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ABSTRACT
Meningiomas are a heterogeneous group of tumors, defined histo-pathologically 

by World Health Organization (WHO) grading. The WHO grade of meningiomas does 
not always correlate with clinical aggressiveness. Despite maximal surgical resection 
and adjuvant radiation, a subset of tumors are clinically aggressive; displaying early 
recurrence and invasion. Current methods for identifying aggressive meningiomas 
solely focus on genomics, proteomics, or epigenetics and not a combination of all for 
developing a real-time clinical biomarker. Improved methods for the identification 
of these outlying tumors can facilitate better classification and potentially adjuvant 
treatment planning. Understanding the pathways of oncogenesis using multiple 
markers driving aggressive meningiomas can provide a foundation for targeted 
therapies, which currently do not exist.

INTRODUCTION

Meningiomas are the most common central nervous 
system tumor, with an incidence of approximately 8 
per 100/000 people [1]. They make up approximately 
one-third of all central nervous system tumors and can 
arise anywhere throughout the cranial-spinal axis. As 
a whole, meningiomas are a heterogeneous group of 
tumors and are currently graded according to the World 
Health Organization (WHO) classification, last revised 
in 2016. The WHO classifies meningiomas according 
to histological findings into one of three grades; WHO 
grade 1 (benign), WHO grade 2 (atypical), and WHO 3 
(anaplastic) with fifteen histopathological subtypes. The 
histological characteristics leading to upgrading include 
1) mitotic activity, 2) presence of brain invasion or, 3) at 
least three of five features including sheeting architecture, 
hypercellularity, necrosis, macronucleoli, or increased 
nuclear-to-cytoplasm ratio [2]. In addition, specific 
histological phenotypes, such as chordoid or clear cell 
morphologies are automatically grade 2 while rhabdoid 
and papillary morphologies are considered grade 3.

Despite the histological characteristics that define 
the WHO grade, clinical aggressiveness often does 

not correlate with WHO grading as up to 25% of grade 
1 and grade 2 tumors exhibit rapid recurrence earlier 
than the estimated recurrence rate of 5–10% and 50% 
at 10 years respectively [3, 4]. Grade 3 meningiomas, 
the most aggressive of all meningiomas, recur after 
maximal surgical resection and adjuvant chemoradiation 
with an estimated median overall survival of 2.6 to 5.8 
years with an overall 5-year survival ranging from 19–
60% [5–9]. Across all tumors, histopathological grade 
and extent of surgical resection continue to provide the 
most widely accepted accuracy in prognosis. Regarding 
extent of resection, the Simpson grading scale, first 
reported in 1957, is the most often cited and classifies 
extent of resection into 5 grades which include 1) gross 
total resection including involved dura, 2) gross total 
resection with coagulation of affected dura, 3) gross total 
resection without removal or coagulation of affected 
dura, 4) subtotal resection or 5) biopsy only [10]. Rates 
of recurrence or progression correlate with increasing 
Simpson grade. While the initial 1957 study obviously 
did not stratify outcomes based on the current WHO 
classification, modern studies with relevant surgical 
techniques, instrumentation, and stratifying by WHO 
grade have re-examined the Simpson grading scale and 
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continue to find it predictive for progression free survival 
[11, 12].

The current standard of care for meningiomas 
causing neurological symptoms due to compression or 
significant recurrence following a previously treated 
tumor is maximal safe surgical resection. This can be 
made challenging depending on tumor location and their 
proclivity to invade dural sinuses, encapsulate cranial 
nerves, and distort or encapsulate major cranial arteries. 
This is especially true for tumors arising from the skull 
base with this subset of tumors requiring extensive skull 
base removal for improved visualization and protection of 
adjacent brain and cranial nerves. WHO grade 1 tumors 
often show an indolent course and are often cured with 
surgery alone. Grade 2 tumors and rapidly recurring 
grade 1 tumors represent the most challenging tumors 
to longitudinally treat. A clinical benefit with adjuvant 
radiation, whether that be immediately post-operative or in 
a delayed fashion; has only been shown in non-randomized 
clinical series with some series showing no benefit [13–
19]. Often, the decision regarding prescribing adjuvant 
radiation is based on age, health status, extent of resection, 
and institution-specific practice. Randomized trials 
attempting to elucidate the benefit of adjuvant radiation 
in Grade 2 meningiomas are actively enrolling. Grade 3 
tumors require maximal surgical resection and adjuvant 
radiation. Salvage therapy often includes multiple repeat 
resections and chemotherapy, usually with limited success.

Refinements in histological evaluation and 
advancements in surgical techniques allowing for 
more radical resections for meningiomas has improved 
outcomes only minimally. Advancements in the genomic, 
proteomic, and epigenetic signature of meningiomas, 
though explosive in the last two decades have lagged in 
clinical translation behind other primary central nervous 
system tumors. In the case of gliomas, biomarkers such 
as isocitrate dehydrogenase (IDH) mutational status and 
O [6]-methylguanine DNA methyltransferase (MGMT) 
methylation are standard of care and provide prognostic 
insight into tumor behavior [20, 21]. These advancements 
in understanding the basic biology of glioma has allowed 
for a revolution in personalized therapy and should be 
used as an example of how understanding meningiomas 
at the genomic, proteomic, and epigenetic level can 
lead to improved therapies for a subset of patients with 
meningiomas that are at high risk for recurrence. Here, 
we review the current understanding of the meningioma 
genomic, proteomic, and epigenetic landscape, and discuss 
translational efforts to identify patients at high risk of 
recurrence and tumors with targetable mutations that may 
lead to more efficacious medical therapies. 

Genomic landscape in meningiomas

Advancements in the technology and the decreasing 
cost of next generation gene sequencing techniques has 

led to a notable advancement in the understanding of the 
genetic landscape leading to meningioma oncogenesis. 
The specific mutations involved in meningioma 
oncogenesis can be broadly categorized as tumors 
harboring NF2 mutations and tumors harboring mutations 
other than NF2.

Approximately half of all sporadic meningiomas 
harbor an NF2 mutation with the remaining 50% 
of meningiomas harboring an alteration in one or 
a combination of several other genes involved in 
meningioma oncogenesis. These include tumor necrosis 
factor receptor associated factor 7 (TRAF7), alpha 
serine/threonine kinase 1 (AKT1), Krüppel-like factor 4 
(KLF4), Smoothened (SMO), phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), 
breast cancer type 1 susceptibility protein associated 
protein-1 (BAP1), polymerase RNA II polypeptide A 
(POLR2A), and phosphatidylinositol-4,5-biphosphaste 
3-kinase catalytic subunit alpha chromatin remodeling 
gene (SMARCB1) [22–25]. While each gene variant 
has provided further information on the biology of 
meningioma; monosomy, NF2 and TRAF7 seem to be the 
driving forces in tumorigenesis. AKT1, KLF4, and SMO 
mutations rarely occur alone indicating that they might 
represent passenger mutations. Interestingly though, the 
location of intracranial and skull base meningiomas is 
highly correlative with each specific mutation (Figure 1) 
[22, 24, 26, 27]. Identifying mutations in BAP1, POLR2A 
and SMARCB1 and new genes might add to the 
understanding of these genomics subgroups. 

Genomics provides a starting point to understand 
mechanistic signaling pathways involved in the early 
stages of tumorigenesis. Despite a revolution in the 
genomic landscape of meningiomas localizing to specific 
anatomical locations, alterations in high risk progression 
or recurrence tumors is lacking.

NF2

The NF2 gene is a tumor suppressor gene 
present on chromosome 22q that encodes the protein, 
neurofibromin-2, a 69 kDa cytoskeleton scaffold protein. 
Neurofibromin-2 regulates the Hippo/SWH signaling 
pathway, resulting in tumor suppression by restricting 
proliferation and increasing apoptosis. In addition, 
neurofibromin-2 inhibits PI3 kinase by binding to 
AGAP2, impairing its stimulating activity, resulting in 
a link between two known oncogenic pathways [28]. 
Inactivation of neurofibromin-2 leads to the tumor 
syndrome neurofibromatosis type 2. This syndrome 
classically results in bilateral vestibular schwannomas, 
meningiomas, and ependymomas.

Approximately half of sporadic meningiomas of 
all grades are found to harbor NF2 mutations with an 
overwhelming majority having either complete or partial 
loss of heterozygosity on chromosome 22q leading to 
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a nonfunctional neurofibromin-2. These can include 
frameshift, nonsense, or splice-site mutations [29]. 
Consistent with its role as a tumor suppressor, loss of 
function of neurofibromin-2 leads to upregulation of 
oncologic pathways, increased cellular proliferation, 
migration, and invasion, and decreased apoptosis. 
Patients that present with multiple meningiomas exhibit 
different NF2 mutations in respective tumors while 
identical biallelic NF2 mutations in patients with multiple 
tumors have been demonstrated, indicating that tumors 
can arise independently or through mosaicism or clonal 
spread [30]. When low- and high-grade tumors from a 
single patient were analyzed, NF2 loss was exhibited 
in both low and high grade tumors suggesting that NF2 
loss is an early event in meningioma progression. This 
is further supported by recurrent tumors in the same 
patients exhibiting a 75% overlap of arm-level somatic 
copy number variations [31]. Tumors with NF2 mutations 
often localize to the cerebral convexity or posterior fossa 
skull base and have a limited representation in the midline 
skull base [24].

TRAF7

TRAF7 is a signal transducer within the TNF 
receptor family and is located on chromosome 16p13. 
TRAF proteins (TRAF1-7), are adaptor proteins involved 
in the assembly of intracellular signal transducers 
downstream of receptor complexes and are composed 
of an N-terminal RING and zinc finger domain protein. 
Though TRAF7 was the last in the family of TRAF 

proteins to be discovered, it appears to involve signal 
transduction to either activate or suppress signaling 
through the nuclear factor-kappa-B transcription factor 
[32]. TRAF7 mutations are present in approximately 25% 
of sporadic meningiomas, and studies have revealed they 
are mutually exclusive from NF2 mutant tumors, yet larger 
studies are need to confirm exclusivity of TRAF7 mutant 
tumors. TRAF7 mutations also present with mutations in 
AKT1 or KLF4, especially those KLF4 mutations as a 
result of the recurrent K409Q mutation [33]. Tumors with 
mutations in both TRAF7 and KLF4 are most often found 
in secretory meningiomas with TRAF7 mutant tumors 
having a predilection for the anterior skull base [24].

AKT1

The phosphoinositol-3 kinase (PI3K) pathway is 
a known oncogenic pathway in many cancers including 
CNS, breast, prostate, urothelial, and ovarian cancers, 
amongst others. Its downstream targets affect cellular 
metabolism, motility, proliferation, growth, and survival, 
making this one of the most frequently dysregulated 
pathways in human cancers. In brief, activation of PI3K 
leads to the phosphorylation of AKT1, and subsequent 
activation of mammalian target of rapamycin (mTOR) 
[34]. In a large cohort, mutations in AKT1 were identified 
in 38 of 300 non-irradiated meningioma samples (12.6%) 
and frequently occurred with TRAF7 mutations (25/38 
tumors) [23]. Similarly, in a series of 150 primarily grade 
1 meningiomas, mutations in AKT1 occurred in 9% of 
tumors. The specific mutation, AKT1E17K commonly 

Figure 1: Multi-pronged approach for meningioma therapy. Using genomics, proteomics, epigenetics to develop a real-time 
clinical biomarker.
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presents in meningothelial or transitional meningioma 
histologies [29, 35]. PIK3CA, located on chromosome 
3q26.3 encodes the p110 alpha catalytic subunit of 
PI3K, occurs in 7% of non-NF2 associated grade I 
meningiomas, and has been reported in grade 2 and grade 
3 tumors [36, 37]. Interestingly, AKT1 and PIK3CA 
are mutually exclusive and, similar to tumors harboring 
AKT1 mutations, those harboring PIK3CA mutations also 
harbored TRAF7 mutations, though lacked mutations in 
NF2 or SMO [22]. In both studies, AKT1 and PIK3CA 
mutated meningiomas were primarily located along the 
midline anterior skull base including olfactory groove, 
tuberculum sellae, anterior clinoid, and medial sphenoid 
wing. Interestingly, though AKT1 and KLF4 mutations 
can both occur with TRAF7 mutations, AKT1 and KLF4 
mutations are mutually exclusive [22, 29].

KLF4

KLF4 encodes a zinc finger transcription factor 
involved in cell growth, proliferation, and differentiation 
as well as reprogramming differentiated somatic cells 
into pluripotent stem cells [38, 39]. KLF4 mutations are 
nearly exclusively found in WHO grade 1 meningiomas 
and are often found with TRAF7 mutations. Tumors with 
KLF4 mutations are associated with larger peritumoral 
brain edema, localize to the anterior and middle cranial 
skull base, and when present with TRAF7 mutations are 
predictive of a secretory meningioma phenotype [24, 40].

SMO

SMO is a gene encoding the 7-transmembrane 
domain protein, Smoothened, and is part of the sonic 
hedgehog (SHH) pathway. Activation of the SHH pathway 
causes a signaling cascade leading to the activation 
of zinc finger transcription factors which plays a key 
role in embryogenesis, angiogenesis, proliferation, and 
survival. Most notably the SHH pathway is involved in 
the development of the ventral forebrain and midline 
anterior cranial skull base with abnormalities in signaling 
causing holoprosencephaly [41]. Activation of the SHH 
pathway is also implicated in other cancer types including 
medulloblastoma and basal cell carcinoma. Multiple 
studies have shown SMO to be an independent mutation 
causing meningioma oncogenesis with an incidence of 
3.6–6% of tested tumors [22–24]. The majority of tumors 
caused by mutations in SMO were mutually exclusive from 
other known mutations and gave rise almost exclusively 
to olfactory groove meningiomas. Of tested olfactory 
groove meningiomas, approximately 28% harbor a 
SMO mutation compared to 3–5% at other intracranial 
locations. In addition, olfactory groove meningiomas 
harboring a SMO mutation had a higher recurrence rate 
and shorter progression free survival compared to those 
olfactory groove meningiomas resulting from mutations in 
AKT1 [42]. Interestingly, pathway analysis of the known 

oncogenic downstream marker GRB2-associated-binding 
protein 1 (GAB-1), which is used to show SHH pathway 
activation in medulloblastoma, and Stathmin (STMN-1), a 
downstream marker of the PI3K/AKT/mToR pathway, were 
positive in three SMO-mutant tumors, suggesting a possible 
interaction in these parallel oncogenic pathways [23].

BAP1

Breast cancer type 1 susceptibility protein associated 
protein-1 (BAP1) is a tumor suppressor gene and 
deubiquitylase that regulates multiple cellular pathways 
including cell cycle progression, gluconeogenesis, and 
the DNA damage response. Germline BAP1 mutations 
cause a tumor syndrome composed of mesothelioma, 
cutaneous and uveal melanomas, meningioma, and renal 
cell carcinoma, amongst others [43]. BAP1 mutations are 
specifically associated with meningiomas with rhabdoid 
morphology and can occur in both the adult and pediatric 
population [44]. Shankar reported in a series of 14 
meningiomas with rhabdoid features, that loss of BAP1 
resulted in decreased progression free survival compared 
to those tumors without BAP1 mutations [25].

POLR2A

POLR2A, present on chromosome 17 encodes 
for the largest subunit of the ubiquitous protein, RNA 
polymerase II, which is responsible for synthesizing 
messenger RNA in eukaryotes. Mutations in POLR2A 
lead to dysregulation of key meningeal identity genes 
ranging from wingless-type MMTV integration site 
family, member 6 (WNT6) to alpha prolamins (ZIC1) 
and are found in approximately 6% of meningiomas. 
POLR2A- mutant meningiomas are WHO grade 1, are 
more likely present with a meningothelial histology, and 
are commonly located in the anterior cranial skull base 
[27]. 

SMARCB1

SMARCB1 is a tumor suppressor gene involved 
in chromatin remodeling and is a key component of the 
Switch/sucrose non-fermentable chromatin-remodeling 
complex protein. Mutations in SMARCB1 have been 
identified in a rarity of sporadic WHO grade 1 and 2 
meningiomas, often colocalizing with NF2 mutations. 
Interestingly, germline SMARCB1 mutations appear to also 
be involved in familial cases of multiple meningiomas and 
schwannomas [45, 46]. SMARCB1 mutant tumors have a 
predilection for developing along the falx cerebri [47].

Proteomic markers

While the genomic landscape of meningiomas has 
provided insight into the molecular biology and drivers 
of clinical course, the protein-level understanding of 
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meningiomas remains largely unexplored. Proteomic 
markers along with genomics will aid in the development 
of a real-time clinical biomarker. Imploring global 
shotgun level proteomics has highlighted proteins and 
pathways pertinent to the clinical course of meningiomas 
[48–50]. In examining 61 meningiomas and quantifying 
3042 unique proteins, distinct patterns are observed 
between benign and atypical grades with oncogenes 
being enriched in higher grades [51]. Differences across 
WHO grades are seen in RNA metabolism, extracellular 
matrix formation, mitochondrial metabolism with grade 
1 tumors exhibiting enrichment in the matrisome and 
the biosynthesis of glycosaminoglycans [51]. Proteomic 
analysis has identified downstream protein-level changes 
in meningiomas based on their spatial distributions [51]. 
Shotgun proteomics has also demonstrated differences 
in grade 1 meningiomas presenting in different genders. 
Differences in RNA splicing events (S100-A4) were 
observed between the two groups, with males exhibiting 
enriched pathways for cell-matrix organization and 
females exhibiting enriched pathways for RNA transport 
and processing [52]. Further proteomics studies have 
been able to narrow down which proteins may serve as 
a potential therapeutic target. In an examination of NF2 
mutated meningiomas, upregulated proteins combined 
either a PDZ/LIM domain which play a wide role in 
biological functions, specifically cell signaling [53]. 
Furthermore, in expanding on these domains, PDZ 
and LIM domain protein 2 (PDLIM2/mystique/SLIM) 
was found to be dysregulated with overexpression 
in several tumor samples. Knockdown of PDLIM2 
mediated by shRNA resulted in significant reductions in 
cellular proliferation [53]. Additional proteomic studies 
assessed for biomarkers in serum, cerebrospinal fluid, 
and pathological tissue and identified multiple proteins 
related to tumorigenesis and meningioma grading. 
These included serpin peptidase inhibitor alpha 1, 

ceruloplasmin, hemopexin, albumin, C3, apolipoprotein, 
haptoglobin, amyloid P-component serum, alpha-1-beta-
glycoprotein, alpha-2-macroglobulin, and antithrombin-
III [54, 55]. These proteins and their associated pathways 
may serve as potential therapeutic targets or can help 
further differentiate which meningiomas demonstrate 
higher rates of progression/recurrence.

To this point, our group used a proteomic approach, 
identifying retinoblastoma associated protein-1 (RB1) as 
a critical marker to identify grade 1 tumors at high risk 
for recurrence. These tumors that progressed or recurred 
within five years, are referred to as grade 1.5. RB1 
regulates cell cycle progression and drives the progression 
from the G1 to S-phase of the cell cycle. Using mass 
spectrometry-based phosphoproteomics, peptide chip 
array kinomics, and clinical outcomes we compared 
a cohort of 140 meningiomas grade 1 and 1.5 tumors. 
Multiple sites on the RB1 protein can be phosphorylated 
and through kinome profiling, we identified Rb1 pS780 
to be a sensitive biomarker for identification of non-
irradiated grade 1 tumors that showed early recurrence 
or progression (Figure 2A). Histologically, there was no 
difference between grade 1 and grade 1.5 tumors, though 
RB1 S780 was significantly higher in non-irradiated grade 
1.5 tumors compared to either non-irradiated traditional 
WHO grade 1, 2, and 3 tumors. Staining of RB1 S780 is 
also found in half of the WHO grade 2 and 3 meningiomas 
displaying aggressive invasion and spread (Figure 2B 
and 2C). Genomic sequencing was also performed and 
mutations in NF2, TRAF7, SMO, KLF4, and AKT1 did 
not predict RB1 S780 staining or progression in grade 1.5 
meningiomas [56].

We hypothesize that RB1 S780 hyperphosphorylation 
is the result of genetic and/or epigenetic alterations and an 
early event in aggressive progression in meningiomas. 
Unlike the genomic underpinnings which have led to 
a revolution in identifying cellular signaling pathways 

Figure 2: RB1, a biomarker for identification of grade 1.5 meningiomas. (A) Progression/recurrence-free survival in all 
nonirradiated histologically benign meningiomas (grades 1, n = 47, and 1.5, n = 28). (B) Representative WHO 1 and 1.5 meningioma H&E 
section from two cases. The same representative cases stained with RB1 S780. Note the increased cytoplasmic and nuclear staining in the 
1.5 meningioma. (C) Ratio of RB1 S780 staining per total tissue area versus tumor grade–nonirradiated samples only. These figures were 
reproduced with permission by the publisher of the CCR manuscript.
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involved in tumorigenesis, RB1 S780 provides a biomarker 
to better understand which patients may require closure 
follow-up or consideration of adjuvant therapies.

Epigenetic and mRNA markers

Genotyping only partially explains the early 
events of tumorigenesis, and there is evidence that 
epigenetic abnormalities are crucial for tumorigenesis. A 
combination of epigenetics, mRNA along with genomics 
and proteomics will allow for a meningioma biomarker 
panel to predict aggressive meningiomas exhibiting 
high rates of progression or recurrence (Figure 1). 
Abnormalities ranging from altered DNA methylation, 
miRNA expression and chromatin restructuring involved 
in the genesis of meningiomas still remains unclear. One 
such example is tissue inhibitor of metalloproteinase 
3 (TIMP3), which encodes a protein that inhibits 
matrix metalloproteinase. It has been demonstrated that 
hypermethylation results in transcriptional downregulation 
with Grade 1 tumors displaying less methylation than 
Grade 2 and 3 meningiomas [57, 58]. Additional tumor 
suppressor proteins such as p73 and p53 are known to 
play a role in meningiomas in which hypermethylation 
and expression characterizes low- and high-grade 
meningiomas [59, 60]. Genes with hypermethylated CpG 
islands in promoter regions are suppressed in benign and 
malignant meningiomas indicating that gene silencing is 
induced by DNA methylation.

More recently, global methylation profiles have 
shown promise in identifying those tumors at high risk 
for recurrence. Using unsupervised clustering of DNA 
methylation, Olar and colleagues reported a 64-CpG loci 
methylation predictor, that, when controlled for clinical 
variables including WHO grade, mitotic index, Simpson 
grade, sex, location, and copy number aberrations, showed 
a significant association with recurrence free survival [60]. 
Using similar methods, six unique methylation classes of 
meningioma with accurate identification of WHO grade 
1 at high risk of recurrence and WHO grade 2 tumors at 
lower risk of recurrence were identified [61].

Another form of genetic modification is chromatin 
restructuring in which trinucleotide repeat expansions 
affect the neural system but has not directly been 
implicated in meningiomas [62]. Microsatellite instability 
was reported and occurred in 11% of meningiomas [62]. 
The final set of epigenetic abnormalities are miRNAs 
that play regulatory roles in cell cycle, differentiation, 
migration and apoptosis. Various levels of miRNAs 
were reported in higher grade meningiomas compared to 
lower grades [63]. MiRNA expression profiling revealed 
high and low expression of a variety of miRNAs which 
are linked to higher recurrence rates of meningiomas 
[64]. Downregulation of miR-200a plays a pivotal role 
in the development of benign meningiomas through the 
upregulation of three mRNA targets while miR-21 and 

34a have represented barriers for grades 1 and 2 tumors 
to malignant transition [65, 66]. MiRNA expression in 
meningiomas is varied across grades and especially plays 
a key role in the early stages of tumorigenesis and may 
provide a potential therapeutic target in the future.

Translational potential for systemic therapy

Currently, the gold standard for meningioma 
treatment involves maximal safe surgical resection 
for those tumors causing neurologic compromise or 
significant mass effect. The evolution of meningioma 
surgery has been significantly refined since Simpson’s 
landmark paper showing improved progression free 
survival with gross total resection of the tumor bulk 
and involved dura [10]. Introduction of the operating 
microscope and advancements in neuro-endoscopy 
dramatically increases illumination and magnification 
of deep seated structures [67, 68]. In combination with 
fine micro-instruments, tumors can be dissected from 
cranial nerves and vasculature and major dural sinuses 
can be entered and reconstructed, limiting the morbidity 
of surgery. Advancements in surgical neuromonitoring 
can detect ischemic or pressure related changes in cranial 
nerves and brain parenchyma to assist the surgeon in 
safe resection [69]. Finally, advancements in skull base 
approaches and intra-operative neuro-navigation allow 
for safe access to deep seated tumors with minimal brain 
retraction or sectioning cranial nerves for safe resection.

With the advancements in surgical technique 
weighed against the overall spectrum of responsiveness 
to radiation, the pendulum has swung towards aggressive 
surgical resection with radiation of any kind reserved 
for higher grade meningiomas or growing residual 
tumors that could not be safely resected. In this setting, 
an effective medical therapy would provide a greatly 
needed clinical alternative to radiation. Unfortunately, no 
randomized, double-blind, placebo controlled clinical trial 
has identified a cytotoxic chemo, hormonal, biologic, or 
immunotherapy that provides durable and reproducible 
tumor control. While multifactorial, this is likely due to the 
overall indolent nature of the majority of meningiomas, 
requiring a balance in studying progression and survival 
outcomes with the expense of years or decades long 
clinical and radiographic follow-up, limited cohorts that 
would sufficiently power a randomized study, and non-
standardized clinical metrics making comparison difficult. 
Results of chemo, biologic, and immunotherapies in 
meningioma are reviewed elsewhere.

Despite these challenges, advancements in 
meningioma genomics and proteomics has provided 
significant insight for possible targeted therapies and 
identifying tumors at high risk of recurrence. Specifically, 
anecdotal evidence suggests that inhibitors to AKT1 
may provide clinical benefit. In a single patient with 
multiple multi-treatment resistant meningiomas including 
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grade 1 and grade 3 intracranial disease and pulmonary 
metastases, treatment with the AKT inhibitor AZD5363 
led to radiographic response of both intracranial and 
pulmonary lesions with a durable response over 18 months 
of follow-up [70]. Currently, clinical trials of AZD5363 
are ongoing for meningioma as well as other cancer types 
[71]. Currently, clinical trials evaluating the efficacy of 
SMO inhibitors are also enrolling [72]. Evidence from 
prior trials testing the SMO inhibitor, vismodegib, in basal 
cell carcinoma showed excellent local and distant control, 
leading to its FDA approval in 2012 [73]. While no current 
trials are ongoing with specific inhibitors of BAP1 in 
meningioma, Tazemetostat, an inhibitor of enhancer of 
zeste homolog-2 which is a downstream protein of BAP1, 
is currently being evaluated in mesothelioma, and may 
represent a potential targeted therapeutic for rhabdoid 
meningioma. Finally, genomic markers can be used to 
assist in screening for extracranial sites of other potential 
tumors (BAP1 tumor syndrome) and familial syndromes of 
multiple meningiomas (SMARCB1). In addition, proteomic 
findings such as RB1 S780 and epigenetic modifications 
may better classify tumors at high risk of recurrence as 
compared to the current WHO grading system.

CONCLUSIONS

As further advancements in targeted therapies arise, 
the role of surgery will expand to not only include reduction 
of tumor mass but also providing tumor sample for 
identification of actionable mutations and identification of 
prognostic markers to better predict prognosis. In addition, 
identification of specific mutations can aid in further 
screening of tumor syndromes. Due to the heterogenous 
nature of meningiomas a combination of their genomic, 
proteomic, and epigenetic landscapes will form the basis 
for meningioma diagnosis, prognosis, and treatment.
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