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ABSTRACT
This editorial comment explains recent developments in radiomics regarding the 

use of quantitative imaging biomarkers to predict lung cancer sensitivity to a variety of 
cancer therapies. Tumor response assessment has been a crucial component guiding 
cancer treatment. Evaluation of treatment response was standardized and classically 
based on measuring changes in tumor lesion size. Recent breakthroughs in artificial 
intelligence pave the way for the use of radiomics in tumor response assessment. 
Such objective techniques would bring a remarkable transformation to conventional 
methods, which can be inherently subjective. Successful implementation of these 
technologies would allow for faster and more accurate predictions of treatment 
efficacy, which will be critical to the advancement of personalized medicine.

EDITORIAL COMMENT

Lung cancer is the leading cause of cancer death 
worldwide [1]. Systemic treatment for lung cancer is a 
continuously evolving landscape with several options, 
such as cytotoxic chemotherapy, molecularly targeted 
therapy and immunotherapy [2]. Imaging is critical for 
the assessment of tumor response [3]. However, standard 
imaging metrics are limited when assessing response 
and progression with emerging targeted and immune 
therapies. A change in the size of a subset of target lesions, 
which remains the gold standard for assessing response 
under treatment [3, 4], does not or cannot fully capture 
the complexity of lung cancer behavior, including the 
primary tumor and metastases, driven by its high cellular 
heterogeneity [5]. In the era of precision medicine, the 
challenge entails choosing the right treatment for the 
right patient at the right time. The core concept is to 
personalize medical care and optimize cost-effectiveness. 
Recent updates of the Response Evaluation Criteria in 
Solid Tumors (RECIST) to iRECIST [6], irRECIST [7], 
and many others [8–10] have proposed novel patterns of 
tumor response and progression to immunotherapy. These 
updates begin to address part of the challenge, however, 

the paradigm of response assessment is shifting toward 
new imaging methods. 

Radiomics -the use of imaging features from 
radiographic medical images transform images into 
quantitative data- has emerged a decade ago [11]. This 
high-throughput feature extraction procedure significantly 
increases the radiologist's analysis capability. However, 
despite the growing availability of dedicated software, 
numerous methodological challenges have to be faced 
with validating the procedure, which explains the 
slow implementation of such a revolutionary approach 
in clinical practice: the difficulty to collect massive 
structured imaging data from suitable target populations; 
the implementation and harmonization of operational 
multilevel imaging pipelines including imaging 
acquisition, tumor segmentation, feature extraction, and 
finally the feature selection process, adapted to a particular 
output task which requires AI-based validation procedures 
[12]. 

The recent study entitled "Identification of Non-
Small Cell Lung Cancer Sensitive to Systemic Cancer 
Therapies Using Radiomics" offers a relevant clinical 
illustration of the current predictive capabilities of 
radiomics in NSCLC tumors to several systemic 
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treatments [13]. Using standard-of-care CT-scan images 
(baseline and first-treatment assessment) of NSCLC 
patients collected from clinical trials, machine-learning 
algorithms were trained to predict NSCLC sensitivities 
to the following treatments: nivolumab, docetaxel, and 
gefitinib. To this end, this study combined Radiomic 
features derived from the largest measurable lung lesion 
of each patient. These radiomics signatures achieved 
areas under the receiver operating characteristic curve 

(AUC) of 0.77, 0.67 and 0.82, for nivolumab, docetaxel, 
and gefitinib, respectively. The radiomic features used 
in these signatures characterized 1) tumor burden, 2) 
tumor spatial heterogeneity, and 3) density change around 
tumor-parenchyma boundaries. Interestingly, the radiomic 
signatures in nivolumab (immunotherapy) and gefitinib 
(EGFR-targeted) arms were dominated by intra-tumor 
spatial heterogeneity and tumor-parenchyma density 
transition descriptors. In contrast, volume descriptors were 

Figure 1: Toward radiomics for assessment of response to systemic therapies in lung cancer. (A) Multiple imaging modalities 
can characterize tumor imaging phenotypes such as CT scan, MRI, and PET. Multiparametric imaging offers unique opportunities to extend 
the image-based tumor analyses to more holistic characteristics. (B) left. In “Identification of Non-Small Cell Lung Cancer Sensitive to 
Systemic Cancer Therapies Using Radiomics,” the authors demonstrated that change over serial radiographic measurements in radiomics 
features deciphering tumor volume, invasion of tumor boundaries, or spatial tumor heterogeneity predicted tumor sensitivity to treatment, 
offering an approach that could enhance clinical decision-making to continue systemic therapies and forecast overall survival. (B) right. 
A fundamental breakthrough would be integrating multiparametric imaging data into the radiomic framework, such as imaging features 
extracted from functional MRI and 18F-FDG PET. (C) Machine-learning approaches can unravel among these imaging features, new 
imaging biomarkers predicting tumor sensitivity to treatment.
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more relevant in the docetaxel (chemotherapy) cohort. 
This proof-of-concept study paves the way for future use 
of radiomics and AI in tumor response assessment. Of 
note, the ultimate goal is to find a signature that could 
generalize to all treatment types.

In perspective, a fundamental breakthrough 
would be to integrate multiparametric imaging data into 
the radiomic framework (Figure 1). Multiparametric 
imaging offers unique opportunities to extend the image-
based tumor analyses to more holistic characteristics 
[14], including both non-parametric (qualitative) and 
parametric (quantitative) imaging data [15, 16]. A 
multiparametric radiomics signature could be a suitable 
combination of features extracted from non-fused or fused 
multimodal data [17, 18] or higher-order composite vector 
representation of the tumor temporal and spatial changes 
between multidimensional features [19, 20]. This is a new 
era to investigate the combination of imaging features 
extracted through various methods to guide clinical care. 
AI techniques would bring a remarkable transformation 
and redefine medical image interpretation from an 
inherently subjective human-based interpretation to an 
objective computer-based pattern-recognition algorithm. 
Successful implementation of these technologies would 
allow for faster and more accurate treatment efficacy 
predictions, which will probably significantly impact 
clinical outcomes and decision-making. 
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