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ABSTRACT
Diffuse intrinsic pontine glioma (DIPG) is a rare brainstem tumor which carries a 

dismal prognosis. To date. there are no effective treatments for DIPG. Transcriptomic 
studies have shown that DIPGs have a distinct profile compared to hemispheric 
high-grade pediatric gliomas. These specific genomic features coupled with the 
younger median age group suggest that DIPG is of developmental origin. There is a 
major unmet need for novel effective therapeutic approaches for DIPG. Clinical and 
preclinical studies have expanded our understanding of the molecular pathways in 
this deadly disease. We have developed a genetically engineered brainstem glioma 
model harboring the recurrent DIPG mutation, activin A receptor type I (ACVR1)-
G328V (mACVR1) using the sleeping beauty transposon system. DIPG neurospheres 
isolated from the genetically engineered mouse model were implanted into the 
pons of immune-competent mice to assess the therapeutic efficacy and toxicity of 
immunostimulatory gene therapy using adenoviruses expressing thymidine kinase 
(TK) and fms-like tyrosine kinase 3 ligand (Flt3L). Immunostimulatory adenoviral-
mediated delivery of TK/Flt3L in mice bearing brainstem gliomas resulted in antitumor 
immunity, recruitment of antitumor-specific T cells, and improved median survival 
by stimulating the host antitumor immune response. Therapeutic efficacy of the 
immunostimulatory gene therapy strategy will be tested in the clinical arena in a 
Phase I clinical trial. We also discuss immunotherapeutic interventions currently being 
implemented in DIPG patients and discuss the profound therapeutic implications of 
immunotherapy for this patient populations.

INTRODUCTION

The World Health Organization (WHO) 
classification of CNS tumors has started to integrate 
molecular testing as part of its diagnostic criteria [1]. This 
led the WHO to classify a new neoplastic entity defined 
as midline gliomas (e.g., brainstem, thalamic, spinal cord) 
harboring H3K27M mutations and exhibiting diffuse 
growth, as H3K27M-mutant diffuse midline gliomas 
[1–4]. Amongst midline high grade gliomas, Diffuse 
Intrinsic Pontine Glioma (DIPG) is a highly aggressive 
and malignant pediatric brain tumor that develops in the 
brainstem. These tumors mainly arise in children, with 

peak incidence rates occurring between ages 6 and 9 
years [5–7]. DIPGs account for half of childhood high 
grade gliomas (HGGs) and 85% of gliomas arising in the 
brainstem [5, 8]. Due to their location, surgical resection is 
not possible. Transcriptomic analyzes showed that DIPGs 
have a distinct molecular profile from other high-grade 
pediatric gliomas. The pathological assessment of DIPG 
identifies a diffuse pons tumor, sometimes infiltrating 
the medulla and midbrain [9]. To date, no definitive 
chemotherapeutic treatment appears to be successful 
in DIPG. Fractionated focal radiotherapy remains the 
only treatment capable of reducing tumor progression; 
however, this treatment is mostly palliative [8, 10, 11]. 
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Additionally, radiation therapy elicits severe cognitive and 
functional impairments in children, due to damage to the 
developing brain. Consequently, DIPGs are the leading 
cause of pediatric brain tumor death [10]. The median 
survival is around 9 to 12 months, with 2-year survival 
rates around 10% and 5-year survival rates decreasing to 
less than 2% [5, 7, 8, 11, 12]. 

PATHOPHYSIOLOGY AND GENETIC 
LESIONS

Intense research efforts over the past decade, have 
led to the discovery of unique mutations driving DIPG.  
The most frequent mutations affect the N-terminal tail of 
histone H3.3 and histone H3.1 and result in the change 
of a lysine to methionine at residue 27 [2–4]. It has been 
reported that the K27M mutation inhibits Enhancer of 
Zeste 2 (EZH2) histone methyltransferase activity causing 
a global hypomethylation at H3K27 displaying low 
levels of H3K27me3 [13]. DIPGs are also characterized 
by mutations in ACVR1G328V (mutated in 24% of DIPG 
cases) [14–17]. ACVR1 encodes a type 1 BMP receptor 
and the six mutations reported result in constitutive 
BMP pathway activation [14–17]. Other mutations in 
DIPG include mutations in targeting tumor protein p53 
(TP53), PIK3CA/PIK3R1, and PDGFRα amplifications 
[17, 18]. These unique set of mutations confer specific 
biological properties to the cancer cells themselves and 
they also impact the tumor microenvironment. This leads 
to the possibility of developing patient specific therapeutic 
opportunities and also challenges. 

PRECLINICAL ANIMAL MODELS OF DIPG

In order to develop and test novel therapeutic 
modalities for DIPG, it is imperative to have access 
to accurate preclinical mouse models, in which to test 
both efficacy and safety. Also, mouse models reflecting 
the genetic lesions and biology of DIPG are crucial for 
the development of targeted therapies to improve the 
prognosis of this devastating brainstem cancer. The first 
models of DIPG were xenograft models derived from 
tissue acquired at time of autopsy or biopsy material 
of DIPG patients [19]. Xenograft models are valuable 
because they have standardized growth rates, consistent 
times of death, and desired tumor localization, however, 
studies must be performed in immunocompromised 
mice which limits the ability to study the efficacy of 
immunotherapies. To overcome this limitation, a number 
of genetically engineered mouse models (GEMMs) 
of DIPG have been developed. Several GEMMs use a 
replication-competent avian sarcoma-leukosis virus long 
terminal repeat splice acceptor (RCAS) in order to achieve 
specific expression of oncogenes in cells expressing the 
avian cell surface receptor [19]. This model has been 
used to model the H3.3K27M mutation by overexpressing 

PDGF-β, H3.3K27M, and loss of p53 in nestin progenitors in 
the brainstem [20]. In addition, models of mutated ACVR1 
and H3.1K27M and loss of p53 in nestin progentiors in the 
brainstem have also been generated using the RCAS/tva 
system [21]. Models using in utero electroporation to 
deliver PiggyBac DNA transposon plasmids expressing 
H3.3K27M in neural progenitor cells have also been 
developed [22, 23].  Marigil et al. recently developed a 
guide-screw system based DIPG xenograft model, which 
allows the generation of tumors in a fast and reproducible 
fashion and allows to deliver the therapeutics via the 
same screw fixed system route [6, 24, 25]. Smith et al. 
recently performed a comprehensive histopathological and 
molecular analysis of 37 novel patient-derived orthotopic 
xenograft (PDOX) models developed from pediatric brain 
tumor patients [26], associated datasets can be accessed 
at (http://pbtp.stjude.cloud). We developed a DIPG model 
bearing mutated ACVR1G328V or H3.1K27M, using the 
Sleeping Beauty transposon system to target neural stem 
cells in either the lateral ventricle or the fourth ventricle 
zone [27, 28]. Targeting the stem cells that line the fourth 
ventricle ensures the glioma will develop in the brain 
stem [27, 28]. From the genetically engineered model 
we generated neurospheres that enabled the development 
of an intracranial model of brainstem glioma through 
implantation of tumor neurospheres into the pons of adult 
C57BL/6 mice. This implantation model exhibits an intact 
immune system, it is highly invasive and displays 100% 
penetrance and short latency enabling it to be used for pre-
clinical testing of targeted therapies and immune-mediated 
strategies for DIPG [27]. 

IMMUNE-STIMULATORY GENE THERAPY

Due to their location, DIPGs are not resectable and 
are highly invasive, taking into consideration this we 
exploited the potential of immunostimulatory gene therapy 
strategy to implement an immune-mediated therapeutic 
approach for DIPG, which has the potential to be translated 
into the clinical arena.  This strategy involves the use of 
adenovirus (Ad) mediated delivery of herpes simplex virus 
type 1-thymidine kinase (TK) and Fms-like tyrosine kinase 
3 ligand (Flt3L), which are injected into the tumor mass. 
Upon administration of the prodrug ganciclovir (GCV), 
proliferating tumor cells expressing TK will convert GCV 
to its phosphorylated active metabolite, which is then 
further phosphorylated by intracellular kinases, inducing 
termination of DNA replication leading to immunogenic 
cell death. Dying tumor cells release damage associated 
molecular patterns (DAMPs) molecules such as high-
mobility group B1 protein (HMGB1), calreticulin, and 
ATP [29–31]. Flt3L mediates recruitment of dendritic cells 
(DC) followed by DC activation via Toll-like receptor 
2 (TLR-2)-mediated signaling which is stimulated by 
HMGB1 released by dying tumor cells into the tumor 
microenvironment (TME). Activated DCs uptake tumor 
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antigens, and transport them to the draining lymph 
nodes, where they activate T cells, priming a robust anti-
tumor cytotoxic and memory T cell response. This in 
turn leads to tumor regression and long-term immune-
mediated survival of brain tumor bearing animals [29, 30]. 
Figure 1 demonstrates the schematics of TK/Flt3L based 
immunostimulatory gene therapy and the underlying anti-
DIPG immune mechanism. The study by Mendez et al. 
demonstrated that the combined gene therapy strategy 
targeting the host tumor immune response inhibits tumor 
progression and improves median survival of mACVR1 
DIPG bearing mice [27]. This combined conditionally 
cytotoxic immunostimulatory gene therapy approach for 

newly diagnosed GBM patients, has recently completed 
its Phase I clinical trial accrual at University of Michigan 
Medical School (NCT01811992) [29, 30, 32, 33], no 
severe adverse events were observed in adult patients. 
Thus, we anticipate that the encouraging survival data and 
safety profile will enable the translation of this therapeutic 
approach to treat DIPG patients in the near future.

ONGOING CLINICAL TRIALS

The ineffectiveness of the current standard of care 
for DIPGs has led to the development of many novel 
experimental therapies. Currently, immunotherapies 

Figure 1: Schematics of TK/Flt3L based immunostimulatory gene therapy and underlying anti-DIPG immune 
mechanism. Tumor cells transfected with Ad-Flt3L express Flt3L protein enter systemic circulation. In the bone marrow (BM), Flt3L 
induces the expansion of dendritic cells (DCs), followed by their recruitment and accumulation in the tumor microenvironment (TME). 
Ganciclovir, which is a prodrug (GCV) is administered systemically. Tumor cells transfected with Ad-TK express TK protein capable 
of converting GCV to GCV-monophosphate (GCVp), which is further phosphorylated to GCV-diphosphate (GCVpp) by cellular kinase 
guanylate kinase and to the active antimetabolite GCV-triphosphate (GCVppp) by cellular nucleoside diphosphokinase. GCVppp, is 
incorporated into the replicating DNA of tumor cells, resulting in DNA replication termination and cell death. This also leads to the 
concomitant release of damage associated molecular patterns (DAMPs), i.e., HMBG1, Calreticulin, and ATP from dying tumor cells. 
Recruited DCs uptake the DIPG tumor Ag released from the dying cells. HMGB1 binds to TLR2/4, which facilitates the production of 
cytokines and tumor antigen cross-presentation. The DCs loaded with tumor antigens migrate to the cervical draining lymph node (dLN) 
where they present tumor antigens (Ag) to naive T cells, priming tumor specific anti-glioma effector T cells. Primed effector T cells enter 
the bloodstream from dLN and migrate towards the TME and kill residual tumor cells. Cytokines (VEGF, PDGF, LIF, GDNF, IL-6, IL-
10, CCL2) released by glioma cells supporting differentiation and expansion of immune suppressive immature myeloid cells (MDSCs). 
To block effective anti-tumor immune responses, MDSCs are recruited to the tumor microenvironment and circulate back to lymphoid 
organs. The differentiation, maturation, activation, and proliferation of T cells are disrupted by these MDSCs, ultimately leading to T cell 
exhaustion and death.
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stand out as potential treatments due to their minimal 
invasiveness and comprehensive tumor-eradicating 
capability [6, 7, 25, 27, 34]. The DIPG microenvironment 
contains low levels of antigen presenting cells (APCs) 
and adaptive immune cells, contributing to the tumor’s 
ability to grow undetected by the immune system 
[27, 34, 35]. However, unlike other HGGs, DIPGs do 
not appear to have a highly immunosuppressive or 
inflammatory microenvironment [35]. These factors 
make immunotherapies strong candidates for DIPG 
treatment. Oncolytic adenoviruses have emerged as 
promising immunotherapies capable of effectively treating 
DIPGs [6, 7, 25, 34]. One virus in particular, DNX-2401, 
is currently in Phase I trials (NCT03178032). Replication 
of this virus is dependent on a defective Rb pathway, a 
pathway commonly dysregulated in DIPG [6, 7]. This 
allows the virus to selectively target tumor cells. The 
high degree of specificity is essential given the sensitive 
anatomical location of these neoplasms. After infection, 
the virus replicates and eventually kills the infected cells 
[6, 7].

As mentioned, the only known effective treatment 
for DIPG is focal radiation. Although radiation therapy 
can improve survival and quality of life, ultimately it is not 
curative and it can have severe adverse effects. It has been 
shown that DNX-2401 inhibits DNA repair machinery of 
infected cells [25]. Therefore, DNX-2401 can potentially 
enhance therapeutic efficacy when combined with 
radiation therapy. The increased antitumoral effect of 
combination therapy has been supported using both in 
vitro and in vivo models [25]. Also, the radiation does 
not appear to affect replication of DNX-2401, so both 
therapies can be used concomitantly [25]. This makes the 
above therapy clinically relevant because has the potential 
to enhance the efficacy of the current standard of care. 

The DIPG TME is relatively immunodeficient, 
lacking many components necessary to initiate a strong 
adaptive anti-DIPG immune response [36]. The reduced 
amount of immune cells and inflammatory signaling in the 
TME could be partially responsible for the low efficacy 
of radiation therapy. The combination of both DNX-2401 
and radiation has been shown to also increase infiltration 
of lymphocytes and expression of proinflammatory 
cytokines in the TME [25]. This immunological shift 
could contribute to the increased survival observed in vivo 
when using the combination of DNX-2401 and radiation 
compared to each individually. 

CONCLUSIONS AND FUTURE PROSPECTS

The preclinical results by Mendez et al. are promising 
and indicate that it would be feasible to successfully test 
our TK/Flt3L-mediated gene therapy in a Phase I clinical 
trial for DIPG patients. The fact that the Phase I clinical 
trial for adult glioblastoma (GBM), recently completed at 
our Institution, using TK/Flt3L immune-stimulatory gene 

therapy, demonstrated it is a safe therapeutic approach 
(NCT01811992), provides a strong rationale for working 
towards its implementation in DIPG patients. The 
promising results of the immune-mediated gene therapy 
might be further enhanced by combining it with immune 
checkpoint inhibitors, opening new avenues worthy 
of investigation. We hypothesize that a combinatorial 
approach aiming to activate anti-DIPG immune response 
used together with immune checkpoint blockade would 
provide an effective therapeutic strategy against this 
devastating brainstem high grade glioma. It would therefore 
be important to test the impact on therapeutic efficacy and 
long-term survival of combining programmed death ligand 
1 (PDL1) or CTLA-4 blockade with TK/Flt3L gene therapy 
in our preclinical model as a prelude to combinatorial phase 
I clinical trials. As the phase I clinical trials of TK/Flt3L 
gene therapy have already been completed and clinical-
grade reagents for checkpoint blockade inhibitors are 
readily available, translating this combinatorial approach 
from bench to bedside should be feasible in the near future. 
In conclusion, the highly encouraging results are reported 
by Mendez et al. have opened an exciting opportunity for 
DIPG patients that will be tested in clinical trials in the very 
near future. 
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