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ABSTRACT
Treatment of infiltrative glioma presents a number of unique challenges due 

to poor penetration of typical chemotherapeutic agents into the infiltrating edge of 
tumors. The current chemotherapy options include nitrosoureas (e.g., lomustine) and 
the imidazotetrazine-class monofunctional DNA alkylating agent, temozolomide (TMZ). 
Both classes of drugs alkylate DNA and have relatively unrestricted passage from 
blood into brain where infiltrative tumor cells reside. Recent research indicates that 
secondary mutations detected in the RB and AKT-mTOR signaling pathways are linked 
to characteristics of recurrent tumors specific to TMZ-treated patients. It has been 
hypothesized that a decrease in rate of secondary mutations may result in delay of 
tumor recurrence. To that end, this study was designed to test viability of decreasing 
secondary mutations by disrupting the cell division cycle using eflornithine, a specific 
inhibitor of ornithine decarboxylase. U87MG glioblastoma cell line characterized by 
chromosomal abnormalities commonly attributed to primary cancers was used as a 
model for this study. The cells were subjected to TMZ treatment for 3 days followed by 
eflornithine (DFMO) treatment for 4 or 11 days. It was shown that TMZ significantly 
increased the frequency of mutations in U87MG glioblastoma cells while DFMO-treated 
cells showed mutation frequency statistically similar to that of the untreated cells 
on the respective treatment days. The findings of this study provide evidence to 
support the hypothesis that DFMO may inhibit progression of DNA mutations caused 
by alkylating chemotherapy agents, such as TMZ.

INTRODUCTION

Malignant brain tumors in combination with other 
tumors of central nervous system (CNS) represent less 
than 2% of cancers in adults [1] and affect approximately 
0.3% of world population [2]. Despite rare occurrence, 
brain cancers have a devastating impact on patients and 
society due to poor prognosis and limited treatment 
options. The five-year survival rate after diagnosis varies 
widely between approximately 5 and 80% with differences 
largely attributable to type and histology of tumors, patient 
age and genetic molecular markers.

The post-surgery treatment of malignant infiltrative 
gliomas, such as anaplastic astrocytoma and glioblastoma, 
usually involves a combination of radiotherapy and 

chemotherapy. Typical chemotherapy agents used 
are alkylating agents. Longest in use have been the 
nitrosoureas, such as carmustine (BCNU), lomustine 
(CCNU), and fotemustine, bifunctional alkylating 
agents that cross-link DNA, and more recently, the 
monofunctional alkylating agent temozolomide (TMZ). 
Another monofunctional alkylating agent is procarbazine 
that, while not approved by the FDA for brain tumor 
therapy has, none the less, been in use for the treatment 
of brain tumors for 40 years. Alkylating agents, and 
especially monofunctional alkylating agents, can produce 
unintended mutagenesis that in some cases results in 
secondary malignancies [3, 4].

Temozolomide (3,4-dihydro-3-methyl-4-
oxoimidazo-[5,1-d]-1,2,3,4-tetrazin-8-carboximide, 
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commonly abbreviated as TMZ), an imidazotetrazine-class 
chemotherapeutic agent, currently serves as a treatment 
of choice for both newly diagnosed and recurrent 
malignant brain tumors due to its high oral bioavailability 
and relatively efficient blood-brain barrier penetration 
[5, 6]. In vivo, TMZ acts as a prodrug, hydrolytically 
converting to its active metabolite monomethyl triazene 
5-(3-methyltriazen-1-yl)-imidazole-4-carboxamide, which 
possesses high alkylating activity [7]. The active moiety 
is responsible for preferential methylation of guanine 
bases of the DNA and consecutive depletion of DNA 
repair protein O6-methylguanine DNA methyltransferase 
(MGMT) [8]. Mutagenic potential of TMZ has been 
observed in several studies [9, 10]. Recent research 
identified secondary mutations associated with use of TMZ 
that occur in anaplastic astrocytoma and glioblastoma 
[11, 12]. These studies extended earlier observations and 
studies of primary gliomas [13], unpaired recurrent tumors 
[14], and a cell culture model [15].

Eflornithine (D, L-2-(difluoromethyl) ornithine 
monohydrochloride monohydrate, often abbreviated as 
DFMO) is an enzyme-activated, irreversible inhibitor of 
the enzyme ornithine decarboxylase (ODC), the first and 
rate limiting enzyme in the biosynthesis of polyamines 
[16]. Inhibition of polyamine synthesis by eflornithine 
results in growth arrest of a number of malignant and 
nonmalignant mammalian cells and has been shown 
to inhibit the promotion and progression phases of 
carcinogenesis [17]. The goal of this study was to examine 
the effect of DFMO on the secondary mutations caused by 
alkylating agents, such as TMZ. Experimental model was 
based on U87MG glioblastoma cell line characterized by 
large number of chromosomal abnormalities commonly 
attributed to primary cancers [18]. Aggregate analysis 
was conducted to detect statistically significant trends in 
mutation frequency in cells subjected to different TMZ 
concentrations and subsequently treated with DFMO.

RESULTS

Exon-Seq analysis confirmed inherently high levels 
of mutations in the untreated U87MG glioblastoma cells 
over the course of experiment (Figure 1). As part of 
preliminary data analysis, it was necessary to identify the 
subset of nucleotides characterized by a relatively low 
initial mutation frequency, on which the mutagenic effect 
of TMZ could be examined. Further data analysis was 
performed to detect the nucleotides susceptible to TMZ-
induced mutations using a 15% threshold shift in mutation 
rate as a basic criterion (Figure 2). The sub-groups of 
nucleotides were defined for each TMZ concentration as 
well as for a combination of concentrations at different 
time points. The mutation frequencies of the resulting 
subsets were analyzed using an analysis of variance 
(ANOVA) and Student’s t-test. The comparative analysis 
showed that exposure to TMZ caused statistically 

significant increase in cell mutations across the range of 
concentrations. The mean mutation frequency on day 3 
of exposure increased from 23% for the untreated cells 
to 57%, 59% and 60% for the TMZ concentrations of 
40, 80 and 200 µM, respectively (Table 1). Interestingly, 
when the TMZ-exposed cells from the respective subsets 
were further treated with 50, 100 and 200 µM DFMO 
solutions, the nucleotides showed statistically lower 
mutation frequencies with means of 39–42% on days 7 
and 14 of exposure. These lower mutation frequencies 
of DFMO-treated cells were statistically equivalent to 
that of the untreated cells on the respective treatment 
days (Figure 3). The same trends were also confirmed by 
aggregate analysis of the combined time point data for 
each type of treatment (Figure 4). For each pair of TMZ 
and DFMO concentrations, the statistically significant 
mutation frequency increase was observed on day 3 of 
TMZ treatment while the rate of mutation frequency was 
markedly decreased on days 7 and 14 for the DFMO-
treated nucleotide subsets.

To illustrate the effect of TMZ-induced mutagenesis 
and subsequent mutation-inhibiting action of DFMO, 
four cases are reviewed for the specific genes known 
to play an important role in carcinogenesis: TP53BP1, 
ADAM32, GPR116 and MUC16. TP53BP1, also known 
as Tumor Suppressor P53-Binding Protein 1, is located on 
chromosome 15 which encodes a protein that functions 
in the DNA double-strand break repair pathway choice 
(apoptosis pathway), promoting non-homologous 
end joining pathways, and limiting homologous 
recombination. This protein plays multiple roles in the 
DNA damage response, including promoting checkpoint 
signaling following DNA damage, acting as a scaffold for 
recruitment of DNA damage response proteins to damaged 
chromatin, and promoting NHEJ pathways by limiting 
end resection following a double-strand break. TP53 has 
been linked to mutations present in post-TMZ treated 
gliomas. In the experiment, the U87MG cells showed C/T 
mutation in TP53BP1 gene location chr15: 43,762,196. 
The frequency of this mutation in the untreated cells 
on day 3 was 15%. Comparatively, the cells subjected 
to TMZ treatment at 200 µM concentration showed the 
mutation frequency of 62% on day 3. As the experiment 
continued, the untreated cells reached mutation frequency 
of 53% on day 7 and 48% on day 14. The cells which 
were treated with TMZ for 3 days and then subjected to 
DFMO treatment at 200 μM concentration showed the 
reduced mutation rates of 30% and 38% at 7 and 14 days, 
respectively (Figure 5A).

The second example, ADAM32, also known as a 
disintegrin and metalloproteinase domain 32 is located on 
chromosome 8. ADAM 32 is a member of the disintegrin 
family of membrane anchored proteins, which play a role 
in diverse biological processes such as brain development, 
fertilization, tumor development and inflammation. It is 
present in reproductive organs. Mutations in this gene 
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have been associated with hypermutation in gliomas. In 
this experiment, the U87MG cells showed G/A mutation in 
ADAM 32 gene location chr8: 38,964,647. The frequency 
of this mutation in the untreated cells on day 3 was 48%, 
while the mutation frequency of the cells subjected to 
TMZ treatment at 200 µM concentration reached 64% on 
day 3. As the experiment continued, the untreated cells 
mutation remained at similar rate of 50% on day 7 and 
45% on day 14. The DFMO treatment after TMZ exposure 
resulted in the reduced mutation rates of 33% and 43% on 
days 7 and 14, respectively (Figure 5B). 

GPR116, also known as ADGRF5, is located on 
chromosome 6 and is a G protein-coupled receptor 116. 

GPRs are cell surface receptors that activate guanine-
nucleotide binding proteins upon the binding of a 
ligand. GPRs may play a role in neuron survival through 
activation of a downstream signaling pathway involving 
the PI3, Akt and MAP kinases. GPR112 has been 
identified as a hypermutating gene in gliomas after TMZ 
treatment. GPRs are involved in cellular proliferation 
and evading apoptosis. The U87MG cells showed C/T 
mutation in GPR116 gene location chr6: 46,867,771. The 
frequency of this mutation in the untreated cells on day 3 
was 46%. The cells subjected to TMZ treatment at 80 µM 
concentration showed the mutation frequency of 70% on 
day 3. As the experiment continued, the untreated cells 

Figure 1: Mutation frequency in untreated U87MG glioma cells over the course of experiment: Exon-Seq analysis of 
the complete data set.

Table 1: Mean mutation frequency in glioblastoma cell line model

TMZ Treatment Days 1–3 Treatment Days 4–14
Mean Mutation Frequency

T = 3 days T = 7 days T = 14 days
Untreated control No treatment 23% 42% 43%
0 DFMO 50 μM 23% 39% 38%
0 DFMO 100 μM 23% 40% 39%
0 DFMO 200 μM 23% 41% 42%
TMZ 40 μM DFMO 50 μM 57% 40% 42%
TMZ 80 μM DFMO 100 μM 59% 39% 41%
TMZ 200 μM DFMO 200 μM 60% 40% 42%
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mutation reached 48% on day 7 and 52% on day 14. The 
cells which were treated with TMZ for 3 days and then 
subjected to DFMO treatment at 100 μM concentration 
showed the mutation rates of 61% and 45% at 7 and 14 
days, respectively (Figure 5C).

MUC16 located on chromosome 19, encodes 
a protein that is a member of the mucin family. This 
protein is thought to play a role in forming a barrier, 
protecting epithelial cells from pathogens. Products 
of this gene have been used as a marker for different 
cancers (e.g., ovarian carcinoma), with higher expression 
levels associated with poorer outcomes. MUC16 is 
involved in cell migration and is implicated in mutations 
present in post-TMZ treated gliomas. The T/A mutation 
in GPR116 gene location chr19: 9,071,763 showed the 
frequency of 43% for the untreated cells on day 3. The 
cells subjected to TMZ treatment at 80 µM concentration 
showed the mutation frequency of 64% on day 3. As 
the experiment continued, the untreated cells mutation 
rate reached 58% on day 7 and 61% on day 14. The 
cells which were treated with TMZ for 3 days and then 
subjected to DFMO treatment at 100 μM concentration 
showed the mutation rates of 49% and 47% at 7 and 14 
days, respectively (Figure 5D).

DISCUSSION

In our studies, exposure to TMZ caused a significant 
increase in frequency of cancer-related mutations in 
U87MG glioblastoma cells as measured by quantifying 
known nucleotide polymorphisms using Exon-Seq 
analysis. Subsequent treatment with DFMO caused a 
statistically significant decrease in the mutation frequency 
compared to TMZ-treated cells. The effects were shown 

for three different TMZ and DFMO concentrations 
as well as for the combined data set. While the TMZ-
induced mutagenesis has been extensively explored in 
recent research, the inhibitory action of DFMO leading 
to decrease in mutation frequency has not been reported 
before.

It was previously shown that hypermutations 
induced by the alkylating agents can increase resistance to 
a number of anti-neoplastic drugs and worsen prognosis 
in a significant fraction of patients treated with TMZ 
[15, 19, 20]. The existence of TMZ-induced mutagenesis 
in glioma and its association with progression of the 
disease from the early stages to the most serious form, 
glioblastoma multiforme, has been recognized [21, 22]. 
Mutations known to be linked to treatment with TMZ 
were shown to occur in the retinoblastoma protein (RB) 
and AKT-motor pathways and were correlated with 
tumor progression. In further support of the importance 
of mutation to transformation of low- and mid-grade 
gliomas to more malignant tumor grades, is a study 
published in 2013 [11]. The hypothesis of this study was 
that therapies for recurrent/progressive gliomas failed 
because the genomic alterations driving the growth of 
recurrences were distinct from those in the initial tumor. 
In the study, the exomes of 23 initial low-grade gliomas 
were sequenced and recurrent tumors resected from the 
same patients. It was found that the three genes most 
mutated in WHO grade 2 gliomas at initial diagnosis 
were: IDH1 in 100% (23/23), TP53 in 83% (19/23), and 
ATRX in 78% (18/23) in the cohort studied. Interestingly, 
in 43% of cases, at least half of the mutations in the initial 
tumor were undetected at tumor recurrence suggesting that 
recurrent tumors may be seeded by cells derived from the 
initial tumor at a very early stage of their evolution. Of 

Figure 2: Mutation frequency in subset of nucleotides of U87MG glioma cells susceptible to TMZ-induced mutations: 
not-treated cells vs. cells treated with TMZ 40, 80 and 200 µM concentrations on day 3 of the treatment.
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Figure 3: Trends in mutation frequency in nucleotides susceptible to TMZ -induced mutations. Mean mutation frequency 
increase observed after 3 days of treatment with TMZ at three different concentrations (40, 80 and 200 µM) is in the range of 34–37%. 
Subsequent treatment with 50, 100 and 200 μM DFMO yields mutation frequency statistically equivalent to that of untreated cells.

Figure 4: Means/ANOVA analysis of mutation frequency in U87MG glioma cell nucleotides susceptible to TMZ-
induced mutations. Statistically significant increase of mutation frequency demonstrated for TMZ-treated vs. untreated cells on Day 3. 
Subsequent treatment with DFMO at each level of TMZ showed significantly lower level of mutation frequency on days 7 and 14 (day 7 
and 14 data shown in aggregate)1. 1Note: the top and bottom of each diamond represent the confidence interval for each group. The mean 
line across the middle of each diamond represents the group mean. The multiple comparison test is illustrated by a comparison circles 
plot on the right of the graph and the degree of intersection of the circles shows whether the group means are significantly different. Non-
intersecting circles show statistically significant differences.
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additional interest was the observation that tumors from 
60% of patients treated with adjuvant TMZ chemotherapy 
followed an alternative evolutionary path to high-grade 
glioma: these tumors showed hypermutation and harbored 
driver mutations in the RB and AKT-mTOR pathways that 
bore the signature of TMZ-induced mutagenesis.

Given that the gliomas generally follow a path of 
mutation if they recur or progress, one approach to control 
progression would be to mitigate the rate and extent of 
mutations these tumors can express. In the current study, 
we explored the concept of disrupting the TMZ-induced 
hypermutations by interrupting the cell division cycle 
using DFMO. The existing pharmaceutical applications 
of DFMO for treatment of African trypanosomiasis 
and hirsutism rely on its impact on cell division cycle 
by inhibition of ODC [23], an irreversible metabolic 
process with well-established mechanism of action [24]. 
The reaction catalyzed by ornithine decarboxylase is the 
first and committed step in the synthesis of polyamines, 
especially putrescine, spermine, and spermidine. 
Polyamines have been found in high levels in many 
tumor cells and appear to support cell growth that is 
essential for the multistep process of cancer development 
[25, 26]. Lack of ornithine decarboxylase activity has 
been demonstrated to induce apoptosis and cell death 
[27, 28]. Studies over many years have shown that the 
activity of ODC increases with grade of malignancy for 
adenocarcinomas of the breast, lung, and colon [29–37] as 

well as for gliomas and medulloblastoma tumors [38–43]. 
Of considerable interest is the observation that there is 
a relationship between DFMO activity and ODC levels 
since patients with relatively low levels of ODC appear 
to respond better to DFMO and DFMO-nitrosourea 
combinations [44–47]. It is well known that ODC activity 
is directly correlated with the grade of the glioma, with 
higher grades of glioma having higher ODC levels [44]. 
Published clinical studies affirmed evidence for higher 
clinical activity of DFMO in anaplastic astrocytoma than 
in glioblastoma [46, 47]. While the findings of this study 
provide evidence to support the hypothesis that DFMO 
may inhibit progression of DNA mutations caused by 
alkylating chemotherapy agents, they may also suggest 
that one of the benefits of DFMO in the prior clinical trials 
have been inhibition of de novo mutations by inducing G1-
arrest in glioma and subsequently increasing intracellular 
p21 and p27kip-1 proteins [48, 49] thus impacting tumor 
cell mutation rates and inhibiting progression to more 
malignant tumor phenotypes.

MATERIALS AND METHODS

U87MG glioblastoma cells were procured from 
American Type Culture Collection (ATCC). Frozen cells 
were rapidly thawed in a 37°C water bath, then slowly 
diluted using pre-warmed growth medium and plated at 
high density to optimize recovery. The cells were then 

Figure 5: Examples of TMZ-induced mutation frequency increase and subsequent mutation-inhibiting action of 
DFMO for genes involved in carcinogenesis. (A) Changes in C/T mutation frequency in TP53BP1 gene. (B) Changes in G/A 
mutation frequency in ADAM32 gene. (C) Changes in C/T mutation in GPR116 gene. (D) Changes in T/A mutation in MUC16 gene. 
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harvested and placed in T75 flasks with final cell number 
of 4 × 106 cells/flask. The flasks were incubated overnight 
in humidified incubator at 37°C with 5% CO2.

A preliminary experiment was performed to 
determine the TMZ concentrations sufficient to provide a 
viable range of exposure while maximizing cell survival 
to enable quantitation of mutation frequency by Exon-
Seq analysis. The resulting TMZ concentrations for 
three levels of this experiment were 40, 80 and 200 µM, 
respectively.

The test solutions were applied to the incubated 
U87MG cells at 37.5 μL per flask. Control set of flasks 
was treated with DMSO at concentration of 0.25% v/v in 
culture medium and the samples were tested at 3, 7 and 
14 days to provide baseline mutation frequency for the 
U87MG cell line. In parallel, another set of flasks with 
U87MG glioblastoma cells, pre-conditioned identically to 
the control was separated into three subsets, each treated 
with different concentration of TMZ: 40, 80 or 200 µM. 
The cells were incubated with TMZ solutions for 3 
days and then samples from each subset were tested to 
assess the effect of TMZ as single agent on cell mutation 
frequency. Following the TMZ treatment at three different 
concentrations for 3 days, the cells were subjected to the 
DFMO treatments at 50, 100 and 200 μM concentrations, 
respectively, for additional 11 days providing total of 14 
days of total treatment exposure. Lastly, the untreated 
cells were used to create three additional subsets that were 
not treated for the initial 3 days of experiment and were 
subjected only to DFMO treatments at 50, 100 or 200 μM 
concentrations.

After exposure, the cells were placed into new T75 
flasks to obtain cell density of 2 × 106 cells/flask and 
returned to the incubator for an additional 7 days. After 
additional incubation, the cells were re-suspended in PBS 
and centrifuged for 5 minutes at approximately 1000 rpm. 
The supernatant was removed, and the cell pellet stored at 
–80°C before it was used for Exon-Seq analysis. The cells 
harvested at different time points were counted using a 
Count-Star automated cell counter.

Exon-Seq analysis was performed per optimized 
protocol for Illumina paired-end multiplexed library 
preparation using the SureSelectXT Library Prep and 
Capture System (Agilent Technologies). DNA was 
extracted from cells (0.5 × 106) using commercial DNA 
kits according to the manufacturer`s instructions. For 
the purposes of library preparation, 300 ng genomic 
DNA concentrations were measured with the Qubit 
2.0 fluorometer dsDNA HS Assay (Thermo Fisher 
Scientific) and sheared with the Covaris LE220 Sonicator 
(Covaris) to target 150–200 bp average size. DNA 
libraries were prepared using the SureselectXT reagent 
kit (Agilent Technologies). The 3′ and 5′ overhangs on 
the DNA fragments were repaired using End repair mix 
(a component of the SureselectXT kit) and purified using 
Agencourt AMPure XP Beads (Beckman). The purified 

fragments were added with “A” tail using A tailing Mix 
and then ligated with an adapter using DNA ligase. The 
adapter-ligated DNA fragments were amplified with 
Herculase II Fusion DNA Polymerase (Agilent). Finally, 
the pre-capture libraries containing exome sequences 
were captured using the SureSelect capture library kit 
(Agilent). For Illumina sequencing, DNA concentration 
of the enriched sequencing libraries was measured with 
the Qubit 2.0 fluorometer dsDNA HS Assay (Thermo 
Fisher Scientific). Size distribution of the resulting 
sequencing libraries was analyzed using the Agilent 
BioAnalyzer 2100 (Agilent). The libraries were used in 
cluster formation on an Illumina cBOT cluster generation 
system with HiSeq PE Cluster Kits (Illumina). Paired-
end sequencing was performed using an Illumina HiSeq 
system following Illumina-provided protocols for 2 × 150 
paired-end sequencing. This PCR based amplification 
method provided a relative number (e.g., fluorescence 
intensity) for each nucleotide polymorphism detected. 
This represents the comparative frequency of each 
mutation across samples (e.g., mutation frequency). The 
mutation frequency results were analyzed for 13,040 
nucleotide polymorphisms across 6,455 genes that have 
been previously identified as potentially cancer related 
based on their description in the Catalogue of Somatic 
Mutations in Cancer (COSMIC) database. 
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