with palbociclib halted MPNST growth both in vitro and 
in vivo in orthotopic (sciatic nerve) mouse tumor models. 
The response to palbociclib was significantly reduced by 

RABL6A depletion in the tumor cells, suggesting that 
patient MPNSTs bearing elevated RABL6A may be more 
responsive to CDK4/6 inhibitor therapy. However, tumors 
in immunodeficient mice invariably acquired resistance 
to the monotherapy. This was not surprising since tumors 
in people and mouse models have been shown to employ 
many mechanisms to override the effects of CDK4/6 
inhibitor monotherapy [24, 27, 28]. 

Upregulation of CDK2 is one of the most common 
mechanisms through which tumors overcome sustained 
CDK4/6 inhibition [27–30]. As depicted in Figure 1, 
CDK2 can compensate for the loss of CDK4/6 by 
phosphorylating and inactivating RB1. This, along with 
the high levels of CDK2 observed in many MPNST patient 
samples [11, 13, 31], prompted us to test combination 
therapy targeting both CDK4/6 and CDK2. Treatment 
with palbociclib plus the non-specific CDK2 inhibitor, 
dinaciclib, displayed greater antitumor activity in MPNST-
bearing mice [11]. Unfortunately, dinaciclib was not well 
tolerated by the animals, reflecting the toxic effects of 
dinaciclib in patients that have limited its clinical use. This 
has steered ongoing investigations toward other RABL6A-
RB1 targeted combination therapies.

Hyperactivation of Ras-MEK-ERK signaling is 
another way tumor cells acquire resistance to CDK4/6 
inhibitor therapy as the pathway converges on RB1 [24, 
32, 33]. This is illustrated by the fact activated MEK-
ERK stimulates Myc, a transcription factor that directly 
increases the mRNA expression of CDK4, CDK6 and 
their regulatory partners, the D cyclins (Figure 1). 
Since MPNSTs are initiated by neurofibromin loss and 
enhanced Ras activity, they may have a higher likelihood 
or increased rate of resistance to CDK4/6 inhibition. 
Therefore, it stands to reason that agents targeting CDK4/6 
in combination with clinically proven inhibitors of MEK 

Figure 1: Pharmacologic targeting of the RABL6A-RB1 pathway in tumors. The central regulators of the RB1 tumor 
suppressor are highlighted in the gray box. Representative inhibitors of the indicated kinases are depicted in red. RABL6A inhibits RB1 by 
reducing the CDK inhibitor, p27, and activating MEK and Myc. Arrows, activating events; perpendicular bars, inhibitory events.
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may negate a key mechanism of resistance and effectively 
treat MPNSTs. 

Indeed, the combination of CDK4/6 and MEK 
inhibitors has shown remarkable promise in pre-clinical 
and clinical studies of Ras-driven cancers, such as 
non-small cell lung cancer (NSCLC) and pancreatic 
adenocarcinomas [34–36]. The pre-clinical studies 
revealed a crucial role of drug-induced tumor cell 
senescence and the immune system in the anti-tumor 
response. The combination induces a senescence-
associated secretory phenotype, called SASP, in which 
secreted cytokines promote the infiltration of immune 
cells (natural killer or CD8+ T cells) that cause tumor 
regression. The use of immune competent mouse tumor 
models is critical to observe that response and accurately 
evaluate the efficacy of dual therapies targeting CDK4/6 
and MEK, such as palbociclib plus mirdametinib (Figure 
1). This is possible for studies of MPNST given the 
availability of genetically engineered and CRISPR-based 
mouse models that develop de novo MPNSTs in the 
context of fully active immune systems [37–41]. To fully 
appreciate the complete role of the microenvironment in 
these studies, it will be important to evaluate therapies 
using multiple preclinical platforms, as murine background 
strain has a strong impact on the immune landscape of 
MPNSTs [42]. 

Clinical studies targeting CDK4/6 and MEK in 
solid tumors are highly encouraging. In a Phase 1 dose 
escalation study evaluating the combination of palbociclib 
with mirdametinib in patients with RAS-mutant solid 
tumors, promising progression free survival was reported. 
Of 25 patients, 11 were noted to be progression free 
for > 3 months with 6 patients displaying no disease 
progression for > 6 months. Moreover, 72% of patients 
achieved stable disease as their best response and 1 patient 
achieved partial response. This combination at maximum 
administered doses was deemed to be well tolerated [25]. 
A Phase 1b/2 trial evaluating the combination of ribociclib 
with binimetinib in NRAS-mutant melanoma recently 
reported their results from 41 patients treated on a 28-
day schedule Phase 2 dose expansion cohort. The median 
duration of response was 10.3 months with a median time 
to progression and median progression free survival of 3.7 
months. Slightly more than half of the patients (51.2%) 
achieved stable disease and 8 patients (19.5%) achieved 
partial response. The overall survival of the Phase 2 cohort 
was reported to be 11.3 months (NCT01781572). These are 
compelling results for NRAS-mutant melanoma patients 
since there are no targeted therapies currently approved. 
Other clinical studies evaluating similar combinations in 
RAS-mutant colorectal cancer (NCT03981614), KRAS-
mutant NSCLC (NCT03170206), and in children and 
young adults with brain tumors (NCT03434262) are 
ongoing. 

While there is good reason to be excited about the 
anti-tumor potential of therapies inhibiting both CDK4/6 

and MEK, combination therapies targeting other RABL6A 
effectors may also have clinical efficacy in MPNSTs. That 
is because RABL6A upregulation is so prominent in this 
disease [11]. Moreover, RABL6A is a potent oncoprotein 
that controls many druggable cancer targets besides 
CDK4/6 and MEK, including Myc (Figure 1), PP2A-
Akt-mTOR, and receptor tyrosine kinase pathways like 
VEGFR and EGFR [11, 12, 16]. As advances in drug 
development yield more specific targeted therapeutics, the 
future looks bright for the number of novel combination 
therapies that could be evaluated for rare malignancies, 
like MPNSTs, which currently lack effective therapy. 
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