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ABSTRACT
Lung cancer brain metastases (BMs) are frequent and associated with poor 

prognosis despite a better knowledge of lung cancer biology and the development 
of targeted therapies. The inconstant intracranial response to systemic treatments 
is partially due to tumor heterogeneity between the primary lung tumor (PLT) and 
BMs. There is therefore a need for a better understanding of lung cancer BMs biology 
to improve treatment strategies for these patients. We conducted a study of whole 
exome sequencing of paired BM and PLT samples. The number of somatic variants and 
chromosomal alterations was higher in BM samples. We identified recurrent mutations 
in BMs not found in PLT. Phylogenic trees and lollipop plots were designed to describe 
their functional impact. Among the 13 genes mutated in ≥ 1 BM, 7 were previously 
described to be associated with invasion process, including 3 with recurrent mutations 
in functional domains which may be future targets for therapy. We provide with 
some insights about the mechanisms leading to BMs. We found recurrent mutations 
in BM samples in 13 genes. Among these genes, 7 were previously described to be 
associated with cancer and 3 of them (CCDC178, RUNX1T1, MUC2) were described 
to be associated with the metastatic process.

INTRODUCTION

Approximately 50% of brain metastases (BMs) are 
developed from lung cancers [1]. Moreover, in autopsy 
series, up to 50% lung cancer patients were found with 
BMs [2]. The occurrence of BMs during the course of 
lung cancer often induces poor prognosis and specific 
morbidity. BMs are described as the immediate cause 
of death in a majority of patients with BMs from solid 

tumors. Without any treatment, the median overall survival 
(OS) of patients with BMs from adenocarcinoma of the 
lung is short (4 to 11 weeks) [2, 3]. With treatments such 
as neurosurgery, stereotactic radiosurgery and whole brain 
radiation therapy or systemic treatments OS has improved 
but remains limited (6.9–13.7 months) [4]. There is thus a 
need for a better biological understanding of lung cancer 
BMs to substantially improve treatment strategies in this 
field.
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Recently, the identification of driver oncogenes 
and the development of targeted therapies have 
improved lung cancer patients’ outcomes, especially 
for lung adenocarcinoma. Among the most frequent 
genomic alterations found in lung adenocarcinoma, 
EGFR and BRAF mutations, as well as ALK and ROS1 
rearrangements are approved biomarkers [5] as they can 
be targeted by approved drugs leading to an improved 
survival (up to 46 months) [4, 6]. However, the intracranial 
efficacy of targeted therapies is unpredictable. This may 
be explained by the presence of blood brain barrier (BBB) 
that limits the delivery of drugs to the brain [7],  but also 
by tumor genomic heterogeneity [8]. In this regard there 
are evidences suggesting a difference in gene expression 
between primary lung tumors and metastases [9]. 
Brastianos et al. published a pioneering study comparing 
genomic alterations in BMs and matched primary solid 
tumors; and showed that genomic alterations found in 
primary samples of solid tumors were not representative 
of BMs genomic characterization [10] however, only 
few lung cancer samples were included. This molecular 
divergence may be explained by the BBB role in tumor 
cell migration and colonization of central nervous system 
[11]. This may also be explained by the hypothesis that 
BMs and primary lung tumors come from a common 
precursor but continue to evolve independently and 
acquire more new mutations.

Therefore, understanding lung cancer BMs biology 
is an actual need for better tailor treatment strategies in 
order to improve the outcome of patients with BMs from 
lung cancer. 

We report here a comprehensive analysis of genomic 
alterations in paired primary tumors and BMs in lung 
cancer patients and discuss their potential implications.

RESULTS

Population description

A total of 9 patients (5 men and 4 women) met the 
eligibility criteria. The median age was 64.5 years (range 
35 to 76); all but one was former or current smokers at 
the time of diagnosis. Finally, only 7 patients had enough 
quality-controlled frozen tumor tissue from both lung 
primary tumor and BM for whole genome sequencing. 
Therefore, a total of 14 samples (7 primary lung tumors 
and 7 paired BMs) were analyzed.

Identified mutations

Identification of putatively somatic variants in 
primary tumors. Primary tumors had a median of 138 
(range 104–311) single nucleotide variants (SNVs) and 
34 (range 28–54) insertions or deletions (indels) (Figure 
1A). Among these variants, 40 non-synonymous SNVs 
and 3 indels were found in genes that were previously 

described to be associated with cancers and referenced in 
the Cancer Gene Census of COSMIC database. A majority 
of putatively somatic variants found in primary tumors 
were also found in BM samples as 19 mutations only were 
found to be specific of primary tumors (Figure 1B).

Identification of somatic variants acquired in 
BMs

BMs had a median of 52 (range 16–159) SNVs and 
4 (range 0–9) indels acquired in comparison with primary 
tumor samples (Figure 1C). Among these variants, 19 non-
synonymous SNVs and 1 indels were found in genes that 
were previously described to be associated with cancers 
and referenced in the Cancer Gene Census of COSMIC 
database. 13 genes were mutated in more than 1 BM 
sample (Figure 1D). The CCDC178 gene was mutated in 
3 MB samples. No driver mutation was identified among 
these recurrent mutations.

Identified chromosomal alterations

Chromosomal alterations were found to be acquired 
by BM samples in comparison with primary tumor 
samples, including recurrent gains (5p, 8q) and deletions 
(5q, 9, 21) (Figure 2). In the 8q area is the gene MYC, 
described to be associated with cancers in the COSMIC 
database.

Mutational signatures and phylogenic trees

The most frequent mutations found in BMs were 
C>A mutations, with high transcription bias. Phylogenic 
trees were developed, describing the common precursor 
between primary tumors and BMs and the number of 
acquired mutations in each sample (Figure 3). 

For the 13 genes identified with recurrent mutations 
in BM samples, lollipop plots were drawn to assess the 
potential impact of mutations on specific functional 
domains of the gene. Mutations were found in functional 
domains for 6 out to 13 genes (AFF2, ANO3, CRISP3, 
DRD5, NELFB and RUNX1T1), including 3 genes 
previously described to be associated with invasion 
and metastasis process (CRISP3, DRD5, RUNX1T1) 
(Figure 4). 

DISCUSSION

There is an urgent need for a better understanding of 
BMs biology in order to guide the treatment and improve 
the outcome of patients with BMs from solid tumors. This 
is especially true for lung cancer since it is the leading 
cause of BMs, with frequent discrepancies observed 
between systemic response and intracranial response to 
treatments. Recent data suggested that these discrepancies 
could be due to additional oncogenic alterations acquired 
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in BMs in comparison with the primary tumor [10] and 
this hypothesis is to be further explored. 

In this work, we provide with some insights about 
the mechanisms leading to BMs and future potential 
therapeutic targets. We found more mutations and 
chromosomal alterations in BM samples than in primary 
tumor samples. More than a third of these acquired 
mutations were found in genes previously described 
to be associated with cancers, including genes known 
to be associated with lung cancer such as KRAS, ROS1 
and STK11. Moreover, we found recurrent mutations in 
BM samples in 13 genes. Among these genes, 7 were 
previously described to be associated with cancers and 3 of 
them (CCDC178, RUNX1T1, MUC2) were described to be 
associated with the metastatic processes [12]. CCDC178 
was mutated in 3 samples of BMs: it was shown to be 

associated with the development of metastases from 
hepatocellular carcinoma, the regulation of the ERK 
pathway and anoikis resistance [12]. RUNX1T1 mutations 
were shown to be predictive for the development of 
liver metastases from pancreatic endocrine tumors [13]. 
Finally, MUC2 expression was shown to be associated 
with tumor differentiation and invasion in gastric cancers 
[14]. In addition, the dopamine receptor D5 gene (DRD5) 
was described to be involved in tumor growth inhibition 
via autophagic cell death [15], NCOR2 was described 
to be associated with drug resistance in breast cancers 
[16] and CRISP3 was associated with prostate [17] and 
ovarian cancers [18]. Out of these 7 genes described to 
be associated with invasion and metastasis, 3 were found 
with mutations in functional domains and have to be 
further explored as potential therapeutic targets.

Figure 1: Identification of somatic variants in primary tumors and brain metastases. (A) single nucleotide variants (SNVs) 
and insertions or deletions (indels) found in primary tumors. (B) somatic variants specific of primary tumors. (C) single nucleotide variants 
(SNVs) and insertions or deletions (indels) found in brain metastases. (D) genes with recurrent mutations in brain metastases.

Figure 2: Recurrent gains and deletions in brain metastases.
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Moreover, the frequent C>A mutations and the 
median 96-trinucleotide mutation profile found in BMs 
were consistent with previously reported signatures 
associated with lung cancer and tobacco smoking [19]. 

These results have to be validated in larger cohorts; 
however, these genes found to be mutated in several BM 
samples and associated with cancer survival or metastasis 

development are potential new treatment targets. For 
instance, MUC2 can be targeted by a bivalent conjugate 
vaccine previously studied for the treatment of resistant 
prostate cancers [20]. 

The limited number of samples analyzed (14 
samples from paired primary tumors and BMs of 7 
patients with lung cancer) is a limitation. In addition, in 

Figure 3: Phylogenic trees describing the common precursor between primary tumors and BMs and the number 
of acquired mutations in each sample. Genes mentioned were described to be associated with cancer in the COSMIC database. 
Underlined genes were previously described to be associated with lung cancer.

Figure 4: Lollipop plots for CRISP3, DRD5 and RUNX1T1 genes showing identified variants relative to a schematic 
representation of the gene. Colored boxes represent specific functional domains. Lollipop represents the variant identified; green 
lollipops stand for missense mutations and pink lollipops stand for silent mutations. 
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these patient’s constitutional DNA was not available and 
the results reported here have to be compared with public 
databases of germline variants.

The next steps are to validate these results in 
larger cohorts including samples from paired primary 
lung tumors, BMs, extra-cranial metastases and blood in 
order to analyze circulating tumor DNA (ctDNA). Also, 
a future direction would be the comparison of ctDNA 
genomic alterations to those found in BMs. Liquid 
biopsies, including ctDNA analysis, have revolutionized 
the treatment of lung cancer patients since they may avoid 
a more invasive procedure such as tissue biopsy and some 
targeted drugs are approved based on the results of liquid 
biopsies [21]. 

We showed that primary lung tumor mutation 
profile was not representative of the BM mutation profile, 
with acquired mutations and chromosomic alterations in 
BMs. Data from literature converge to say that there are 
clearly some difficulties to detect ctDNA from primary 
brain tumors as well as from BMs in the blood [22–24]. 
Therefore, it will be interesting to determine whether free 
ctDNA analysis from cerebrospinal fluid and/or blood is 
more representative of BMs profile than tissue samples 
from the primary lung tumor.

Furthermore, functional analyses of the 13 genes 
mutated in several BM samples are required to validate 
their involvement in the process of central nervous system 
invasion and BM development. In addition, samples from 
other metastases of lung cancer should be analyzed to see 
whether these 13 genes are associated with the invasion 
and metastasis process or are specific of BMs.

In conclusion, this work on BM from lung cancer is 
consistent with previous data comparing genomic profile 
of paired BM and primary samples of solid tumors. 
The results reported are of interest since new potential 
drivers involved in the BM process could be identified. 
Furthermore, this study offers new hypotheses and clues 
for further investigation of BMs biology in order to 
improve treatment strategies and outcomes of patients 
with BMs from lung cancers.

MATERIALS AND METHODS

Patients’ selection

Patients were selected for whole genome sequencing 
of paired primary NSCLC and BM samples. The study was 
reviewed and approved by the human subjects Institutional 
Review Board of the Assistance Publique - Hôpitaux de 
Marseille (AP-HM).

Patients’ samples were identified from the AP-
HM tumor bank (AC-2013-1786) using the electronic 
patient record. Selection criteria were as follows: 
patients above 18-year-old with histologically proven 
lung adenocarcinoma with BM diagnosed between 2007 
and 2013, frozen samples from the primary lung tumor 

and brain metastasis available in the AP-HM Bio-bank. 
Written informed consent was obtained from all patients.

Sample evaluation, DNA extraction and whole-
exome sequencing

For all samples, pathologists reviewed HES-stained 
slides to estimate tumor cellularity before molecular 
testing. Genomic DNA (gDNA) was extracted from 
frozen sections using the Macherey-Nagel extraction 
DNA Tissue Kit (Macherey-Nagel, France) according to 
manufacturer’s protocol. DNA was quantified using Qubit 
version 2.0 (ThermoFisher Scientific, Paris, France). We 
performed whole-exome sequencing of extracted tissue 
within Integragen platform using methods as described 
on Illumina HiSeq [25, 26]. Samples were sequenced to 
median average depth of 135X.

Identification of somatic variants in primary 
tumors and BMs

Raw sequence alignment and variant calling were 
carried out using Illumina CASAVA 1.8 software. The 
Ensembl Variant Effect Predictor (VEP) [27] tool was 
used to retrieve extensive annotations for each variant, 
including its presence in the 1000Genome, Exome 
Variant Server (EVS), ExAC or Integragen databases, 
its consequence on the protein sequence (synonymous, 
missense, nonsense, splice variant, frameshift or in-frame 
indels) and its functional impact.

Stringent quality controls were applied to keep 
only reliable variants sequenced in ≥ 10 reads, with ≥ 3 
variant calls, a proportion of variant calls ≥ 15% and a 
QPHRED score ≥ 20 for both SNP detection and genotype 
calling (≥ 30 for indels). In the absence of matched non-
tumor sample, we used public databases of germline 
variants (1000Genome, EVS, ExAC) to identify likely 
somatic variants. All variants referenced with a frequency 
≥ 10-5 were excluded. Putative somatic variants in the 
primary lung tumor were considered to be also present 
in the metastasis if they were present in ≥ 2 variant calls 
representing ≥ 5% of the metastasis reads, and specific 
to the primary lung tumor otherwise. A variant was 
considered to be specific to the metastasis if it was seen 
in ≥ 3 metastatic reads (representing ≥ 15% of all reads 
at that position) and ≤ 1 read in the primary lung tumor 
(representing < 5% of all reads at that position).

Chromosomal alterations

To identify copy-number alterations (CNAs) 
acquired in metastatic samples, we calculated the log ratio 
of the coverage in each metastasis as compared with the 
primary tumor of the same patient. Log-ratio profiles were 
then smoothed using the circular binary segmentation 
algorithm as implemented in the Bioconductor package 
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DNAcopy [28]. The most frequent smoothed value was 
considered to be the zero level of each sample. Segments 
with a smoothed log ratio above zero + 0.15 or below 
zero − 0.15 were considered to have gains and deletions, 
respectively. Segments with a smoothed log ratio above 
zero + 2 or below zero − 2 were considered to have 
high-level amplifications and homozygous deletions, 
respectively.

Mutational signature analysis and phylogenic 
trees

To identify mutational signatures, we classified 
each somatic mutation according to the 6 substitution 
types, taking into account the bases located directly in 
5′ and 3′ of the mutated base, as previously described 
[19]. We used an adaptation of the R package Somatic 
Signatures and the Genomic Ranges package to retrieve 
the nucleotide context of each mutation. We performed a 
principal component analysis and a hierarchical clustering 
(cosine distance, Ward linkage) to classify tumor samples 
according to their 96-trinucleotide mutation spectrums. 
Finally, in order to assess the variant distribution per gene 
and the potential functional impact of mutations, lollipop 
plots were drawn using cBioPortal. 
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