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AbstrAct:
The Warburg effect describes the circumstance that tumor cells preferentially use 
glycolysis rather than oxidative phosphorylation for energy production. It has 
been reported that this metabolic reconfiguration originates from a switch in the 
expression of alternative splice forms (PKM1 and PKM2) of the glycolytic enzyme 
pyruvate kinase (PK), which is also important for malignant transformation. 
However, analytical evidence for this assumption was still lacking. Using mass 
spectrometry, we performed an absolute quantification of PKM1 and PKM2 splice 
isoforms in 25 human malignant cancers, 6 benign oncocytomas, tissue matched 
controls, and several cell lines. PKM2 was the prominent isoform in all analyzed 
cancer samples and cell lines. However, this PKM2 dominance was not a result of a 
change in isoform expression, since PKM2 was also the predominant PKM isoform 
in matched control tissues. In unaffected kidney, lung, liver, and thyroid, PKM2 
accounted for a minimum of 93% of total PKM, for 80% - 96% of PKM in colon, 
and 55% - 61% of PKM in bladder. Similar results were obtained for a panel of 
tumor and non-transformed cell lines, where PKM2 was the predominant form. 
Thus, our results reveal that an exchange in PKM1 to PKM2 isoform expression 
during cancer formation is not occurring, nor do these results support conclusions 
that PKM2 is specific for proliferating, and PKM1 for non-proliferating tissue.

IntroductIon

Malignant cell growth entails numerous metabolic 
changes. The so called ‘Warburg’ effect describes the 
decrease in respiration during tumor development, whereas 
glucose uptake and aerobic glycolysis, as well as lactate 
production increases [1-3]. The reason why cells undergo 
the Warburg effect are not entirely understood, but it is 
broadly assumed that the switching-off of the respiratory 
metabolism increases metabolic intermediates that are 
required for the synthesis of biological macromolecules 
[1, 2, 4]. This assumption is supported by the fact that 
stroma type cells that deliver metabolites utilized by the 
tumor for energy production also undergo this metabolic 
transition [5, 6]. Furthermore, as glycolytic fermentation 

circumvents oxidative phosphorylation in the respiratory 
chain, it avoids the release of superoxide from complex I 
and III, which could prevent oxidative stress [7]

Although important signaling cascades of cellular 
metabolism such as STAT3 and HIF-1α have been 
implicated in the regulation of the Warburg effect [8, 9], 
the mechanisms how it is initiated remain elusive. It has 
been reported that an exchange in the expression of PKM1 
to PKM2, two alternative splice isoforms of the glycolytic 
enzyme pyruvate kinase (PK) [10, 11], is causative for 
the Warburg effect during tumorigenesis [10]. These two 
isoforms differ in a single exon, which facilitates binding 
of the glycolytic intermediate fructose 1,6 bisphosphate in 
PKM2 type PK. PKM1 is constitutively active, whereas 
PKM2 can switch between an active tetrameric and an 
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incactive dimeric form [12].
It has been concluded from Western blot analysis of 

cancer cell lines (A549, H1299, 293T, HeLa, MCF10a) 
and Western blot/immunostaining of mammary gland 
tissue from MMTV-NeuNT mice that cancer development 
switches expression from PKM1 to PKM2 [10]. These 
conclusions were drawn from the comparison of PKM1/
PKM2 expression in cancer cell lines with human muscle 
[10]. However, as protein expression is highly tissue 
dependent [9,10], and as earlier biochemical studies had 
reported that pyruvate kinase PKM2 is present in several 
healthy tissues [13], we re-investigated PKM1/PKM2 
expression in tumors, taking into account tissue-matched 
controls.

Using an absolute quantification (AQUA) 
strategy with isotope labeled standards, we performed 
a comprehensive absolute quantification of PKM1 and 
PKM2 in several cancer tissue of different origin, benign 
tumors and cell lines, and their tissue matched controls. 
We found no evidence for an exchange of PKM1 to PKM2 
expression during cancer formation. Cancers maintained 

the PKM isoform expression according to their tissue of 
origin.

rEsuLts 

Development of an absolute quantification 
(AQuA) method to quantify of PKM1 and PKM2 
in cell extracts

We decided on an absolute quantification of PKM1 
and PKM2 by mass spectrometry, since this technology 
circumvents the drawbacks that may result from the use 
of antibodies in semiquantitative westernblotting [14, 15] 
used in earlier studies [10]. As antibodies differ in affinity, 
similar band intensities obtained with different antibodies 
do not indicate similar concentration of their target 
proteins. In contrast, the AQUA strategy allows absolute 
quantification of a non-purified protein at physiological 
concentration [16] by spiking the samples with chemically 

Figure 1: Absolute quantification of PKM1 and PKM2 splice forms in tissue extracts. 
a. Yeast expressing human PKM1 (PKM1-yeast, left panel) and human PKM2 (PKM2-yeast, right panel) were analyzed by nanoflow liquid 
chromatography/multiple reaction monitoring (LC-MRM) to quantify a PKM1 and a PKM2 specific peptide as well as a peptide which is 
specific for both isoform (PKMall) (lower chromatograms). Matching heavy isotope labeled peptides (AQUA peptides) were included in 
every sample and used for quantification (upper chromatograms, please note that they are displaced on the Y axis for better illustration). 
The determined concentrations were 3.3 fmol/µg protein for PKM1, and 19.3 fmol/µg protein for PKM2 in yeast. 
b. Exemplary chromatogram for a human tissue sample, quantification of PKM1 and PKM2 in bladder tissue by LC-MRM. The analysis 
was performed as in (a). Absolute and relative values determined in human tissue are given in Table 1.
c. Plot of the concentrations obtained for PKM1 plus PKM2 against the concentration of a peptide specific for both isoforms [PKMall]. The 
obtained concentrations show linear correlation (R² > 0.97)
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synthesized, heavy-isotope labeled peptide standards 
(AQUA peptides) that match the proteolytic peptide of 
interest in sequence, but are distinguishable from the 
analyte by mass [14, 15, 17]. To assure accurate PKM 
quantification, and to detect a potential switch in PKM 
isoform expression, this analysis was conducted with 
three PKM specific isotope labeled peptides and on a 
hybrid ion trap / triple quadrupole mass spectrometer 
operating in MRM mode. We selected one peptide to be 
specific for PKM1 (PKM1LFEELVR), one peptide for PKM2 
(PKM2LAPITSDPTEATAVGAVEASFK), and a third peptide specific 
for both forms (PKMall ITLDNAYMEK). We tested PKM1 and 
PKM2 quantification with these peptides on transgenic 
yeast expressing exclusively either human PKM1 (PKM1-
yeast) or human PKM2 (PKM2-yeast). The yeast strains 
were generated by cloning human PKM1 and PKM2 
cDNA into an expression vector and transformation into 
the yeast strain BY4741. Protein extracts were generated, 
separated by SDS-PAGE, in-gel digested with trypsin [18], 
supplemented with the AQUA peptides [15] and analyzed 
as described previously [19]. The three isotope labeled 
standards were detected in all samples (Fig 1A, upper 
chromatograms). In PKM1-yeast, the PKM1 specific 
and the PKMall peptide were detected but not the PKM2 
peptide. In contrast, the analysis of PKM2-yeast detected 
the PKM2 specific peptide and the PKMall peptide, but not 
the PKM1 peptide (Fig. 1A, lower chromatograms). Thus, 

the PKM1 and PKM2 specific peptides were detected 
and allowed specific discrimination between the PKM 
isoforms. 

Quantification of PKM1 and PKM2 in human 
tissue and cancer

To study PKM1 and PKM2 expression before 
and after cancer development, we analyzed 25 human 
malignant cancers, 18 tissue-matched controls, 12 
cancer cell lines, 4 non-cancer cell lines and 6 benign 
oncocytomas. In 15 cases (12 malignant cancers, 2 benign 
tumors, 1 cell line), matched unaffected tissue from the 
affected individual was available. As described above, 
the samples were supplemented with the heavy-isotope 
labeled standards, and the three peptides quantified 
by multiple reaction monitoring on the QTRAP mass 
spectrometer. Peptides corresponding to both PKM1 and 
PKM2 were detected in tissues, cell lines and controls 
(Fig 1b). To test if the chosen peptides gave consistent 
results in quantifying PKM1 and PKM2, we plotted the 
obtained concentration values of PKM1 plus PKM2 
versus the quantity obtained for the PKMall peptide which 
is characteristic for both PKM alternative splice isoforms. 
The quantities showed with R² = 0.97 a linear correlation, 
confirming that the chosen peptides were suitable for 

Figure 2: Accuracy of PKM1 and PKM2 quantification. Differently concentrated digests of PKM1-yeast (n = 11) and PKM2-
yeast  (n = 12) were injected, and the peptides PKM1, PKM2, and PKMall quantified as well as their corresponding AQUA standards 
analyzed by LC-MRM. Shown is a correlation plot of the concentration of the specific peptide (PKM1 or PKM2) and the PKMall peptide, 
concentrations are given in absolute values (fmol).
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Sample PKM1 PKM2 PKM1 PKM2
[fmol µg

-1
] [fmol µg

-1
] [%] [%]

Renal cell carcinoma 1 (RCC1)
§

3.2 62.8 4.8 95.2

Renal cell carcinoma 2 (RCC2)
§

1.2 39.3 3.0 97.0

Renal cell carcinoma 3 (RCC3)
§

3.1 139.4 2.2 97.8

Renal cell carcinoma 4 (RCC4)
§

2.2 125.5 1.7 98.3

Bladder carcinoma 1 (BC1) 5.5 181.9 2.9 97.1

Bladder carcinoma 2 4.4 116.0 3.7 96.3

Bladder carcinoma 3 4.6 286.7 1.6 98.4

Bladder carcinoma 4 3.5 55.1 6.0 94.0

Hepatocellular carcinoma 1 (HCC1) 0.6 5.8 9.4 90.6

Hepatocellular carcinoma 2 (HCC2) n.d. 10.3 100

Hepatocellular carcinoma 3 (HCC3) 0.5 45.2 1.1 98.9

Colorectal carcinoma 1 (CRC1) 1.4 129.1 1.1 98.9

Colorectal carcinoma 2 (CRC2) 1.0 110.2 0.9 99.1

Colorectal carcinoma 3 14.7 323.4 4.3 95.7

Lung carcinoma 1 (LC1) 3.1 80.5 3.7 96.3

Lung carcinoma 2 (LC2) 3.5 95.8 3.5 96.5

Lung carcinoma 3 0.8 47.0 1.7 98.3

Lung carcinoma 4 0.9 59.9 1.5 98.5

Lung carcinoma 5 1.3 49.8 2.5 97.5

Follicular thyroid adenoma 1 0.5 14.6 3.3 96.7

Follicular thyroid adenoma 2 0.7 32.5 2.1 97.9

Follicular thyroid adenoma 3 0.6 29.4 2.0 98.0

Follicular thyroid adenoma 4 2.3 43.9 5.0 95.0

Follicular thyroid adenoma 5 0.9 37.0 2.4 97.6

Papillary thyroid carcinoma 1 2.2 69.8 3.1 96.9

Renal oncocytoma 1
# 

1.4 128.1 1.1 98.9

Renal oncocytoma 2
#

1.2 83.6 1.4 98.6

Renal oncocytoma 3 0.9 57.9 1.5 98.5

Thyroid oncocytoma 1 (TO1) 3.8 60.1 5.9 94.1

Thyroid oncocytoma 2 (TO2) 0.3 14.8 2.0 98.0

Thyroid oncocytoma 3 1.1 31.9 3.3 96.7

Kidney 1 (RCC1)
§ 0.8 27.6 2.8 97.2

Kidney 2 (RCC2)
§ 0.8 24.8 3.1 96.9

Kidney 3 (RCC3)
§ 0.8 32.6 2.4 97.6

Kidney 4 (RCC4)
§ 0.7 33.8 2.0 98.0

Bladder 1 (BC1) 17.2 20.8 45.3 54.7

Bladder 2 30.3 46.7 39.4 60.6

Liver 1 (HCC1) n.d. 5.2 100

Liver 2 (HCC2) n.d. 15.2 100

Liver 3 (HCC3) n.d. 14.4 100

Colon 1 (CRC1) 4.9 65.9 6.9 93.1

Colon 2 (CRC2) 2.8 70.1 3.8 96.2

Colon 3 9.7 38.3 20.2 79.8

Lung 1 (LC1) 1.3 23.9 5.2 94.8

Lung 2 (LC2) 0.8 15.2 5.0 95.0

Thyroid 1 (TO1) 0.8 11.7 6.4 93.6

Thyroid 2 (TO2) 0.8 11.9 6.3 93.7

Thyroid 3 0.5 9.7 4.9 95.1

Thyroid 4 1.4 22.3 5.9 94.1

Tab.1: Absolute amount of PKM1 and PKM2 as well as relative PKM content in human tumors, 

control tissues and cell lines. Concentrations are given in fmol per µg protein.

Benign tumors

Control tissues

Malignant tumors

Table 1: Absolute amount of PKM1 and PKM2 as well as relative PKM content in human tumors, control tissues and 
cell lines. Concentrations are given in fmol per μg protein.
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PKM quantification (Fig 1c). In addition, we tested the 
reproducibility of PKM1 and PKM2 quantification by 
performing multiple injections for PKM1 and PKM2 
yeast samples at different concentration. Linear regression 
was demonstrated by a R² of 0.994 for PKM1 and 0.990 
for PKM2 (Fig 2), and thereby representing reliability of 
the quantification experiments.

PKM2 dominates in cancer and tissue-matched 
controls

We found that PKM2 was the predominant PKM 
isoform in all human cancer cell lines (Table 1), which 
is in agreement with the earlier results obtained by 
Western blotting [10]. MCF10a, HeLa, A459 and a 
HEK-cell line (HEK293) were included in both studies, 
the AQUA analysis revealed that PKM2 accounted for 
98.6% (MCF10a), 98.4% (Hela), 98.9-99.0 % (A459) 
and 95.8%-97.5% (HEK293) of total PKM. Thus mass 
spectrometry gave similar results as Western blotting, but 
the LC-MRM technology was more sensitive as PKM1 
was clearly detectable in all samples, even at the lower 
femtomol range. 

PKM1 and PKM2 quantification in further cell lines 
and malignant cancer samples confirmed the conclusion 
of PKM2 being the prominent PKM in all analyzed 
malignant cancer types: PKM2 accounted for a minimum 
of 94% of total PKM in all 22 malignant cancers, and 
other cell lines (Table 1). However, we found that PKM2 
was also the dominant isoform in matched control tissue 

and slowly proliferating tumors. PKM1 and PKM2 were 
quantified in 18 healthy human tissues, and four non-
cancer derived cell lines. In healthy kidney, lung, liver, 
and thyroid tissue, PKM2 accounted for a minimum of 
93% of total PKM, for 79.8%-96.2% of PKM in colon, 
and 54.7%-60.6% of PKM in bladder. A similar picture 
was seen also in the oncocytoma samples. In these slow 
growing tumors, PKM2 accounted for 94.1-98.9% of 
total PKM. In table 1, the matching control/cancer tissue 
of the same individual is indicated in brackets. A switch 
in the expression from PKM1 to PKM2 during cancer 
development was not observed in any case. Only in a 
single case (bladder carcinoma) the control tissue had a 
much lower relative amount of PKM2 (54.7%) then the 
cancer sample (97.1% PKM2), but the change in the 
percentage resulted predominantly from an up regulation 
of the PKM2 isoform from 20.8 fmol in the bladder 
control to 181.9 fmol in the cancer, and not from a switch 
in alternative splicing.

In general, total PKM was expressed at a higher level 
in the cancer as in the control tissue. For instance, the 
average renal cell carcinoma tissue had 94.2 fmol PKM/
µg protein, control kidney 30.5 fmol. This corresponds to a 
three-fold upgregulation in the absolute values. However, 
PKM1 and PKM2 were equally affected (an increase of 
3.1 fold for PKM1 and 3.1 fold for PKM2).

dIscussIon

This study addresses a common misinterpretation 
of the finding that pyruvate kinase PKM2 is expressed in 

60138 A1 [Tumor associated fibroblasts, breast] (60161 B1) 21.0 88.7 19.1 80.9

87442 A1 [breast cancer associated fibroblasts] 17.4 47.6 26.8 73.2

A459-1 [lung carcinoma] 3.1 302.0 1.0 99.0

A459-3 [lung carcinoma] 3.2 297.1 1.1 98.9

HCT [Human colon tumor] 3.1 16.4 15.9 84.1

HEK-1 [transf., embryonic kidney] 2.3 79.9 2.8 97.2

HEK-2 [transf., embryonic kidney] 2.1 83.2 2.5 97.5

HEK-3 [transf., embryonic kidney] 2.6 59.6 4.2 95.8

HeLa-1 [cervix adenocarcinoma] 2.4 144.9 1.6 98.4

HeLa-2 [cervix adenocarcinoma] 2.4 142.1 1.7 98.3

HEP-1  [hepatocellular carcinoma] 8.1 241.8 3.2 96.8

HEP-2 [hepatocellular carcinoma] 6.5 193.4 3.3 96.7

MCF 7 [breast epithelial adenocarcinoma] 1.3 66.7 1.9 98.1

MDA MB-415 [Breast epithelial adenocarcinoma] 0.6 83.8 0.7 99.3

SPH 77-1 [small cell lung cancer] 0.5 3.8 11.6 88.4

SPH 77-2 [small cell lung cancer] n.d. 0.5 100

60161 B1 [breastcancer adjacent  fibroblast] (60138 A1) 32.7 147.5 18.1 81.9

37098 B1 [breastcancer adjacent  fibroblast] 10.6 30.8 25.6 74.4

MCF 10A [Breast epithelial cell line] 1.0 72.9 1.4 98.6

MCF 12A [Breast epithelial cell line] 2.1 89.9 2.3 97.7

The abbreviations given in brackets for the control tissues refer to the matched tumor tissues. §The renal cell 

carcinomas and control tissues have been analyzed in a previous study [13], Renal oncocytoma 1 was case 6, 

Renal oncocytoma 2 was case 14 in [24].

cancer cell lines

other & control cell lines

The abbreviations given in brackets for the control tissues refer to the matched tumor tissues. §The renal cell carcinomas and control tissues 
have been analyzed in a previous study [25], Renal oncocytoma 1 was case 6, Renal oncocytoma 2 was case 14 in [26].
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cancer cells. Pyruvate kinase is the terminal enzyme in 
glycolysis. It converts phophoenol-pyruvate to pyruvate, 
a reaction which yields one molecule of ATP, therefore it 
accounts for glycolytic energy production. The PK product 
pyruvate is then converted to lactate which is excreted, or 
enters the mitochondrial citrate cycle. Humans possess 
four isoforms of pyruvate kinase, an L and R form, 
present in liver and red blood cells, and the M1 and M2 
form, which were originally identified in muscle [11, 13]. 
Furthermore, based on the data generated with cell lines, a 
switch of PKM1 to PKM2 during development of cancer 
was postulated [10]. The results presented here, which 
base on a quantitative analytical platform that allowed 
the investigation of multiple samples and tissue-matched 
controls, challenges these conclusions. Quantitative 
analysis of PKM1 and PKM2 expression in different 
cancers and matched control tissue showed that a switch 
in the expression between these alternative splice isoforms 
is not associated with tumor development. According to 
these results PKM2 is not specific for rapidly proliferating 
tissue, nor tumors. However, the results agree that total 
PKM is up-regulated in cancer, which matches the 
observation of a high glycolytic activity of cancer cells. 

Our findings prompt for a re-examination of 
the conclusion drawn in earlier studies [10, 20], and 
subsequent investigations that are based on these reports. 
The absolute values, presented here, revealed that the total 
(PKM1+PKM2) concentration varies highly between 
tissues, for example lung tissue contained 12.5 - 16.0 fmol 
PKM/µg protein, whereas in unaffected colon tissue 70.8 
-72.9 fmol PKM/µg protein were found. This underlines 
the requirement of tissue matched controls for analyzing 
a change in the expression of PKM isoforms. Our results 
show that the nature of the tissue is the prime determinant 
of the expressed PKM isoform. For instance, fibroblasts 
maintained a higher relative PKM1 as other cell lines, 
irrespective if they were transformed or not (Table 1). 
This fact might also explain the higher PKM1 content in 
healthy bladder tissue, as muscle dominates unaffected 
bladder tissue, and PKM1 was the prominent PKM 
isoform in muscle [10].

In light of these results it has to be considered that 
the high concentrated PKM2, although possessing a lower 
catalytic activity as PKM1 [21], is responsible for most 
PKM activity in most healthy and cancer tissue. Thus, its 
exchange by a PKM1 isoform at its endogeneous level 
would cause a reduction in total PK activity, whereas 
the observed up-regulation an increase in PK activity. 
Following this way of thinking, tumors of PKM expressing 
tissues can possess higher pyruvate kinase activities as 
their matched controls.

Although the new results require that the current 
model of glycolysis regulation in cancer has to be re-
examined, they do not exclude the possibility that a change 
in PK activity due to posttranslational modifications of 
PKM2 is involved in regulating respiratory metabolism. 

PKM2 can change from its dimeric into a tetrameric form 
[12], and electrophoretic shift variants point to different 
post-translationally modified versions of PKM2 [22]. 
The results are consistent with other investigations which 
demonstrate that phosphorylation can tune PKM2 activity 
in cancer [23]. Thus dynamic tuning of PKM2 activity, but 
not an exchange of PKM1 to PKM2 isoform expression, 
might be responsible for the tumor cell’s Warburg effect. 

MEtHods

Plasmid generation

Plasmids encoding pyruvate kinase PKM1 and 
PKM2 were generated by amplifying PKM1 from human 
fetal brain cDNA and PKM2 from cDNA of a pool of 
twenty adult tissues (Invitrogen) by PCR with primers 
5’-GAGAATTCATGTCGAAGCCCCATAGTG -3’ 
and 5’-GAGTCGACTCACGGCACAGGAACAAC 
-3’. PCR products were ligated into centromeric yeast 
plasmids containing the TEF1 promoter (p413TEF) [24]. 
The plasmids were verified by restriction digest and re-
sequencing.

Sample preparation and analytical method

Human tissue were processed as described earlier 
[25]. In brief, frozen tissues were cut into 5 µm thick 
sections with a cryomicrotome at – 20°C. 50 – 100 mg 
tissue were transferred in 10 – 20-fold volume of SEKT 
buffer (250 mM saccharose; 2 mM EGTA, 40 mM KCl; 
20 mM TRIS; pH 7.4). The samples were homogenized 
with Potter-S-Homogenisator on ice and centrifuged 10 
min at 600g. The supernatant was aliquoted and stored at 
-70°C 

Protein samples from yeast carrying p413TEF-PKM1 
or p413TEF-PKM2 and human cancer and control tissues 
were separated on a 10% SDS-PAGE gel and the region 
corresponding to the mass range 50-70 kDa was excised. 
Those gel pieces were then subjected to an in-gel tryptic 
digest, adapted from Kaiser et al. [18]. The AQUA peptide 
mixture (20 µl) containing all three labeled peptides was 
spiked to the samples after the digest. The LC-MRM 
analysis was performed on a nanoLC (Eksigent, Ultra 2D) 
coupled online to a hybrid triple quadrupole/ion trap mass 
spectrometer (AB/SCIEX, QTRAP5500) as described 
earlier [19]. In brief, as mobile phase 0.1% formic acid in 
water (A) and 0.1% formic acid in acetonitrile (B) were 
used. After trapping the analytes and standards on a trap 
column (ReproSil pur, C18-AQ, 5 µm, 0.15 x 10 mm), 
they were eluted onto a RP-analytical column (Agilent, 
Zorbax SB300-C18; 3.5 µm, 0.75 x 150 mm). Separation 
was achieved by applying a linear gradient starting 
at 15% B and going up to 30% B within 30 min. The 
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acetonitrile content was then increased to 95% within 
the next 10 min and kept at that level for 15 min before 
returning to the starting conditions. The tryptic peptide 
for PKM1 (LFEELVR) and its isotope labeled analogue 
(LFEE[LC13N15]VR) were monitored on the MRM 
transitions resulting from 2y4; 2y5 and 2y6 fragmentation. 
The tryptic peptide LAPITSDPTEATAVGAVEASFK, 
specific for PKM2, and its isotope labeled analogues 
(LAPITSDPTEATAVGAVEAS[FC13N15]K) were 
monitored on the MRM transitions attributed to 3y8; 
3y9 and 3y10 fragment ions. The tryptic peptide 
ITLDNAYMEK, obtained from both PKM isoforms, and 
the corresponding isotope labeled peptide (IT[LC13N15]
DNAYMEK) were detected on MRM transitions deriving 
from 2y6, 2y7 and 2y8 fragmentation. Using the peak area 
of the PKMall peptide in the yeast sample as reference, we 
calculated a correction factor of 2.1 for the peak areas 
measured for the PKM1 specific peptide, and 0.6 for 
PKM2 peptide. Every sample injection was followed by 
an acetonitrile injection to exclude sample carry over. 
The identity of the quantified peptides was confirmed by 
collecting of MS/MS spectra on the QTRAP operating in 
iontrap mode. 
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