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ABSTRACT
Pathology differentiation of renal cancer types is challenging due to tissue 

similarities or overlapping histological features of various tumor (sub) types. As 
assessment is often manually conducted outcomes can be prone to human error and 
therefore require high-level expertise and experience. Mass spectrometry can provide 
detailed histo-molecular information on tissue and is becoming increasingly popular in 
clinical settings. Spatially resolving technologies such as mass spectrometry imaging 
and quantitative microproteomics profiling in combination with machine learning 
approaches provide promising tools for automated tumor classification of clinical 
tissue sections.

In this proof of concept study we used MALDI-MS imaging (MSI) and rapid LC-
MS/MS-based microproteomics technologies (15 min/sample) to analyze formalin-
fixed paraffin embedded (FFPE) tissue sections and classify renal oncocytoma (RO, 
n = 11), clear cell renal cell carcinoma (ccRCC, n = 12) and chromophobe renal cell 
carcinoma (ChRCC, n = 5). Both methods were able to distinguish ccRCC, RO and 
ChRCC in cross-validation experiments. MSI correctly classified 87% of the patients 
whereas the rapid LC-MS/MS-based microproteomics approach correctly classified 
100% of the patients.

This strategy involving MSI and rapid proteome profiling by LC-MS/MS reveals 
molecular features of tumor sections and enables cancer subtype classification. Mass 
spectrometry provides a promising complementary approach to current pathological 
technologies for precise digitized diagnosis of diseases.

INTRODUCTION

Kidney cancer (renal cell carcinoma, RCC) accounts 
for 2.2% of all diagnosed cancers and is the 13th most 
common cause of cancer deaths worldwide [1]. Clear cell 
renal cell carcinoma (ccRCC) constitutes 70% of all kidney 
cancers [2] and exhibits the highest rate of metastasis 
among renal carcinomas. Two other common but less 
aggressive subtypes of renal carcinoma are chromophobe 
renal cell carcinoma (ChRCC) and the essentially benign 

renal oncocytoma (RO), which account for 5% and 3–7% 
of all cases, respectively [3, 4]. The ability to distinguish 
between the malignant cancer types ccRCC and ChRCC 
and the benign RO is crucial for a patient in terms of 
prognosis, progression and intervention strategies as 
severe as total nephrectomy. Histopathological kidney 
cancer diagnostics faces many challenges in daily routine. 
Typically, test panels consisting of a combination of 
different chemical and immuno-histochemical staining 
methods are used to systematically obtain a diagnosis [5]. 
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Overlapping histological features can make it difficult 
to differentiate tumor types. Analysis, interpretation and 
diagnosis/prognosis greatly rely on visual inspection 
and the experience of the involved clinical pathologists. 
Complementary techniques such as magnet resonance 
imaging (MRI) and electron microscopy involve costly 
instrumentation. Moreover, specific antibodies for staining 
can be expensive or unavailable for certain molecular 
targets. Mass spectrometry is emerging as a promising new 
tool in translational research, from molecular imaging of 
tissue sections to deep protein profiling of tissue samples 
[6]. The digital data readout provided by high mass 
accuracy mass spectrometry and feasibility of molecular 
quantification makes it a very attractive technology in 
translational research for investigating human diseases 
and for diagnostics and prognostics purposes in the 
clinic. Improvements in mass spectrometry instrument 
performance and computational analysis paved the way 
for applications in clinical microbiology [7] and clinical 
genetics analysis [8]. The fact that mass spectrometry can 
be applied to a variety of different bio-molecules such as 
peptides, lipids, nucleic acid makes it extremely versatile 
and expands the translational and diagnostic possibilities 
greatly [8–11].

Molecular imaging of tissue sections by MALDI 
mass spectrometry (MSI) was introduced more than 20 
years ago [12, 13] and it has been applied in translational 
research and clinical applications, to study injuries, 
diseases, or distinguish between different cancer types 
such as Pancreatic Ductal Adenocarcinoma or Epithelial 
Ovarian Cancer Histotypes [14–18].

Mass spectrometry-based proteomics relies on 
advanced LC-ESI-MS/MS technology, where peptide 
mixtures are separated by liquid chromatography (LC) 
prior analysis by electrospray ionization tandem mass 
spectrometry (ESI MS/MS) and protein identification 
by protein database searching [19, 20]. Current LC-MS/
MS strategies enable comprehensive quantitative protein 
profiling from tissues and body fluids [21, 22]. While 
having been used to identify potential biomarkers or new 
candidate cancer targets and molecular signaling networks 
the relatively long LC gradients (hours) and extensive 
sample preparation protocols make it difficult to apply 
in a routine clinical setting. Modern mass spectrometers 
are steadily increasing in sensitivity and scanning speed 
[23]. In addition, improved chromatographic systems 
that enable rapid solid phase extraction integrated with 
reproducible separations are emerging [24–27], enabling 
fast (minutes) and sensitive (nanogram) analysis of 
complex biological samples.

We hypothesized that histo-molecular information 
from both MALDI MS imaging (MSI), in situ 
protein digestion and LC-MS/MS applied to detailed 
characterization of 5 µm cancer formalin fixed paraffin 
embedded (FFPE) tissue sections will provide spatial 
molecular maps and sufficiently deep proteome profiles to 

characterize and classify tumor subtypes. We investigated 
this by testing a series of malignant and benign renal 
carcinomas, including clear cell renal cell carcinoma 
(ccRCC), chromophobe renal cell carcinoma (ChRCC) 
and renal oncocytoma (RO). We obtained histo-molecular 
images at a resolution of 150 µm × 150 µm that sufficed 
to spatially resolve features to distinguish tumor subtype 
areas from surrounding tissue. Miniaturized sample 
preparation by in situ protein digestion was used to 
recover peptides from distinct areas of the FFPE tumor 
sections for rapid proteome profiling by LC-MS/MS.

RESULTS

In this study we investigated the utility of mass 
spectrometry-based methods for histo-molecular profiling 
applications in clinical renal cancer pathology. We 
analyzed thin tissue/tumor sections from three different 
renal cancer types (ccRCC, RO, ChRCC) by MALDI MS 
imaging and by an optimized rapid LC-MS/MS workflow 
adjusted to suit the demands for clinical settings.

Imaging by MALDI mass spectrometry

All samples were prepared as 5 µm thin FFPE 
tissue/tumor sections. The entire FFPE tissue section 
was analyzed by imaging MALDI MS imaging (MSI). 
The data was subsequently processed by unsupervised 
clustering (spatial shrunken centroid clustering [28]). 
The clustering results (Figure 1A and 1B) illustrate the 
heterogeneity of the tissue sections coming from various 
tissue types such as stroma, fibrotic, fatty or healthy tissue 
and the capabilities of imaging MSI for the delineation of 
cancerous and non-cancerous tissue. Furthermore, when 
comparing the tumor area of the HE-stain/microscopy 
with the results from the mass spectrometry imaging based 
clustering, spectral differences even within the tumor 
tissue itself can be observed (Figure 1A and 1C).

Guided by the unsupervised clustering outcome and 
the corresponding image obtained by HE-staining, pixels 
from non-relevant surrounding tissue were discarded and 
only pixel clusters containing actual tumor tissue were 
used for subsequent comparative analyses (Schematic 
workflow overview can be found in Supplementary 
Figure 4).

In mass spectrometry imaging, principal component 
analysis (PCA) is often used for initial analysis of a given 
data set. Variance and similarities within the image sample 
set were estimated by PCA over the first 3 components. 
From a pathology viewpoint RO and ChRCC are more 
difficult to distinguish than ccRCC and ChRCC. As the 
sample holder for the imaging experiments can only hold 
2 slides at a time, we first compared two conditions in a 
pairwise manner: 9 ccRCC vs. 9 RO (Figure 2A) and 5 RO 
vs. 5 ChRCC (Figure 2B). Then the data set was combined 
to compare all three cancer conditions (9 ccRCC, 9 RO, 
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5 ChRCC) to each other (Figure 2C). PCA using the first 
three principle components separate ccRCC well from RO 
and ChRCC (Figure 2A, 2C). Data points from ccRCC 
showed a wide spread and were splitting into 2 sub-
populations. In contrast, the data from RO and ChRCC 
samples cluster in a much tighter manner and with some 
overlap (Figure 2A–2C). This is particularly the case when 
considering all three cancer types together (Figure 2C). 
When compared in a pairwise manner RO and ChRCC 
show slight separation (Figure 2B) suggesting at least 
some degree of histo-molecular differences between 
these cancer types. Some overlapping data points in the 
different cancer type datasets can be observed indicating 
histo-molecular spectral similarity in parts of the patient 
tumor tissues. The spread of ccRCC data points in PCA, 
as compared to the RO and ChRCC subtypes, suggests a 
greater heterogeneity among the ccRCC patient samples 
(also observed by LC-MS/MS, see later section).

Next, we assessed the ability of the MSI data 
to distinguish and classify renal cancer subtypes. We 
generated a classifier based on partial least squares 
discriminant analysis (PLS-DA) that can then be applied 
to a given MSI sample set. Due to the limited number 
of FFPE kidney tumor samples we chose to use a cross-

validation strategy that maximizes the use of a sample 
set for model generation and testing. In this approach a 
classifier is trained with imaging data from all samples, 
except for one sample that is set aside. As this sample 
is not part of the classifier model it can then be used for 
testing purposes. This was repeated as many times as there 
are samples ultimately allowing for testing the complete 
dataset (for n samples we obtain n classifiers and n tested 
samples).

The optimized PLS-DA model resulted in an 
accuracy of cancer subtype prediction of 93% for 
ccRCC and 88% for RO and for ChRCC (pixel based 
value). Results of the cross-validation study using PLS-
DA to classify 23 kidney tumor samples are depicted 
in Figure 3. The PLS-DA prediction scores for each of 
the three possible tumor type outcomes are shown, i.e., 
ccRCC, RO and ChRCC. (Median values and boxplot 
representation of scores are provided in Supplementary 
Figure 5 and Supplementary Table 3). The scores 
obtained for each pixel are presented by intensity scaled 
colors plotted over the respective x-y-coordinate of the 
tissue/tumor sections.

Twenty of the 23 patient tumor samples (assignment 
based on median value) were correctly assigned by the 

Figure 1: Tumor sample heterogeneity is revealed by mass spectrometry imaging and unsupervised clustering. (A) 
Spatial Shrunken centroid clustering of ccRCC and RO data obtained by imaging mass spectrometry of ccRCC and RO tissue sections. 
Based on differences and similarities in the spectra each pixel was automatically assigned a certain cluster (indicated by a different color). 
(B) Average MALDI mass spectra of the respective tumor areas (histo-molecular clusters) reveal distinct features and individual variations 
in the m/z signals. (C) HE-stain of tumor tissue section from same FFPE block. Tumor area is indicated in red.
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PLS-DA model showing highest intensity and median 
score for the respective cancer condition (Figure 3). 
Eight out of nine ccRCC samples were correctly assigned 
(Figure 3A–3I). The PLS-DA classification provided high 
scores for ccRCC samples and clearly distinguished the 
ccRCC samples from the other two kidney tumor types 
(Figure 3, left panels). This is in accordance with the 
PCA results. Likewise, the PLS-DA model provided low 
scores for ccRCC in the cases of RO and ChRCC samples 
(Figure 3, middle and right panel). One ccRCC sample 
was incorrectly classified by PLS-DA as RO (Figure 3G).

All 5 ChRCC samples (Figure 3J–3N) were 
correctly assigned having the highest score for the 
ChRCC condition (right panel). PCA indicated mass 
spectral similarities between the RO and ChRCC samples. 
Likewise, the PLS-DA model reflects such similarities in 
the classification outcome. Two ChRCC patient samples 
received highest scores for ChRCC but only slightly 
lower scores for RO (Figure 3K and 3N). Furthermore, 
in the case of two RO sample (Figure 3A and 3E) the 
classification could exclude ccRCC as diagnosis. Although 
the highest median score was correctly achieved for RO 
(Supplementary Table 3) the difference between RO and 
ChRCC was considered as too small (< 10% of respective 
max. median score) for a clear distinction of these two 
tumor types. Notably one kidney tumor sample (Figure 
3L) exhibited a unusual scoring pattern as compared to 
the other tumor samples. This particular sample received 
high scores for both ccRCC and ChRCC classification 
(ChRCC being the highest). As mentioned above, we 
typically observed clear distinction between ccRCC and 
ChRCC in all the other cases. Upon further pathology 
and microproteomics analysis this tumor section was re-
classified as a sarcomatoid transformation (see below), 

i.e., a tumor type not included in the PLS-DA model used 
for classification.

The relative importance of individual histo-molecular 
features of the classifier can be visualized by plotting the 
PLS coefficients for each condition as a function of m/z 
values (Supplementary Figure 6). A positive coefficient 
indicates presence or higher abundance of the m/z value in 
the respective cancer model. A negative coefficient indicates 
absence or lower abundance in the respective condition. 
For ccRCC the two highest-ranking m/z values were m/z 
= 723.5 and m/z = 704.5. The two highest values for RO 
were m/z = 806.5 and m/z = 1640.0 whereas the most 
influential signals for ChRCC comprised m/z = 1169.5 and 
m/z = 1039.5 (top 100 list of the features can be found in 
Supplementary Material 1). Unfortunately, we were not able 
to obtain informative MALDI MS/MS fragment ion spectra 
in order to reveal the identity of these peptide ion signals. 
Nevertheless, for classification purposes the knowledge 
of distinct protein/peptide identities (m/z values) is not 
necessary as long as the signal is characteristic for the tested 
condition.

In conclusion mass spectrometry imaging 
provided histo-molecular tumor profiles that can be 
used to distinguish renal cancer subtypes. However, the 
misclassification of one ccRCC patient and uncertainty 
of two additional diagnosis outcomes suggested that 
additional independent test methods would be beneficial 
for confident classification of renal cancer tumor types.

LC-MS/MS based rapid proteome profiling of 
tumor sections

MALDI MS imaging provides spatial resolution 
that is helpful to address molecular heterogeneity in tissue 

Figure 2: 3D PCA score plot from imaging MALDI MS experiments of kidney tumor tissues. Each plot contains the 
extracted pixel data from all patients of a given cancer type. Data from ccRCC (A) (magenta) and ChRCC (B) (blue) are compared to RO 
(yellow). (C) Data from all three cancer types are compared to each other. The graph displays the first 3 principle components (PC1, PC2, 
PC3) plotted against each other. Clear separation of data points between ccRCC and RO can be observed by pairwise comparison but also 
in the combined comparison to both RO and ChRCC. In pairwise comparison (B) RO and ChRCC show slight separation but exhibit a great 
number of overlapping features. ccRCC exhibits the largest differences to RO and ChRCC. RO and ChRCC appear to share more spectral 
similarities.
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sections. However, MALDI MS imaging lacks analytical 
depth due to the limited dynamic range of MALDI TOF 
MS and the poor performance of MALDI MS/MS for 
protein identification by peptide sequencing directly 
from tissue sections. Deeper insight into the tissue and 
tumor histo-molecular profiles and their variance will 
provide more diagnostic features. We therefore adapted 
and optimized a microproteomics approach, combining 
in situ protein sample preparation with fast label-free 
proteome profiling LC-MS/MS. First a miniaturized 
in situ sample preparation method was applied where a 
small droplet of trypsin solution is placed directly onto 
the tumor area of interest within a thin tissue section. After 
overnight incubation the digested protein extract from 
the tumor area is subsequently recovered and analyzed 
by mass spectrometry [29]. We reduced the LC-MS/MS 
analysis time from 90 minutes to 15 min by using short 
LC gradients and rapid MS/MS functions, allowing for a 
sample throughput of up to 80 samples per day. A total 
of 125 in situ extracted areas from renal tumor sections 
were analyzed. Two to six in situ extracts were taken 
from each renal tumor sample (11 RO sections from 11 
patients: 47 extraction spots; 12 ccRCC sections from 12 
patients: 49 extraction spots; 7 ChRCC sections from 5 
patients: 29 extraction spots). Fast label-free LC-MS/MS 
based microproteomics analysis of all 125 in situ digested 
tumor areas resulted in a total of 2124 identified human 
proteins. We filtered the data for proteins that were present 
in at least 70% of all samples thereby reducing the protein 
number to 412 proteins. Comparative data analysis was 
performed for proteins that were significantly altered 
(FDR = 0.01) in any of the renal cancer subtypes resulting 
in a list of 346 differentially regulated proteins. We then 
used unsupervised hierarchical clustering and PCA to 
identify similarities and differences between the tumor 
samples. The x-axis dendrogram of the heatmap shows that 
the majority of the renal tumor samples grouped according 
to cancer subtype RO, ccRCC or ChRCC (Figure 4A). 
Several large clusters of “co-regulated” proteins are 
evident on the y-axis dendrogram and heatmap for the 
individual cancer subtypes. This clearly demonstrates that 
there are renal cancer subtype specific histo-molecular 
features and patterns in the microproteomics dataset.

The protein expression profiles of the three renal 
cancer subtypes are different based on the heatmap 
patterns. ccRCC clearly differs from RO and ChRCC 
(Figure 4A: Protein group 2 and 4). RO and ChRCC 
display some differences but generally exhibit a more 
similar expression pattern (Figure 4A: Protein Group 2).

These differences and similarities were also revealed 
by PCA analysis of the microproteomics dataset. RO and 
ChRCC separate clearly from ccRCC (Figure 4B). RO and 
ChRCC datapoints are located close together, indicating 
that differences between the RO and ChRCC cancer 
subtypes are less dominant. When considering principal 
components exhibiting less variance (PC3 and PC4), 

separation of RO and ChRCC sample data is observed 
(Figure 4B).

We observed eight ChRCC proteomics datasets 
that separated clearly form the other ChRCC datasets, 
both in hierarchical clustering analysis (Figure 4A) and 
PCA (Figure 4B). The protein expression profile of these 
8 samples exhibited some similarities to both ChRCC 
and ccRCC. Interestingly, this data originated from a 
tumor from a single patient. This was the same patient 
that also exhibited outlier MSI data with similarities to 
both ChRCC and ccRCC tumor types, as discussed above 
(Figure 3L). Further pathology analysis revealed that these 
samples were sarcomatoid renal cancer, originating from 
ChRCC and, thus, indeed different from the other ChRCC 
samples.

Protein differences in cancer subtypes

Hierarchical clustering of the proteomics datasets 
revealed major differences in relative protein abundance 
between the three renal cancer tumor types. (Figure 4A). 
We investigated the nature of these histo-molecular 
differences by examining the correlation of these proteins 
to cellular structures, functions, or biochemical processes. 
Protein groups that exhibited distinctive abundances 
for the respective cancer type (Figure 4: ccRCC: group 
1 & 4, RO: group 2, ChRCC: group 3) were searched 
for their involvement in protein interaction networks 
(Supplementary Material 8) as well as for their functional 
roles by using gene ontology (GO) enrichment (Figure 5, 
Supplementary Materials 2–7). We compared GO 
enrichment relative to the experimental gene background 
as well as to the complete human genome (Figure 5, 
human genome background: red). The experimental gene 
background contained all genes corresponding to all 
2124 identified proteins in the LC-MSMS experiments 
(Figure 5, experimental background: blue).

RO and ChRCC exhibited a set of upregulated 
proteins (Figure 4A, protein group 2) that were enriched 
for mitochondria associated proteins (GO:0005739), 
including various ATP synthase subunits. Enriched 
protein functions comprised oxidative phosphorylation 
(hsa00190), citrate cycle (hsa00020), and fatty acid beta 
oxidation (GO:0006635).

ChRCC-specific regulated proteins (Figure 4A, 
protein group 3) included cytoplasmic proteins 
(GO:0044444), and proteins associated with cytoplasmic 
vesicles (GO:0031982) and ribonucleoprotein complexes 
(GO:1990904).

Subtype-specific protein groups in ccRCC 
(Figure 4A, protein group 1, 4) were functionally enriched 
for complement activation (GO:0006956), regulation 
of blood coagulation (GO:0030193) and platelet 
degranulation (GO:0002576). Functions of protein group 
4 were linked with extra cellular matrix organization 
(GO:0043062) and cytoskeletal binding (GO:0008092) 
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Figure 3: Tumor classification by MALDI MS imaging and cross-validation using PLS-DA classification. Unit of x- 
and y-axis equals step size (150 µm). Classification was performed on extracted pixels/spectra from tumor areas only. Classification of 9 
ccRCC and 9 RO (A–I) sample as well as 5 RO sample and 5 ChRCC sample (J–N). Pathology diagnosis of the respective patient samples 
are indicated to the left and right of the images (RO, ccRCC or ChRCC). Each spectrum-containing pixel is predicted individually. The 
prediction scores are represented by a color scale. Each patient sample was scored for the 3 cancer conditions resulting in 3 panels for 
each condition. Each of the panels displays scores for ccRCC (first panel) RO (second panel) and ChRCC (third panel). The respective 
testing condition is indicated on top above the panels. Median score for the respective condition is indicated in each panel next to the tissue. 
Classification is based on the condition achieving the highest score within the 3 predictions. Differences below 10% of the respective 
highest score were considered too close to be distinguishable. A overview table with median values as well as a boxplot representation of 
scores is provided in Supplementary Figure 5 and Supplementary Table 3. (Cardinal´s smooth. image-function was used for better visibility. 
Unprocessed image can be found in Supplementary Figure 7) Each sample is predominantly predicted in the correct diagnosis, achieving 
accuracies (pixel-based value) of 93% (ccRCC), 88% (RO), 88% (ChRCC). Winner of the classification is marked with a green bar for 
correct classification and a red bar for incorrect classification.
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Figure 4: Unsupervised renal cancer subtype classification by microproteomics using rapid LC-MS/MS protein 
profiling. (A) Heatmap and hierarchical clustering of differential relative protein abundances. Columns indicate samples and rows 
indicate proteins. The renal cancer subtype of the patient sample is indicated in colored bars on top. The graph shows the large similarities in 
protein expression profiles among patient samples with the same cancer subtype causing them to cluster together. Furthermore, hierarchical 
clustering of the protein abundances reveals protein cluster that are detected in a cancer subtype specific manner. Protein groups selected 
for subsequent network analysis are indicated by color blocks on the y-axis dendrogram (groups 1–4). The asterisk * marks outlier patient 
from sample Figure 3L. (B) Principal component analysis of the sample set. Dotted ellipses are such that with a probability of 95% a new 
observation from the same group will fall inside the area. The first (PC1) and second (PC2) component explain 17.6% of the total variance 
whereas the other components lie at 7.7% and 4.4% respectively. There is a clear separation of ccRCC and RO samples already in the 
first two principal components. Differences between RO and ChRCC are subtle and are only evident when considering components that 
display lower variance (PC2: PC3 and PC3: PC4). The small group of the eight ChRCC-derived sarcomatoid renal cancers samples cluster 
relatively far from the other ChRCC samples, thereby identifying these as clear “outliers” that require further attention.
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including proteins collagen and laminin. We also found 
several proteins such as glyceraldehyde-3-phosphate 
dehydrogenase associated with the glycolytic process 
(GO:0006096).

These functionally important findings can be 
correlated to known biochemical and morphological 
features of each of the renal cancer subtypes. It is known 
that the number of mitochondria is increased in RO and 
ChRCC tumors (e.g., increased oxidative phosphorylation) 
[30]. It is also known that ccRCC contains a highly 
vascularized stroma (complement, coagulation, etc.) and 
exhibits a strong Warburg effect (glycolysis) [31]. Large 
intracellular vesicles are found in ChRCC (cytoplasmic 
proteins, vesicle proteins) [30].

Classification

Unsupervised data analysis demonstrated the 
presence of renal cancer subtype specific differences 
in the tumor protein profiles. Next, we investigated 
the feasibility of tumor classification by using the 
microproteomics data to train a prediction algorithm. We 
implemented the tumor classification model by using a 
support vector machine (SVM) approach. The sarcomatoid 
sample was excluded from the classification. We chose the 
k-fold cross validation strategy [32] (“n-fold” in Perseus). 
Here the data is randomly distributed in k groups. The 
model was then trained with data from k-1 groups and the 
prediction was applied to the samples in the remaining 
group. This was repeated k times. Low k-values tend to 
overestimate error rates. In our study 2-6 extraction spots 
(samples) were derived from an FFPE section from each 
patient so too high k-values could underestimate the 
true error rate. We therefore tested the prediction error 
rate over several k-values (Figure 6A) applying Radial 
Basis Function (RBF) and linear kernel functions [33]. 
As imputation could have an effect on the classification 
outcome we compared performance to a classification 
without imputation using the proteins that were present 
in all sample (100% valid values = 27 proteins). For 
70% valid values the tested error rates were in the range 

0–3.4% for linear (4 wrong predictions at k = 2, linear 
kernel) and 0–2.6% (3 wrong predictions at k = 2, RBF 
kernel). However, k = 2 is a very low k-value (excluding 
half of the samples from the training set) and the error 
rate is most likely overestimated in this case. For more 
commonly used k-values (k = 3–10) the error rate was 
1.7% (2 incorrect predictions) at the highest for k = 3 and 
0% for any other k-value. Incorrectly predicted outcomes 
included samples from one RO patient that was predicted 
as ccRCC. Classification with the data set using 100% 
valid values without imputation showed error rates of 
0–6% (linear kernel) and 0–3.5% (RBF kernel). Over 
higher k-values the error rate was 0–3.4% and 0–0.8%, 
respectively. Error rates were slightly higher than for 70% 
valid values. Given the low protein number used for the 
classification the outcome was surprisingly positive. In 
both cases 70% and 100% valid values we observed RBF 
performing overall slightly better than linear kernel. As 
error rates for both valid values were quite comparable, we 
concluded that in our case the imputation did not heavily 
bias the outcome.

Figure 6B exemplifies the outcome of the cross-
validation resulted for RBF and k = 5 (around 23 samples 
per group equivalent to 4–5 patients excluded from the 
training set). Each sample was scored for the three tested 
conditions (ccRCC, RO, ChRCC). The highest scoring 
condition was used to classify a given sample. Results are 
shown in a radar plot (Figure 6B) and demonstrate 100% 
accuracy in prediction of renal cancer subtypes.

We initially used all 346 differentially abundant 
histo-molecular features (proteins) to classify the tumor 
subtypes. Next, we sought to estimate the minimum 
number of features that suffice to correctly classify all 
the renal tumor samples (for k = 5 and RBF). We used 
the feature optimization function in the Perseus software, 
which first ranks the features and then tests the error rate 
for a decreasing number of features (Figure 6C). The 
minimal number out of the 346 features was found to be 
30 features (list of the ranked proteins can be found in 
Supplementary Material 8). Further reducing the number 
to 21 features resulted in an error rate of 0.8% and as little 

Figure 5: Bioinformatics analysis (PantherDB) identified enriched biochemical functions in renal tumors. Protein groups 
were compared against a background of all the 2124 proteins identified in the experiment (blue) and against the background of the human 
genome (red). Fold enrichment (increase over expected value) as well as -log of the false discovery rate (FDR) are shown.
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Figure 6: Microproteomics and SVM model correctly classifies all renal tumor subtypes. (A) Development of cross 
validation classification error rate in relation to increasing k-value (division of sample set in k groups. k–1 groups will be used for training 
and 1 group for testing). Results of 70% valid values using imputation of missing values (right) as well as 100% valid values without 
imputation (left) are shown. Two classes of algorithms were compared: RBF and linear kernel. RBF performs slightly better than the linear 
kernel function with lower error rates. Values chosen for k ≥ 3, error rates vary between 0% and 1.6% (2 wrong prediction out of 117) 
for both tested kernel. (B) Radar plot of the cross-validated classification (k = 5, kernel = RBF) of proteome profiles obtained from each 
extraction spot sample. Each sample is plotted equi-angular around the center. The pathological diagnosis (ground truth) for each sample 
at its angular position is indicated on the outside of the radar plot (all ccRCC samples: right, all ChRCC samples: bottom, all RO samples: 
right). A given sample is represented by 3 datapoints (dots) plotted on a straight axis originating from the center. Each of the 3 datapoints 
represents the classification score for one of the 3 cancer types (scores for ccRCC: magenta, ChRCC: yellow, RO: blue). Scores range from 
lowest (center) to highest (outer circle). The highest score indicates highest likelihood for the respective cancertype. The plot shows that for 
all samples the cancer type with the highest score correlates with the respective pathological diagnosis, indicating the high accuracy of the 
classification. (C) Feature optimization. The error rate for linear kernel and RBF are plotted over the number of ranked features (proteins). 
Decreasing feature number results in increase of false predictions. Minimum number of features for 0% error rate is at 30 for both RBF and 
linear kernel (list of ranked proteins can be found in Supplementary Material 9).
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as 4 features lead to an error rate of 7.7%. Conclusively 
only a portion of the dataset, would suffice to successfully 
classify all the kidney tumor samples, which reflects also 
in the low error rates of the 100% valid values (Figure 6A) 
using only 27 proteins (Supplementary Material 2). 
However, keeping an excess of quantified protein features 
would be beneficial as “safety margin” assuring a high 
enough number of quantified protein features for robust 
classification of tumors.

Data integration from MSI and rapid proteome 
profiling

Having both MSI and microproteomics sets of data 
at hand provides several advantages for classification of 
cancer tumor FFPE samples. Using the MSI approach for 
tumor classification we observed a higher error rate than 
with the rapid micro-proteomics approach. In two cases 
MSI could exclude one cancer type but was not providing 
clear results towards an RO or a ChRCC diagnosis. 
Another case where one ccRCC sample was misclassified 
as RO is particularly problematic as ccRCC might need 
surgery whereas RO does not. Therefore, by integrating 
the micro-proteomics classification data the outcome of 
the MSI classification can be further confirmed, clarified 
or rejected (Table 1). This allows more confidence 
in diagnosis or could possibly even provide further 
information on cancer stage or treatment strategies. In 
a case where the classification model does not cover 
the cancer condition such as in the patient sample with 
sarcomatoid transformation we have demonstrated how 
irregularities and inconsistencies are detected by both MSI 
and rapid LC-MS/MS based microproteomics (Figures 
3L, 5A and 5B). This provides an opportunity to further 
investigate, refine and expand the range of computational 
and statistical classification models.

An additional application making use of the 
combined data set includes the investigation of histo-
molecular properties observed in MSI (e.g., intra-tumor 
heterogeneity) by correlation to information from the 
rapid microproteomics approach. Usually a detailed 
investigation of MSI feature data is achieved by either 
microproteomics “in situ protein digestion” or laser 
microdissection based approaches [34] using LC-MS/
MS based proteomics analysis with long LC gradient 
times (1–4 hours). Despite the shorter gradient times 
and thus lower protein coverage in the present work the 
information can nevertheless be used to investigate histo-
molecular properties observed in MSI (e.g., intra- tumor 
heterogeneity). We exemplified this in Figure 7, using 
the RO MSI data set previously shown (Figure 1, top). 
Unsupervised spatial shrunken centroid clustering of MSI 
data [28] revealed two distinct regions within the tumor 
area (Figure 7A: cluster 1 and cluster 2). Correlating 
the LC-MSMS data from the respective extraction spots 
within these distinct regions in deed reveals significant 

differential abundances in 80 proteins (Figure 7B, the list 
of proteins can be found in Supplementary Material 10). 
Hierarchical clustering (Figure 7C) of these 80 proteins 
with regard to their extraction position correlates well 
with the distinct regions depicted by the MSI clustering 
(MSI Cluster 2 correlates with extraction spots e–f, MSI 
Cluster 2 correlates with extraction spots a–d; Figure 7A). 
The proteomics data suggests a lower abundance of 
mitochondrial associated proteins and a higher abundance 
in some cytoskeletal protein binding proteins in cluster 
2 (Figure 7D). The area comprising Cluster 2 located on 
the edge of the tumor and might indicate the differences 
that can be encountered between the inner and outer tumor 
regions [35].

DISCUSSION

The increasing incidence of renal cancer in western 
countries calls for improved technologies for detection, 
diagnosis, treatment and prognosis. Innovative mass 
spectrometry-based applications are beginning to address 
challenges in clinics and the healthcare sector, such as the 
use of targeted proteomics to characterize noninvasive 
liquid biopsies [36] or the so called iKnife, enabling 
surgeons to identify cancerous tissue in real time [37, 38]. 
Mass spectrometry is becoming increasingly applicable in 
a clinical setting [39, 40]. FFPE sections are a valuable 
source for mass spectrometry-based diagnosis. As many of 
the sample preparation steps for MS analysis overlap with 
the preparation steps for (immuno) histochemical staining, 
they can be seamlessly fit into the high-throughput sample 
preparation pipeline for FFPE sections (deparaffination, 
antigen retrieval) already existing in many hospitals.

Our proof of concept study demonstrates the 
potential and benefits of mass spectrometry techniques for 
detailed characterization of clinical specimen. Specifically, 
we demonstrate that mass spectrometry provides 
valuable results in the diagnosis of different renal cancer 
subtypes (ccRCC, RO and ChRCC). The imaging mass 
spectrometry (MSI) approach allows to collect spatially 
resolved spectra without a priori knowledge of the tissue, 
thereby enabling the differentiation between cancerous 
and noncancerous tissue, as well as subtyping of tumors.

Earlier large scale MSI classification studies have 
demonstrated results with accuracies ranging from 81% 
to nearly 100% in subtyping non-small cell lung cancer 
[41], classifying primary lung and pancreatic cancer 
[42] as well as differentiating between 6 common cancer 
types (esophagus, breast, colon, liver, stomach, thyroid 
gland) [43]. In our study MALDI-MSI could diagnose 
87% (20 out of 23) of the tested patients correctly. It has 
to be pointed out that when transferring our study into 
a larger scale (n > 100 samples) misclassification rates 
are expected to increase. In two of the 3 misclassified 
cases it was possible to narrow down the diagnosis to 
either RO or ChRCC. Despite the promising results the 
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misclassification of one ccRCC sample as RO might be 
problematic since RO may not require surgery but ccRCC 
does. Both cases stress how using rapid proteome profiling 
data in parallel provided additional confidence and can 
help avoid a false negative prognosis.

Both MSI and LC-MS/MS PCA data showed that 
the patient-to-patient tumor variability is significant for 
ccRCC. Possible reasons might be due to necrotic areas 

or increased bleeding observed in some of the tissues. 
Furthermore we did not consider difference in grades, 
which might have an influence on the data spread. For 
robust MSI performance inclusion of a larger patient cohort 
(n > 100) will likely provide higher confidence and resolve 
this issue or even provide differentiation of tumor grades.

LC-MS/MS based microproteomics analysis 
correctly classified all tested renal tumor samples in cross 

Figure 7: Combined use of MS imaging and rapid LC-MSMS microproteomics provides histo-molecular details of 
tumor heterogeneity. (A) MSI based unsupervised clustering analysis of a RO patient sample. Two clusters (cluster 1 and cluster 2) are 
detected within the tumor area. Positions used for extraction of LC-MSMS samples are indicated by red circles extractions a-f (2 extractions 
for cluster 1, 4 extractions in cluster 2). (B) Volcano plot of LC-MSMS data derived ratio of protein abundance (Cluster 2/Cluster 1). 
The –log p values of protein abundances are plotted over the difference of the protein abundance. The black line depicts the chosen 
significance threshold (p = 0.01, 2-fold difference). Proteins above the thresholds are colored in blue and mark significant differences in 
protein abundance among the 2 compared regions. Proteins with increased abundance are found on the right side of the plot, proteins with 
decreased abundance are found on the left side of the plot. (C) Heatmap display of the significantly different proteins from extraction spots 
a–f. On the x-axis extraction spots a–d and e–f group together by hierarchical clustering. The grouping is in correlation to the MSI clustering 
data. On the y-axis two protein groups can be observed distinguishing the two x-axis-cluster. One group is upregulated in Cluster 1 the 
other group is upregulated in Cluster 2. (D) StringDB network analysis of upregulated proteins in MSI-Cluster-2 (top, sample: a–d) and 
upregulated proteins in MSI-Cluster 1 (bottom, sample: e and f). For a given set of proteins the string data base (http://www.string-db.org) 
provides information on a dataset in terms of protein attributes such as interaction, function or cellular occurrence. Proteins with higher 
abundance in Cluster 2 are mainly mitochondrial associated proteins whereas cluster 1 shows increase abundance of cytoskeletal protein 
binding proteins.

http://www.string-db.org
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validation experiments. The efficient peptide separation 
and sequencing capability of LC-MS/MS provided deeper 
insight into the renal cancer proteome than possible by the 
MSI approach alone. Remarkably, unsupervised clustering 
identified data inconsistencies and irregularities in the 
patient cohort. An unexpected feature pattern revealed a 
sarcomatoid transformation within the ChRCC cohort, 
without a priori knowledge (Figure 4A and 4B). This goes 
to demonstrate that once the “digital” data is acquired then 
the computational and statistical applications can uncover 
relevant and important features of the patient datasets. 
This sensitivity, specificity and versatility will have major 
implications for future clinical practices, including histo-
molecular pathology technologies.

Using short LC runs of only 15 min. we generated 
a list of 346 significantly altered proteins (p = 0.01). The 
minimum number of proteins determined to be necessary 
for 100% accurate tumor classification was much lower 
(30 features). This low number of features enables a 

targeted proteomics approach aimed at quantifying only a 
select panel of proteins. Using fewer features would also 
allow further reduction of LC run time and increase overall 
sample throughput. Using our fast LC-MS/MS setup 
we analyzed a total of 125 samples in a series without 
experiencing blocking of the LC columns, glass capillaries 
or ESI needles. LC systems such as the EvoSep system 
[25] that are specifically dedicated for clinical applications 
and tailored to be used also by non LC-MS experts can 
add additional robustness to this approach. Furthermore, 
implementation of image pattern guided pipetting robots 
may enhance reproducibility and throughput, e.g., using 
liquid extraction surface analysis (LESA) technology [44, 
45]. The latter has been successfully applied in the study 
of traumatic brain injuries [46] as well as in mouse brain 
for the identification of proteins and peptides from MSI 
experiments [47]. The missing value problem is still a 
common problem in label free quantitative proteomics. 
Successful implementation of protein identification on 

Table 1: Integrated testing strategy for classification of renal cancer types
Pathologist 
diagnosis Patient MSI diagnosis

Rapid LC-MSMS 
diagnosis Conclusion

RO 839 RO/ChRCC RO RO
RO 119 RO RO RO
RO 527 RO RO RO
RO 270 RO RO RO
RO 529 RO/ChRCC RO RO
RO 560 RO RO RO
RO 940 RO RO RO
RO 857 RO RO RO
RO 381 RO RO RO
ccRCC 427 ccRCC ccRCC ccRCC
ccRCC 370 ccRCC ccRCC ccRCC
ccRCC 620 ccRCC ccRCC ccRCC
ccRCC 73 ccRCC ccRCC ccRCC
ccRCC 545 ccRCC ccRCC ccRCC
ccRCC 999 ccRCC ccRCC ccRCC
ccRCC 797 RO ccRCC ccRCC/further validation
ccRCC 601 ccRCC ccRCC ccRCC
ccRCC 336 ccRCC ccRCC ccRCC
ChRCC 634 ChRCC ChRCC ChRCC
ChRCC 835 ChRCC ChRCC ChRCC

ChRCC 264*
ChRCC with 
irregularities

ChRCC with 
irregularities

further validation → sarcomatoid 
transformation

ChRCC 756 ChRCC ChRCC ChRCC
ChRCC 925 ChRCC ChRCC ChRCC

Initial pathologist diagnosis and patient number are indicated in the first 2 columns. *Patient sample showed irregularities 
and after reassessment could be diagnosed as sarcomatoid transformation. Concluding contradictory results would either 
necessitate further validation or the outcome of the more reliable method (LC-MSMS) could be favored.
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MS1 level only has been presented recently [48] and could 
be interesting in the here presented context to follow up in 
future experiments.

Functional protein analysis using bioinformatics 
tools revealed molecular networks and biochemical 
processes consistent with previously known macroscopic, 
morphological and histological features of the renal cancer 
subtypes. RO and ChRCC exhibited upregulation of 
mitochondrial associated proteins. Increased numbers of 
mitochondria are frequently observed in these cancer types 
by electron microscopy [49] and have been identified in 
previous proteomics studies [50]. As most cancer rely on 
glycolysis (Warburg effect) this seems rather unusual. 
However, those mitochondria are dysfunctional and it has 
been speculated that the increase in number might be a 
cellular compensation response [51].

In addition increased intracytoplasmic associated 
proteins were detected in ChRCC distinguishing it 
from the other cancer types. Microscopically, ChRCC 
distinguishes from other renal carcinomas by its pale 
cytoplasm resulting from large intracytoplasmic vesicles 
explaining the relative increase of intracellular cytoplasm-
associated proteins and vesicle proteins.

Clear cell renal cell carcinoma frequently contains 
zones of hemorrhage that are most likely responsible 
for the increased levels of complement and coagulation 
cascade associated proteins, as determined by our 
microproteomics method. ccRCC is also characterized 
by hypervascular stroma [3], which may account for the 
enrichment of extracellular matrix proteins. Enhanced 
glycolysis as a hallmark of many cancer types including 
ccRCC [31] is correlating well with our detection of 
upregulated glycolysis associated proteins.

For classification we applied PLS-DA to MSI 
data and support vector machine to the LC-MSMS data. 
These common classification methods have previously 
been applied to MSI for the differentiation of papillary 
and renal cell carcinoma based on lipidomics analysis 
[52] as well as for the classification of epithelial ovarian 
cancer subtypes [16]. There are, however, numerous 
other classification methods available. Mascini et al. used 
principal component linear discriminant analysis in order 
to predict treatment response in xenograft models of triple-
negative breast cancer [53]. Recently, deep convolutional 
networks have been proposed [54].

Both MSI and short gradient LC-MS/MS 
microproteomics methods come with their individual 
advantages. Applying both approaches in parallel for 
routine analysis is most beneficial to improve confidence 
in diagnosis and identify irregularities. In order to create 
very robust classifiers for use in clinical settings the 
promising results of this study need to be further supported 
in the future by analysis of larger patient cohorts.

With the enormous progress in sample handling 
and instrument technology, machine learning [55] and the 
availability of new databases [56] mass spectrometry is 

on its way to become a versatile tool in the hospital clinics 
of the future.

MATERIALS AND METHODS

Materials

Xylene (analytical grade), ammonium bicarbonate, 
Sodium citrate, trifluor-acetic acid (TFA), formic acid 
(FA), acetic acid (AcOH), acetonitrile (ACN), methanol 
and α-Cyano-4-hydroxycinnamic acid (CHCA) were 
purchased from Sigma. Polyimide coated fused silica 
capillary (75 μm ID) was from PostNova, C18 Reprosil 
Pur reversed phase material was from Dr. Maisch 
(Ammerbuch-Entringe, Germany), recombinant Trypsin 
was purchased from Promega (WI, USA), Indium-tin-
oxide (ITO) glass slides were purchased from Bruker 
(Bremen, Germany), water was Milli-Q filtered.

Formalin fixed paraffin embedded samples

Patient samples were collected at Odense University 
Hospital, Denmark. All samples were obtained upon 
patient’s consent. Formalin fixed paraffin embedded 
(FFPE) tissues from 11 RO patients, 12 ccRCC patients 
and 5 ChRCC patients were used for LC-MSMS analysis 
(for ChRCC due to the lower number of patients 2 
subsequent slides were used from 2 patients adding up to 
a total of 7 sections). Out of the patient cohort 9 RO, 9 
ccRCC and 5 ChRCC were used for mass spectrometry 
imaging analysis.

Tissue preparation

Preparation of formalin fixed paraffin embedded 
samples

FFPE blocks were cut into 5 µm thick sections and 
mounted onto indium tin oxide (ITO) covered glass slides 
(for MSI) or regular microscopy glass slides (for LC-MS/
MS). Before deparaffination slides were left on a heated 
block at 65°C for 1 hour to improve adhesion (an overview 
on the used FFPE samples can be found in Supplementary 
Tables 1 and 2).
Deparaffination

FFPE section slides were incubated in Xylene for 
an initial 10 min. and then another 5 min. using fresh 
solution each time. Slides were shortly dipped into 96% 
EtOH before they were washed for 2 min in a mixture of 
chloroform/Ethanol/AcOH (3:6:1; v: v: v). The slides were 
then washed in 96% EtOH, 70% EtOH, 50% EtOH and 
Water for 30 sec. each.
Antigen retrieval

Tissue slides were heated in 10 mM citric acid 
buffer pH 6 for 10 min in a microwave oven at 400 Watt 
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(just below the boiling point) before left for further 60 min 
incubation at 98°C on a heating plate. Slides were cooled 
down to room temperature and incubated for 5 minutes in 
25 mM ammonium bicarbonate (ABC) buffer. Slides were 
allowed to dry before application of trypsin protease.

Tryptic digest

For MALDI MS imaging

20 µg of Trypsin (Promega) was used per slide and 
was dissolved at a concentration of 100 ng/µl in 25 mM 
ABC/10% ACN before being deposited on the tissue using 
the iMatrixSpray [57] device equipped with a heating bed 
(Tardo Gmbh, Subingen, Switzerland) using the following 
settings: sprayer height = 70 mm, speed = 70 mm/s, 
density = 1 µL/cm2, line distance = 1 mm, gas pressure 
= 2.5 bar, heat bed temperature = 25°C. After trypsin 
deposition the slides were incubated in a humid chamber 
containing 10 mM ABC/50% MeOH at 37°C over night.
For on-tissue digest intended for LC-MS/MS proteome 
profiling

Droplets of 2 µl Trypsin solution (50 ng/µL in 25 
mM ABC/10%ACN, 0.02% SDS) were deposited using a 
gel loading pipet tip. Droplets were placed on 2–6 different 
tumor areas of each FFPE tissue section. The extraction 
positions were chosen randomly within the defined 
tumor margins which were defined by HE-stain and MSI 
clustering. The droplets were quickly allowed to dry to 
prevent spreading across the tissue. Slides were transferred 
to a closed humidity chamber (10 mM ABC/50% MeOH) 
for overnight digestion at 37°C. The digestion spots were 
extracted twice with 2 µL of 0.1% FA and twice with 1.5 
µL of 30%ACN. Fractions were combined for each sample 
and speedvac dried. Samples were reconstituted in 0.05% 
TFA and shortly spun down prior injection into the LC-MS 
system.

Matrix application

Matrix solutions were freshly prepared from 
recrystallized α-cyano-4-hydroxycinnamic acid (CHCA) 
matrix (10 mg/mL in 50% Acetonitrile 1% TFA). Matrix 
was sprayed using the iMatrixSpray (Tardo, Switzerland). 
Temperature of the heatbed was set at 25°C. The sprayer 
distance was set to 70 mm. Spray speed was set to 100 
mm/s. Matrix was sprayed in 3 rounds: 8 cycles with a 
flowrate of 0.5 µl/cm2 line distance of 1 mm, 8 cycles of 
1 µl/cm2 line distance of 1 mm, 8 cycles of 1 µl/cm2 and a 
line distance of 2 mm.

MALDI MS imaging data acquisition

Optical images of the tissue were obtained before 
matrix application using a flatbed scanner (Epson) at 
resolutions of 2400 dpi. The imaging data was acquired 

via FlexImaging software (Bruker, Daltonics, Bremen, 
version 3.1) with 500 shots/ pixel on a Ultraflextreme 
MALDI-TOF/TOF MS (Bruker Daltonics, Bremen) 
equipped with a SmartBeam laser (Nd: YAG 355 nm). 
External mass calibration was performed with a tryptic 
digest of bovine serum albumin (Sigma). Spatial 
resolution was set to 150 µm in x- and y-direction. Mass 
spectra were acquired in positive ion reflector mode in 
the range m/z 600-3500. (An average sum spectrum of 
each cancer condition can be found in Supplementary 
Figure 1)

LC-MS/MS analysis

LC-MS/MS data was acquired by an Orbitrap 
Q-Exactive HF-X (Thermo, Bremen) coupled to an 
Ultimate 3000 capillary flow LC-system. Setup was 
modified from Thermo Scientific Technical note: 72827. 
Peptide samples were loaded at 150 µl/min (2% ACN, 
0.05% TFA) for 30 sec onto a 5 µm, 0.3 × 5 mm, Acclaim 
PepMap trapping cartridge (Thermo Scientific). Samples 
were then eluted onto a pulled emitter analytical column 
(75 µm ID, 15 cm). The analytical column was “flash-
packed” [58] with C18 Reprosil Pur resin (3 µm) and 
connected by Nanoviper fittings and a reducing metal 
union (Valco, Houston, TX). The flowrate of the 15 min 
gradient was 1.2 µL/min with solvent A: 0.1% formic 
acid (FA) and solvent B: 0.1% FA in 80% ACN. Gradient 
conditions for solvent B were as followed: 8% to 25% in 
10 min, 25% to 45% in 1.7 min. The trapping cartridge 
and the analytical column were washed for 1 min at 99%B 
before returning to initial conditions. The column was 
equilibrated for 2 min. MS settings: ESI spray voltage 2 
kV, cap temp = 275°C, Resolution: 60 k, micro scans = 1, 
max IT = 100 ms, AGC = 3 × 106, MSMS resolution 15 k, 
n = top 5, max IT = 100 ms, AGC = 1 × 105.

Data processing of MALDI MS imaging data

The data was baseline subtracted, TIC normalized 
and statistically recalibrated and then exported into imzML 
format [59] using the export function of FlexImaging 
software (Bruker). The exported mass range was m/z 
600–3000 with a binning size of 9600 data points. The 
imzML files were imported into the R environment 
(version: 3.4.1) and further processed and analyzed using 
the R MSI package: Cardinal (version: 2.0.3 & 2.4) [60]. 
In order to extract pixels of tumor tissue each sample 
was preprocessed as follows: peaklist was generated by 
peak picking in every 10th spectrum and subsequent peak 
alignment. The whole data was then resampled using 
the “height” option and the previous created peaklist as 
spectrum reference. PCA scores were plotted using car-
package (version 3.0.6). Samples were clustered using 
spatial shrunken centroid clustering [28]. Subsequently, 
clusters were compared to tumor regions in HE-stained 
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tissue sections (Supplementary Figure 2). The respective 
clusters containing tumor areas were extracted, so that 
result files predominantly contained data from tumor 
areas. The obtained coordinates were then used to extract 
the corresponding pixel from the unprocessed imzML 
file. Each tumor type was assigned with a diagnosis 
factor (ccRCC, RO or ChRCC), which was later used 
as y-argument in the cross-validation. All extracted 
imaging acquisition files were further restricted to a mass 
range of m/z 700–2500. Data was resampled with step 
size 0.25 Da to allow combining them into one file for 
further processing. Classification and cross-validation 
were performed using partial least square discriminant 
analysis (PLS-DA) [61]. PLS components were tested for 
optimum with 34 components (Supplementary Figure 3). 
Classification diagnosis was based on the highest scoring 
condition. Differences between 2 conditions had to be 
higher than 10% of the highest score to be considered 
distinguishable)

LC-MS/MS data processing

The MaxQuant [62] software package (version 
1.5.7.0) was used for protein identification and label-
free protein quantitation. LC-MS/MS data was searched 
against the Swissprot human proteome database, using 
standard settings and “match between runs” enabled.

Data filtering, processing and statistical analysis of the 
MaxQuant output files was performed using the Perseus [63] 
framework (version 1.6.1.3). Data was filtered excluding 
the following hits: only identified by site, contaminants and 
reversed. The log-transformed data was filtered for proteins 
present in at least 70% of all experiments. Significance 
filtering was based on ANOVA testing, using FDR threshold 
of 0.01 with Benjamini Hochberg correction. In order to 
perform PCA analysis and classification missing values 
were imputed by normal distribution (separately for each 
column/sample). Data shown in heatmap was Z-score 
normalized. Perseus output tables were transferred into 
ClustVis [64] for visualization of hierarchical clustering and 
principle compound analysis (PCA). Gene Ontology and 
functional analysis was performed via String DB (version 
11.0.0) [65] and Panther DB (version 14.1) [66]. For Panther 
DB analysis background genome was the human genome 
and the total of identified proteins from all LC-MSMS runs 
in the experiments (Supplementary Materials 3–7). Feature 
optimization cross-validation type was “n-fold” with n = 5. 
Kernel was either linear or RGF. All other settings were left 
on their default value.
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