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ABSTRACT
Prostate cancer (PCa) is one of the leading causes of cancer-related deaths 

worldwide. Prostate tumorigenesis and PCa progression involve numerous genetic 
as well as epigenetic perturbations. Histone modification represents a fundamental 
epigenetic mechanism that regulates diverse cellular processes, and H3K4 methylation, 
one such histone modification associated with active transcription, can be reversed 
by dedicated histone demethylase KDM5B (JARID1B). Abnormal expression and 
functions of KDM5B have been implicated in several cancer types including PCa. 
Consistently, our bioinformatics analysis reveals that the KDM5B mRNA levels are 
upregulated in PCa compared to benign prostate tissues, and correlate with increased 
tumor grade and poor patient survival, supporting an oncogenic function of KDM5B in 
PCa. Surprisingly, however, when we generated prostate-specific conditional Kdm5b 
knockout mice using probasin (Pb) promoter-driven Cre: loxP system, we observed 
that Kdm5b deletion did not affect normal prostate development but instead induced 
mild hyperplasia. These results suggest that KDM5B may possess context-dependent 
roles in normal prostate development vs. PCa development and progression.

INTRODUCTION

The American Cancer Society estimates that > 
190,000 new cases of prostate cancer (PCa) will be 
diagnosed in the United States in 2020 along with about 
33,330 deaths [1]. The first-line therapy for PCa includes 
hormonal ablation or androgen deprivation therapy 
(ADT). Although ADT is effective in debulking tumors in 
most cases, the majority of treated PCa patients develop 
ADT resistance leading to emergence of more aggressive 
castration-resistant PCa (CRPC), which is the primary 
cause of PCa related deaths [2]. Development of acquired 
resistance to therapeutic regimens is common in virtually 
all targeted therapies and recent research implicates 
intratumor heterogeneity [3, 4]. Intratumor heterogeneity 

is maintained partly through the expression of distinct 
sets of genes among tumor cells, a phenomenon called 
cellular transcriptomic heterogeneity (CTH) [4], which is 
controlled by transcription factors and histone-modifying 
enzymes [3–6]. These enzymes work through regulating 
chromatin structure, which is an important determinant 
of gene activity. Chromatin, consisting of histones 
wrapped by DNA, is regulated by histone-modifying 
enzymes via methylation, phosphorylation, acetylation, 
ubiquitination, sumoylation, and ribosylation at lysine, 
arginine, serine, threonine, tyrosine, and other residues 
of histone tails [7, 8]. These histone modifications not 
only impact gene expression but also influence how the 
3D structure of the chromatin is organized within the 
nucleus [9–12]. Depending on the type of modifications 
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and the residues modified on the histone, the target gene 
can be transcriptionally activated or repressed. Genome-
wide studies have indicated that histone acetylation is 
associated with higher transcriptional activity [5, 13, 14] 
whereas DNA methylation in the CpG islands is correlated 
with transcriptional repression. The methylation of 
histones impacts gene expression in a context-dependent 
manner. For example, trimethylation of histone 3 at 
lysine 4 and lysine 36 (H3K4me3 and H3K36me3) is 
generally associated with gene activation [15–18] whereas 
methylation at lysine 9 and 27 correlates with gene 
repression [16, 19–21].

KDM5B, also called JARID1B or PLU1, is a 
Jumonji C-containing (jmjC) histone lysine demethylase 
that plays important roles in organogenesis, stem cell 
functions and cancer development [6, 22]. KDM5B was 
initially identified as a critical regulator of embryonic 
cell differentiation (via decreasing H3K4 methylation in 
D3-D5 embryos) and as a determinant of zygotic genome 
activation and cellular fate changes during development 
[23]. In mouse embryonic stem cells, KDM5B binds 
various developmental genes to ensure proper neuronal 
differentiation [24]. Given its crucial role, KDM5B 
knockout in mice is embryonically lethal and the embryos 
exhibit extensive developmental defects [25]. These 
studies highlight an important role for KDM5B during 
normal development.

Genes involved in organogenesis and development 
are often dysregulated in tumorigenesis. Not surprisingly, 
KDM5B is overexpressed, and has been reported to play 
an oncogenic function, in a variety of cancers including 
breast cancer [4, 22], melanoma [26], PCa [27], lung 
cancer [28], hepatocellular carcinoma [29], gastric cancer 
[30], neuroblastoma [31] and leukemia [32]. On the other 
hand, potential tumor-suppressive functions of KDM5B 
have also been documented in some cases of melanoma 
and subtypes of breast cancer [33, 34]. Mechanistically, 
KDM5B has been reported to interact with transcription 
factors such as estrogen receptor α (ERα), androgen 
receptor (AR), progesterone receptor, PAX9, FOXG1, etc, 
and such interactions direct its localization to a diverse 
repertoire of genes in different cell types that further leads 
to distinct gene expression and contributes to CTH and 
intratumor heterogeneity [6].

Interestingly, KDM5B is specifically expressed in 
breast luminal cells and its loss induces basal-type gene 
expression, suggesting that KDM5B is a luminal lineage-
driving oncogene in breast cancer [22]. Of note, KDM5B 
induces CTH and mediates therapeutic resistance in breast 
cancer [22]. As PCa is also a hormone-driven, luminal-
type cancer with significant cellular heterogeneity and 
CTH [35, 36], KDM5B might play similar functions in 
PCa. Indeed, epigenetic events, mediated by histone-
modifying enzymes, may be intimately involved in 
regulating AR signaling and PCa heterogeneity [27, 37, 
38]. Our recent studies [35, 36] indicate that not only the 

expression of AR, but its transcriptional activity (as judged 
by the expression levels of AR transcriptional targets such 
as LRIG1) is also highly heterogeneous contributing to 
intratumor cellular heterogeneity in PCa.

Here, we first present bioinformatics data on 
KDM5B that supports an oncogenic function of KDM5B 
in PCa as previously reported [27]. We then present the 
surprising findings that Kdm5b deletion in the mouse 
prostate results in mild hyperplasia. Altogether, our study 
provides evidence for context-dependent roles of KDM5B 
in prostate organogenesis and tumorigenesis.

RESULTS

KDM5B mRNA is upregulated in PCa and 
correlates with genomic amplifications, tumor 
grade and poor survival

We first analyzed the KDM5B mRNA levels in 
GTEx (Genotype-Tissue Expression; https://gtexportal.
org/) RNA-seq database. The results revealed wide 
expression of KDM5B mRNA across many human tissues 
including the prostate with the highest expression in the 
testis (Supplementary Figure 1A). Next we analyzed the 
KDM5B mRNA levels in TCGA PRAD dataset comparing 
normal and prostate tumor tissues. The KDM5B mRNA 
levels were significantly higher in PCa than the normal/
benign tissue in both matched pair (52N/T; Figure 1A) 
and overall (52N/498T; Figure 1B) comparisons. Notably, 
KDM5B mRNA levels were elevated in PCa patient 
tumors with high tumor grade, i.e., combined Gleason 
Scores (GS) of 7–9 (Figure 1C). Furthermore, analysis of 
KDM5B mRNA levels in several Oncomine PCa datasets, 
including the Glinsky [39], Grasso (GSE35988; [40]) and 
Setlur (GSE8402; [41]) datasets revealed that high KDM5B 
mRNA levels correlated with poor PCa patients’ overall 
survival (Figure 1D–1F). These patients’ data, collectively, 
suggest an AR-regulated oncogenic role of KDM5B in 
PCa. Interestingly, when we interrogated the KDM5B 
mRNA levels in two RNA-seq datasets (GSE48403 and 
GSE111177) of matched patient tumors before ADT (pre-
ADT) and post ADT failure (post-ADT), we observed 
reduced KDM5B mRNA levels in post-ADT tumors 
(Figure 1G and 1H). These results suggest that, consistent 
with an early study [27], KDM5B is regulated by AR.

An analysis of KDM5B mRNA levels in 31 human 
cancers in TCGA with the corresponding normal tissues 
pooled from TCGA and GTEx revealed increased or a 
trend of increased KDM5B mRNA in multiple cancers 
including bladder, breast, esophageal, pancreatic and 
prostate cancers as well as thymoma and acute myeloid 
lymphoma (Supplementary Figure 1B). Interestingly, 
KDM5B, most abundantly expressed in the normal testis 
(Supplementary Figure 1A), is reduced in testicular 
germ cell tumors (Supplementary Figure 1B). We further 
examined the mutational landscape of the KDM5B gene 
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across a spectrum of cancers (Supplementary Figure 2). 
Multiple mutations representing amplification, missense 
mutations, and truncating mutations as well as copy 
number alterations (CNA) were observed in many cancers 
(Supplementary Figure 2A). Strikingly, in two hormone-
driven cancers, breast (Supplementary Figure 2A) and 
prostate (Supplementary Figure 2B) cancers, we observed 
prevalent KDM5B genomic amplifications, which were 
accompanied by increased KDM5B mRNA expression 
in invasive breast cancer (BRCA; Supplementary Figure 
1B), or increased (Figure 1A–1C) or an increased trend of 
(Supplementary Figure 1B) KDM5B mRNA levels in PCa. 
Several other cancers that showed genomic amplifications 

of KDM5B gene (Supplementary Figure 2A), e.g., 
thymic tumors (THYM), cholangiocarcinoma (CHOL), 
esophageal cancers (ESCA), GBM and bladder cancer 
(BLCA), also exhibited increased or trend of increased 
KDM5B expression (Supplementary Figure 1B). Overall, 
the analysis of genomic amplifications in KDM5B gene 
supports an oncogenic role of KDM5B in many human 
cancers including PCa. On the other hand, several cancers 
that manifested KDM5B genomic amplifications, e.g., 
hepatocellular carcinoma (LIHC) and ovarian cancer 
(OV), were not accompanied with (trend of) increased 
KDM5B mRNA expression (Supplementary Figure 1B; 
Supplementary Figure 2A).

Figure 1: Overexpression of KDM5B mRNA in PCa and correlation with poor patient survival. (A and B) Elevated 
KDM5B mRNA levels in the TCGA PRAD dataset comparing 52 normal and 52 paired cancer tissues (A) or 52 normal and 498 cancer 
tissues (B). P values (two-tailed unpaired Student’s t-test) were indicated. (C) Elevated KDM5B mRNA levels in high-grade prostate 
tumors. Shown are KDM5B mRNA levels in the TCGA PRAD dataset PCa of increasing tumor grade (i.e., Gleason Score, GS6-10) and the 
52 normal prostate tissues. *P < 0.05 compared with the normal (One-way ANOVA). ns, not significant. (D–F) High KDM5B mRNA levels 
correlate with poor PCa patient overall survival. Shown are Kaplan-Meier survival plots in the 3 indicated Oncomine datasets (1, 2, and 3 
refer to different cDNA microarray probes used). p-values were determined using the Log-Rank test. (G and H) Reduced KDM5B mRNA 
levels in post-ADT patient tumors. KDM5B mRNA levels (read counts) were extracted from two RNA-seq datasets (GSE48403, n = 7; 
GSE111177, n = 20) and presented as the mean +/– S. D. *P = 0.032 and **P = 0.007 (two-tailed, paired Student’s t-test).
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Kdm5b knockout induces mild hyperplasia in the 
mouse prostate

Given the role of KDM5B in normal development 
and organogenesis (see Introduction), we intend to test 
its role in normal mouse prostate development in order 
to better understand its potential involvement in prostate 
tumorigenesis. To specifically knock out Kdm5b in the 
mouse prostatic epithelium, we crossed Kdm5b-floxed 
(Kdm5bf/f) mice [24] with the Pb-Cre4 line, which has 
Cre recombinase expression under the control of the 
ARR2PB promoter comprising a proximal element of the 
rat Probasin (Pb) promoter and two androgen responsive 
regions (Figure 2A and 2B). The ARR2PB promoter 
confines transgene expression predominantly in prostate 
luminal epithelial cells [42]. The mice were genotyped as 
described in the Methods with a representative gel image 
showing detection of the Kdm5b floxed and wilt-type (wt) 
alleles along with Pb-Cre4 (Figure 2C).

Kdm5b knockout did not affect mouse prostate 
development (data not shown). Microdissected prostatic 
lobes (i.e., the anterior, dorsal, lateral and ventral 
prostates; AP, DP, LP and VP, respectively) from 
the 3-month-old mice of various genotypes showed 
overall similar gross morphologies and structures 
(Figure 2D). Immunofluorescence staining revealed 
beautiful and specific Kdm5b protein in the nucleus 
of luminal cells (Figure 3A). As expected, Kdm5b 
protein expression was significantly reduced in the 
heterozygous Pb-Cre4:Kdm5bf/+ mouse prostate and 
completely lost in the Pb-Cre4;Kdm5bf/f prostate 
(Figure 3A). Interestingly, H&E analysis revealed mild 
hyperplasia in both heterozygous and homozygous 
Kdm5b-knockout mouse prostate, especially in the LP 
and VP (Figure 3B). In the control (i.e., Pb-Cre4 and 
Kdm5bf/+) mice, the LP and VP consisted of uniform 
glands with single luminal epithelial cell layer (Figure 
3B). In contrast, the Kdm5b-deleted hyperplastic glands 

Figure 2: Generation of conditional Kdm5b knockout mice. (A) Breeding strategy for generating Pb-Cre4:Kdm5bf/+ or Pb-
Cre4:Kdm5bf/f mice. (B) Schematic of the KDM5B construct showing the loxP sites flanking the Exon (E) 6 of the KDM5B allele. (C) 
Representative genotyping gel image showing different Kdm5b alleles (Floxed, WT and deleted) and Pb-Cre4 PCR product bands. (D) 
Representative images of microdissected whole-mount prostates in WT and Kdm5b-deleted mice of different genotypes at 3 months of age 
(n = 3). AP, DP, LP and VP indicate anterior, dorsal, lateral, and ventral prostate lobes, respectively. The orientations of prostatic lobes are 
the same for all images shown.
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displayed thickened luminal cell compartment with more 
than one cell layer and, frequently, papillary structures 
protruded into the lumen (Figure 3B). In support of the 
hyperplasia phenotype, quantitative analysis revealed 
significantly increased cellularity in both the LP and 
VP of Pb-Cre4:Kdm5bf/+ and Pb-Cre4:Kdm5bf/f prostates 
(Figure 4A and 4B). Hyperplasia persisted, but no PIN 
(Prostate Intraepithelial Neoplasia) or apparent tumors 
developed, in 1–1.5 years old Pb-Cre4:Kdm5bf/+ and Pb-
Cre4:Kdm5bf/f prostates (data not shown). 

DISCUSSION

Epigenetic modifications lie at the heart of normal 
development and organogenesis, and analysis of epigenetic 
landscape comparing various epigenetic modifications 
between normal and cancer tissues has revealed massive 

epigenetic dysregulation during cancer development. 
Molecular dissection of the epigenetic modifiers may shed 
light on their roles in normal vs. cancer development. In 
the present study, we provide evidence that KDM5B, a 
H3K4 demethylase, may exhibit two contrasting functions: 
in human PCa, it is significantly upregulated (consistent 
with an earlier report; 27) and correlates with poor patient 
survival thus pointing to an oncogenic role; in contrast, 
genetic deletion of Kdm5b leads to mild hyperplasia in 
the mouse prostate, pointing to a potentially tumor-
suppressive function.

KDM5B has been traditionally thought to repress 
transcription since it catalyzes the demethylation of 
H3K4me1/me2/me3: H3K4me2/me3 are enriched at 
the promoter region of actively transcribed genes [16] 
while H3K4me1 marks the enhancer regions [43–45]. 
Surprisingly, KDM5B is overexpressed (or shows the 

Figure 3: Kdm5b deficient mouse prostates manifest low-grade hyperplasia. (A) Immunofluorescence using anti-KDM5B 
antibody on formalin-fixed paraffin-embedded prostatic tissues obtained from the indicated genotypes. DAPI is used to stain the nuclei. (B) 
Representative HE images of whole-mount prostate sections (upper panels) from 3 months old mice of indicated genotypes. The middle 
and lower panel are representative blow-up images of LP and VP of the boxed areas in the whole mounts.
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trend of overexpression) in many human cancers in 
addition to PCa (Supplementary Figure 1B). Though the 
role of KDM5B in tumorigenesis is not well understood, 
its higher expression in cancer cells may regulate the 
distribution of H3K4me3 near promoter regions of tumor 
suppressors and modulate their expression, thus affecting 
cancer cell proliferation [6]. Recently, several KDM5B 
inhibitors have been identified and reported in different 
cancers such as the breast and prostate cancers [46, 47]. 
In all these studies, genetic or pharmacologic inhibition of 
KDM5B upregulates the expression of tumor suppressor 
genes and caused growth arrest and apoptotic cell death in 
cancer cells suggesting that KDM5B may mostly act as a 
repressor of tumor suppressor genes. KDM5B inhibitors 
have also been reported to overcome radioresistance in 
cancer cells by preventing the demethylation of H3K4 
at the sites of double-strand breaks induced by radiation 
[48]. Therefore, DNA damage repair machinery failed to 
resolve the damage leading to increased radiosensitivity 
of KDM5B-overexpressing cancer cells. Overall these 
studies suggest a tumor promoting potential of KDM5B, 
which is consistent with our observations that it is highly 
expressed in human PCa and its expression correlates with 
poor patient survival. 

Interestingly, Kdm5b deletion in the mouse prostate 
leads to mild hyperplasia, which is surprising given 
its reported pro-oncogenic role in prostate and other 

cancers. Earlier studies demonstrate that KDM5B is not 
only overexpressed in hormone-driven cancers such as 
the breast and prostate cancers, but also interacts with 
hormone receptors, ER and AR, to positively regulate 
their transcriptional activities [25, 27]. Therefore, it is 
plausible to speculate that KDM5B might function in the 
prostate and PCa through modulating AR signaling. In 
partial support of this connection, KDM5B mRNA levels 
were significantly reduced in post-ADT (castration-
resistant) patient prostate tumors (Figure 1G and 1H). 
Whether the hyperplasia in Kdm5b-deficient prostate 
could be related to anomalies in the AR signaling 
axis is currently under investigation. On the other 
hand, increased cellularity in Kdm5b-deleted mouse 
prostate (Figure 3B and Figure 4) implies that Kdm5b 
might demethylate the H3K4 in the promoter/enhancer 
regions of tumor-promoting genes and keep them in a 
repressed state during normal prostate development. 
Kdm5b deletion in the prostate leads to upregulation 
of these genes and subsequent luminal hyperplasia. 
Further experiments such as RNA-seq analysis of the 
Kdm5b-depleted mouse prostate need to be performed 
to reveal the full spectrum of its functions in prostate 
development.

Collectively, our data suggest that KDM5B may 
possess context-dependent functions in prostate organ 
development and prostate tumorigenesis. As it has been 

Figure 4: Kdm5b deficiency causes increased cellularity in the mouse prostates. The mouse LP (A) and VP (B) lobes were 
micro-dissected out from animals of the indicated genotypes (n = 8/genotype) as shown in Figure 3B. The number of cells, as identified by 
DAPI staining, were counted in 10 random microscopic fields under a 20× objective lens. Presented are bar graphs (mean +/– S. D) of the 
cell numbers per 20× field. ***P < 0.0001 (Student’s t-test); n.s, not (statistically) significant.
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previously reported that KDM5B interacts with a variety 
of transcription factors and such interactions determine its 
localization on the specific set of genes, it will be very 
interesting to investigate its interacting partners during 
different stages of prostate and PCa development.

MATERIALS AND METHODS

KDM5B bioinformatics, survival and mutational 
landscape analyses

General strategies in bioinformatically analyzing 
KDM5B mRNA expression and correlation with patient 
survival have been described in our recent publications 
[35, 36]. Briefly, KDM5B mRNA levels in normal human 
tissues (Supplementary Figure 1A) were extracted from 
the GTEx (Genotype-Tissue Expression) data portal 
(https://gtexportal.org/). For TCGA data analysis (Figure 
1A–1C), we obtained TCGA level-3 data for KDM5B 
mRNA from TCGA data portal (https://tcga-data.nci.
nih.gov). We performed the Student’s t-test for normal 
and tumor tissue comparisons and one-way ANOVA for 
determining expression levels among different Gleason 
scores, respectively (Figure 1A–1C).

We performed survival analysis and generated 
Kaplan-Meier survival plots using the survival package 
in R (Figure 1D–1F). In brief, we obtained the individual 
normalized gene expression data from patients with 
both survival time and survival status from Oncomine 
(https://www.oncomine.com; Compendia Bioscience) 
datasets and ranked the data according to KDM5B mRNA 
expression. Then, we assigned the sample with rank from 
the first quartile to the third quartile into two groups and 
compared the p-value between these two groups along 
with different cutoffs. Finally, we set the ultimate cutoff 
with the smallest p-value and plotted a Kaplan-Meier 
survival curve.

We also compared KDM5B mRNA expression levels 
of 31 human tumors in TCGA with the corresponding 
matched normal tissues pooled from TCGA and GTEx 
(Supplementary Figure 1B). Briefly, KDM5B gene 
expression across the 31 cancer types and paired normal 
samples was generated from GEPIA (http://gepia.cancer-
pku.cn), with each dot representing a distinct tumor (from 
TCGA) or normal sample (from TCGA and GTEx). Four-
way analysis of variance (ANOVA) was employed, using 
sex, age, ethnicity and disease state (Tumor or Normal) 
as variables, to determine differential expression. The 
expression data are first log2(TPM+1) transformed and the 
log2FC is defined as median (Tumor) - median (Normal). 
The Benjamini and Hochberg false discovery rate (FDR) 
method was used to adjust. 

Finally, we analyzed the KDM5B mutations in the 
prostate and multiple cancer datasets using cBioportal 
(http://www.cbioportal.org) (Supplementary Figure 2).

Generation of conditional KDM5B knockout 
mice

Generation of conditional knockout mice with a 
floxed Kdm5b allele has been described previously [24]. 
The overall breeding strategy is illustrated in Figure 2A. 
Male PB-Cre4 mice were crossed with female Kdm5bf/f to 
obtain PB-Cre4:Kdm5bf/+ or PB-Cre4:Kdm5bf/f mice. For 
genotyping, genomic DNA was isolated from tail snips 
using EZNA tissue DNA kit (Omega Bio-Tek, GA, USA) 
as per manufacturer’s instructions. Briefly, tail snips were 
minced in supplied TL buffer and Proteinase K solution 
followed by incubation at 55°C overnight. Genomic DNA 
were purified using supplied HiBind DNA mini columns 
and 2 µl of genomic DNA extracts were subjected to 
PCR reaction for genotyping of different alleles (WT and 
floxed; PB-Cre4) using the following primers: Kdm5b 
floxed allele (Fwd: CCCTGG-GATTGCAGTTAAAG; 
Rev (floxed allele): TGGCTTCCACAATCTTCAATG; 
Rev (deleted allele): GTCAACTGCAAACTGACCTCTG; 
PCR product size: WT = 527 bp; floxed allele = 609 bp; 
and deleted allele = 685 bp), and Pb-Cre4 transgene (Fwd: 
CTGAAGAATGGGACAGGCATTG; Rev: CATCACTC-
GTTGCATCGACC; PCR product size: 393 bp).

Prostate isolation, microdissection, Aperio 
ScanScope analysis, and immunofluorescence

Basic procedures for these experiments have been 
previously described [35, 36, 49–52]. After sacrificing 
mice at the age of 3 months, the prostates were surgically 
removed along with the urogenital tract. The prostates were 
placed immediately in ice-cold phosphate-buffered saline 
(PBS) and microdissected under a dissection microscope 
to remove fat and connective tissues. The isolated whole-
mount prostates were photographed with a Nikon digital 
camera and then fixed in 10% formalin for further 
histological analysis. For Aperio Scanscope analysis, 
H&E-stained glass slides containing sections of WM mouse 
prostates were scanned via an Aperio ScanScope imaging 
platform (Aperio Technologies, Vista, CA, USA) and 
images analyzed on Imagescope analysis software.

For immunofluorescence staining, formalin fixed 
mouse prostate sections were deparaffinized using xylene 
and rehydrated through incubating sections in serial 
decreasing concentrations of ethanol (95–50%). After 
washing with distilled water, antigen was retrieved in 
antigen-retrieval solution (Sodium citrate buffer, pH6.0). 
After washing with wash buffer (Tris Buffered Saline-
Tween 20), sections were blocked with Background sniper 
(Biocare Medical, CA, USA) for 1 hr at room temperature 
(RT) followed by anti-KDM5B antibody (Bethyl lab, 
Cat # A301-813A) incubation at 4°C for overnight. After 
washing with wash buffer, sections were incubated with 
anti-rabbit IgG-PE secondary antibody (Santa Cruz, Cat # 
sc-3753) for 1 hr at RT followed by 10 minutes incubation 

https://gtexportal.org/
https://tcga-data.nci.nih.gov
https://tcga-data.nci.nih.gov
https://www.oncomine.com
http://gepia.cancer-pku.cn
http://gepia.cancer-pku.cn
http://www.cbioportal.org
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in DAPI (0.1 µg/ml). Sections were washed extensively 
with wash buffer and mounted with Prolong Gold 
mounting medium (Thermo Fisher Scientific, MA, USA).

Statistical analysis

Statistical analyses were performed using 
GraphPad Prism software or using R. In general, 
paired or unpaired two-tailed Student’s t-test was 
used to calculate the statistical significance between 
comparisons. Differences in patients’ overall survival 
were determined by the Log-Rank Test. P < 0.05 is 
considered statistically significant.
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