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ABSTRACT
While many resources exist for the drug screening of bladder cancer cell lines in 

2D culture, it is widely recognized that screening in 3D culture is more representative 
of in vivo response. Importantly, signaling changes between 2D and 3D culture can 
result in changes to drug response. To address the need for 3D drug screening of 
bladder cancer cell lines, we screened 17 bladder cancer cell lines using a library of 
652 investigational small-molecules and 3 clinically relevant drug combinations in 
3D cell culture. Our goal was to identify compounds and classes of compounds with 
efficacy in bladder cancer. Utilizing established genomic and transcriptomic data for 
these bladder cancer cell lines, we correlated the genomic molecular parameters with 
drug response, to identify potentially novel groups of tumors that are vulnerable to 
specific drugs or classes of drugs. Importantly, we demonstrate that MEK inhibitors 
are a promising targeted therapy for the basal subtype of bladder cancer, and our 
data indicate that drug screening of 3D cultures provides an important resource for 
hypothesis generation.

INTRODUCTION

Bladder cancer is the most frequent cancer of the 
urinary system in the United States with nearly 82,000 
new cases each year and 18,000 deaths, affecting men 
more often, in a 3:1 ratio [1]. Bladder cancer can be 
divided broadly into non-muscle invasive bladder cancer 
(NMIBC) and muscle invasive bladder cancer (MIBC). 
MIBC can be further sub-divided at the molecular level 
by the expression of RNA biomarkers between classes, 
that define basal and luminal characteristics [2–8]. The 
standard of care for intermediate- to high-risk NMIBC has 
been Bacille Calmette-Guerin (BCG) since its introduction 
in 1976, with cystectomy as the recommended standard of 
care in refractory, high risk disease [9, 10]. While NMIBC 
makes up 70–80% of total cases, tumor recurrence is 
frequent and ~30% of cases progress to MIBC [11]. 
Neoadjuvant chemotherapy prior to radical cystectomy 

(RC) for MIBC is the standard of care, though the absolute 
survival benefit is small, and some patients progress 
during chemotherapy [12]. While progress has been 
made in the prediction of sensitivity to platinum-based 
chemotherapies [13, 14], identifying targeted therapies 
specific to each patient remains a critical need for those 
patients who progress during chemotherapy and/or after 
cystectomy.

There have been several large-scale screening 
efforts in bladder cancer cell lines using 2D cultures. 
The Broad Institute Cancer Cell Line Encyclopedia 
(CCLE) has characterized 56 urinary tract carcinomas 
and screened many of these cell lines against 24 drugs 
[15, 16]. The Genomics of Drug Sensitivity in Cancer 
(GDSC) represents one of the largest efforts in total 
drugs, screening 19 bladder cancer cell lines against 518 
drugs [16, 17]. Additional efforts to identify therapeutic 
targets in bladder cancer include CRISPR screening and 
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epigenetic approaches [18–20]. However, we now know 
that screening in 3D culture is superior to 2D culture, with 
improved in vivo relevance [21–26]. Indeed, screening in 
3D using ultra-low attachment plates is ideal for bladder 
cancer cell culture [27], and this method has been utilized 
in seminal studies for screening patient-derived organoids 
(PDOs) to predict patient response to drug treatments [28, 
29]. While direct screening of patient material is cutting 
edge and most representative of drug response for that 
particular patient, such material is typically very limited, 
which restricts the size of a potential drug screening 
library. Additionally, bladder cancer cell lines have 
undergone comprehensive molecular profiling allowing 
rapid correlational pairing of molecular profile with 3D 
phenotype [7]. Therefore, there is utility in screening 
bladder cancer cell lines in large drug screens in 3D 
cultures to identify novel therapeutic options for future 
testing in PDOs and, ultimately, patients.

In this work, we treated 17 established bladder 
cancer cell lines with 652 investigational small-molecules 
and 3 clinically relevant combinations in 3D cell culture. 
From this screening, we identified compounds and classes 
of drugs with promising efficacy in bladder cancer. Then, 
utilizing established genomic and transcriptomic data 
for these bladder cancer cell lines, including prioritized 
mutations, copy number variants, and RNA-based 
molecular subtyping [7, 15], we correlated these molecular 
parameters with drug response to identify potentially 
novel groups of tumors that are vulnerable to specific 
drugs or classes of drugs. Importantly, we showed that 
MEK inhibitors are a promising targeted therapy in basal 
subtype bladder cancer cell lines, and our data indicate 
that drug screening of 3D cultures provides an important 
resource for future hypothesis generation.

RESULTS

3D drug screen in bladder cancer cell lines

To examine bladder cell line drug sensitivity, we 
screened 17 cell lines against 652 investigational small-
molecules and 3 clinically relevant combinations in 3D 
cell culture. From this drug sensitivity data, we calculated 
a drug sensitivity score 3 (DSS3) for each compound, 
an advanced drug sensitivity metric that uses the IC50, 
maximum inhibition, and drug concentration range to 
score drug sensitivity from 0 (no effect) to 100 (complete 
effect), Supplementary [30]. We plotted the average and 
standard deviation for each drug across the 17 cell lines 
to visualize the DSS3 spread in data, Figure 1. Scores of 
> 59 are considered “very active”, 30–59 “active”, 21–29 
“semi-active”, 9–20 “low active”, and < 9 “inactive” [30]. 
From our drug screening, we identify 3 drugs (0.5%) as 
very active, 30 drugs (4.6%) as active, 20 drugs (3.0%) 
as semi active, 56 drugs (8.5%) as low active, and the 
remaining 547 (83.4%) as inactive (Supplementary).

We identify romidepsin, bortezomib, and triptolide 
as “very active” compounds across the 17 bladder cancer 
cell lines, on the basis of their DSS3. Romidepsin is a 
histone deacetylase (HDAC) inhibitor with an average 
DSS3 of 80.5 and a standard deviation of 12.1. HDAC 
inhibitors have been reported previously as potential 
therapeutic in bladder cancer and our results identify 
romidepsin and panobinostat (an “active: compound) as 
active pan-HDAC inhibitors. Bortezomib is a proteasome 
inhibitor with an average DSS3 of 79.4 and a standard 
deviation of 10.8. Proteasome inhibitors have been 
reported as potential therapeutics based on promising pre-
clinical data and we identify bortezomib and delanzomib 
(an “active” compound) as potent proteasome inhibitors. 
Triptolide is an inhibitor of RNA polymerase I and II–
dependent transcription with an average DSS3 of 62.2 and 
a standard deviation of 8.2. The 30 “active” compounds 
include both chemotherapeutics and targeted agents, many 
of which are currently utilized in the treatment of bladder 
cancer, such as gemcitabine, paclitaxel, vinblastine, and 
doxorubicin.

We screened three therapeutically relevant 
combinations with the top dose as the Cmax of each 
compound, serially diluted 1:5 to generate a dose response 
curve. For the combination of methotrexate, vinblastine, 
doxorubicin, and cisplatin (MVAC), a standard of care 
therapy in first-line therapy in MIBC, we observe a large 
spread in response, with a standard deviation in the DSS3 
of 20.2. Four cell lines have a DSS3 as “active” or “very 
active” with most responses however, in the range of low 
active (8/17 cell lines). The overall average DSS3 for 
MVAC is 19.9. Because the top dose of the combinations 
is the Cmax, a better measure of therapeutic response 
for these combinations is the maximum response, 
which ranges from 52% to 100% in these cell lines 
(Supplementary), with an average of 81.1. The cisplatin 
and gemcitabine, alternative first line or second line 
combination, has a similar spread in data (DSS3 standard 
deviation = 15.2), but lower DSS3 values (average DSS3 
= 8.2), and a wider spread in maximum response (0% 
to 100%, average = 65.0). Carboplatin and paclitaxel, 
another common first-line therapy, had the largest average 
DSS3 value and spread in data (average = 36.9, standard 
deviation = 22.7), but the lowest average maximum 
response of 53.9.

Genomic correlates of drug sensitivity in 3D 
bladder cancer cell line cultures

We utilized DNA and RNA sequencing data 
previously published by our group, and the CCLE to 
examine the impact of molecular characteristics on 
drug sensitivity in these cell lines (see Materials and 
Methods for details), Figure 2 [7, 15]. As expected, the 
most prevalent somatic alteration in these bladder cancer 
cell lines was inactivating TP53 mutations, which were 
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present in 14/17 cell lines, typically accompanied by 
loss of heterozygosity (LOH). We found that TP53 
homozygous-mutant cell lines were more sensitive to 
onalespib (an Hsp90 inhibitor) and clofarabine (a purine 
nucleoside anti-metabolite) than TP53 wild-type (WT) 
cells, Supplementary Figure 1. The next most frequent 
mutations were oncogenic activating PIK3CA and FGFR3 
mutations, which were present in 5/17 and 3/17 cell lines, 
respectively. We sought to identify drugs where there 
was a significant difference in DSS3 between groups 
(mutant and WT) and at least one group had a DSS3 > 10, 
identifying only AZD-8186 as more effective in PIK3CA 
WT cell lines, Supplementary Figure 2. If we include 
PTEN deletion with the PI3K group, because PTEN 
negatively regulates PI3K, we lose the correlation with 
AZD-8186 and instead observe a single robust correlate 
for MLN2238 (a proteasome inhibitor), Supplementary 
Figure 3. FGFR inhibitor response was not correlated 
with FGFR3 mutation status for any of the FGFR 
inhibitors in the panel (erdafitinib, AZD4547, BGJ398, 
and CH5183284). There were an additional 13 mutations 
present in 1-2 cell lines, including inactivating CDKN2A, 
RB1, and PTEN mutations with LOH and activating 
oncogenic ERBB2, AKT1, HRAS, and KRAS mutations. 
We did not observe increased ERBB2 inhibitor (lapatinib, 
canertinib, sapatinib, mubritinib, GW2580, dacomitinib, 
and WZ4002) sensitivity in ERBB2 activating mutant 
cell lines, in contrast to similar studies using 2D cell 
culture [31]. The AKT1 mutated PDX cell line (BC8149) 

is sensitive to many PI3K/AKT/mTOR inhibitors, while 
HRAS and KRAS mutated lines (T-24 and UM-UC-3) are 
largely insensitive to most PI3K/AKT/mTOR inhibitors.

We integrated the somatic mutation and CNA status 
to generate mutant groups for comparison. Combining 
CDKN2A loss-of-function mutants with CDKN2A 
CNA deep-deletion, we observe significant correlations 
with CDKN2A loss and poor response to cladribine or 
clofarabine, both purine analogs, as well as panobinostat 
and mocetinostat, both HDAC inhibitors, Supplementary 
Figure 4. If we combine RB1 loss-of-function mutants 
with RB1 CNA deep-deletion, we observe a significant 
correlation with RB1 loss and average drug sensitivity, 
where cells with RB1 loss respond more favorably to 
targeted agents and chemotherapeutics, Supplementary 
Figure 5.

MEK inhibition correlates with basal subtype in 
bladder cancer cell lines

We next wanted to determine if bladder cancer 
subtype correlated with drug response. Cell lines were 
classified as luminal, basal, null, or mixed based on RNA 
sequencing and B-L scoring [7, 32] (see Materials and 
Methods for details). We observed a strong correlation 
with MEK response in basal bladder cancer, Figure 3. 
Across 8 MEK inhibitors, we observed this same trend, 
with 2 very active inhibitors, 2 semi-active inhibitors, 3 
low active inhibitors, and 1 inactive, but with a measurable 

Figure 1: Distribution of drug sensitivities across bladder cancer cell lines. 652 investigational drugs and 3 clinically relevant 
combinations were tested against 17 bladder cancer cell lines in 3D cell culture. Drugs are ordered along x-axis by average drug sensitivity 
(DSS3), starting with the most sensitive drug. Black circles indicate average DSS3 and brackets indicate standard deviation across the 17 
cell lines.
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response. The very active MEK inhibitors, Trametinib and 
TAK-773, both had a significantly higher MEK DSS3 in 
basal cell lines vs. other subtype, Figure 4A and 4B. When 
we normalized the response for all 8 MEK inhibitors, 
we saw both a significant difference in MEK response 
in basal vs. other (all remaining subtypes clustered, as 
well as basal vs. each other subtype, Figure 4C. Average 
drug response does not correlate with bladder subtype, 
Figure 4D. In agreement with this finding, we tested 
another basal bladder cancer cell line, UM-UC-13, and 
observed excellent anti-proliferative activity with MEK 

inhibitors (Supplementary Table 1). The only other drug 
response that we found to correlate with subtype was 
atuveciclib, a PTEFb/CDK9 inhibitor, with the basal 
subtype, Supplementary Figure 6.

DISCUSSION

There is an increasing amount of literature that 
shows growing cells in 3D culture offers advantages over 
2D, most importantly in that 3D cell culture signaling 
is more faithful of in vivo signaling [21–26]. This 

Figure 2: Genomic landscape of bladder cell lines. Bladder cancer subtype is indicated across the top row with each column 
representing an individual cell line. B-L Score was calculated from normalized RNA sequencing and is shown as a gradient from luminal 
(yellow) to basal (blue). Average drug sensitivity shows the average DSS3 across all drugs for each cell line. Mutation and genotype are 
indicated for all prioritized mutations present in 1+ cell line. CNA are indicated for high level amplifications (≥ 2 copy gain) and deep 
deletions (≥ 2 copy loss) in 1+ cell line.
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distinction is critical because we found many key drugs 
have differential responses when comparing 2D and 3D 
screening results, even when all other components of 
the assay are identical (Supplementary Figure 7). These 
changes in signaling in 3D can lead to differential drug 
response in key cancer pathways [33]. Screens in 2D can 
both identify false lead compounds and miss identifying 
compounds that have a profound effects. There are a 
number of existing resources for drug screening bladder 
cell lines in 2D [15–17]; thus, the goal of this work is 
to contribute to the field by providing a large screening 
resource in 3D culture. While there have been many 
advances in screening bladder cancer patient-derived 
organoids (PDOs) [28, 29, 34], PDOs are a limited 
resource, and a gap remains in how to identify the best 
compounds from approved or IND-stage, drugs to test in 
screens.

In this work, we screened 652 investigational 
compounds and 3 clinically relevant combinations 
using 17 bladder cancer cell lines. The 652 compounds 
mostly comprise investigational new drugs or drugs 
that are approved for other cancer indications. The 
combinations tested were those most commonly used in 

the clinic, namely MVAC, cisplatin with gemcitabine, and 
carboplatin with paclitaxel [35–37]. It was notable that the 
DSS3 of the carboplatin and paclitaxel combination was 
superior to both MVAC and cisplatin with gemcitabine, 
but the maximum efficacy was lower for nearly all cell 
lines. These data are confirmation of what is seen in the 
literature, that carboplatin with paclitaxel is a preferred 
therapy following failure of standard of care [37].

Nearly 17% of the drugs tested showed some level 
of efficacy, as determined by the DSS3, Figure 1 [30]. 
Many of the compounds identified in this screen as the 
most efficacious have been previously implicated in 
bladder cancer. Romidepsin has been extensively studied 
in bladder cancer preclinical models, showing promise 
[38–41]. A Phase II clinical trial of romidepsin in bladder 
cancer was withdrawn (NCT00087295), tempering 
expectations of this drug in bladder cancer; however, 
recent work has shown that romidepsin spares normal cells 
and acts as a radiosensitizer in bladder cancer, opening 
the door for future studies with this drug [42]. Bortezomib 
has been studied in bladder cancer and failed a Stage II 
clinical trial, determined to be safe but not efficacious as 
a second line therapy [43]. Triptolide has been studied 

Figure 3: MEK inhibitors show strongest response in basal bladder cell lines. Bladder cancer subtype is indicated across the 
top row with each column representing an individual cell line. B-L Score was calculated from normalized RNA sequencing and is shown 
as a gradient from luminal (yellow) to basal (blue). Average drug sensitivity shows the average DSS3 for each cell line. Average DSS3 of 
MEK inhibitors for each cell line shown with average DSS3 > 0. MEK inhibitors ordered by average basal response with the best response 
at the top. Basal cell lines marked with bolded rectangle.
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within a combination therapy in bladder pre-clinical 
studies [44, 45]. Though there are no current clinical trials 
with this drug, our results confirm previous literature that 
it is a promising investigational compound in bladder 
cancer and may warrant further studies. Many of the 30 
“active” compounds (such as gemcitabine, paclitaxel, 
vinblastine, and doxorubicin) are currently used in the 
standard treatment of bladder cancer, further supporting 
the validity of our approach to be empirically concordant 
with the clinical setting. We believe that many of the 
remaining compounds may be worthy of further study, 
including screening in patient-derived organoids.

Utilizing previous sequencing efforts, we wanted 
to determine the impact of mutations and CNA on drug 
response. In particular, DNA alterations are utilized in the 
clinic in many basket clinical trials, such as the MATCH 
trial (NCT02465060) [46]. We find that bladder cell lines 
have a very heterogeneous mutational spectrum, with most 
prioritized mutations only present in 1–2 cell lines, Figure 
2, consistent with current literature [47]. For mutations 
found in 3+ cell lines, we identify correlates with TP53 
and PIK3CA mutation status. We identify onalespib and 
clofarabine as significantly more efficacious in TP53 
mutant cell lines compared to wildtype, Supplementary 
Figure 1, a novel finding. Paradoxically, in the PIK3CA 

mutants, we identify that AZD-8186 responds best in 
PIK3CA WT cells, Supplementary Figure 2. This is the 
opposite of what we would predict clinically [48, 49]; 
however, it is important to note that AZD-8186 is one 
of many PI3K inhibitors in our drug screen, and other 
PI3K inhibitors with better efficacy (e.g., gedatolisib) 
show no significant difference in DSS3 between groups, 
supporting that PI3K mutation status alone is unlikely to 
be a predictor of which PI3K pathway modulating drug 
to use. When we incorporate PTEN mutation and CNA 
data, the correlation is no longer significant and we instead 
see a correlation with the Aurora inhibitor, MLN228, 
where the drug is most effective in wildtype cells, 
Supplementary Figure 3. It is notable that in neither the 
mutational nor mutational and CNA combination do we 
see correlations with PI3K inhibitors. Similarly, we fail to 
observe significant correlations of FGFR3 mutation with 
FGFR inhibition response, ERBB2 mutation with ERBB2 
inhibition response, or HRAS and KRAS mutation and 
PI3K/AKT/mTOR inhibitor response. Taken together, our 
findings emphasize the great need for biomarkers of drug 
response in bladder cancer.

Integration of mutational and CNA data greatly 
improved our ability to identify correlations of drug 
response. CDKN2A loss correlated with relatively poor 

Figure 4: MEK inhibitor response correlates with basal subtype. Average and standard deviation for DSS3 response to (A) 
Trametinib, (B) TAK-733, (C) Normalized MEK inhibitors, and (D) Average drug response, grouped by cell line subtype. Each point 
represents an individual cell line. Center line is average and brackets are standard deviation. Significance determined using Mann-Whitney 
test, *p < 0.05, or Kruskal-Wallis with Dunn test for multiple comparisons, ***p < 0.001.
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response to purine analogs as well as HDAC inhibitors. 
The purine analog result is counter to what one may 
expect, because CDKN2A deletion is known to increase 
the cell cycle, and the two drugs would be expected to 
have a more profound effect in highly proliferative 
cells [50, 51]. It is known however, that these drugs are 
effective in lowly proliferating lymphocytes [52, 53], 
and thus it is possible that they are effective in CDKN2A 
WT cells through a mechanism unrelated to proliferation. 
Previous literature has shown that some HDAC inhibitors 
are less efficacious in cells with TP53 loss, suggesting that 
different HDAC inhibitors have a differential dependence 
on TP53 status [54]. RB1 loss significantly correlated 
with average drug response across the 17 cell lines, 
Supplementary Figure 5. It has been established that RB1 
status predicts response to cisplatin-based chemotherapy 
in bladder cancer [55, 56]. Our data suggest that this trend 
may hold for additional mechanisms of cell death.

MEK inhibition has been proposed as a promising 
treatment option in NMIBC by a mechanism related to 
enhancing the efficacy of BCG therapy [57]. Additionally, 
MEK inhibition has been proposed as a promising strategy 
in bladder cancers with high expression of KIF15, which 
upregulates the MEK pathway [58]. Pre-clinical work 
in bladder cancer [49, 59] and extensive studies in other 
cancers [60–63] suggest that MEK inhibition could be a 
potential combination approach to PI3K/AKT/mTOR 
inhibition, by targeting a parallel compensatory pathway. 
Despite these reports, the only clinical trial that utilizes 
MEK inhibition in bladder cancer is the ongoing MATCH 
screening trial in advanced solid tumors (NCT02465060), 
using mutation status of BRAF, GNA11, and NF1 to 
identify potential responders to the MEK inhibitor, 
Trametinib. These results suggest an opportunity to identify 
a population where MEK inhibition could be a particularly 
promising treatment strategy in bladder cancer.

Our panel of 17 cell lines have no prioritized 
mutations in BRAF, GNA11, or NF1, yet a subgroup 
responds very well to MEK inhibition. We identify 
the strongest responding cell lines as basal bladder 
cancer subtype, Figures 3 and 4. Basal bladder cancer is 
frequently clinically aggressive and has the worst overall 
prognosis [3], and thus, additional therapeutic options 
for these tumors would be highly clinically relevant. One 
cell line has a high-level EGFR amplification and another 
has an activating KRAS mutation, but the remaining 
two cell lines do not have molecular changes that would 
a priori indicate MEK sensitivity, including SCaBER, 
which is frequently the most sensitive cell line to MEK 
inhibitors. Only one other drug, atuveciclib (PTEFb/
CDK9 inhibitor) (Supplementary Figure 3), was identified 
as significantly more effective in basal cell lines of drugs 
with and average DSS3 > 10 for basal bladder cancer, 
while 4 individual MEK inhibitors are significantly 
more effective in basal bladder cell lines, using the same 
criteria. Further, normalizing all MEK inhibitors with an 

average DSS3 > 0 and plotting them together, the basal 
subtype is significantly more sensitive to MEK inhibition 
than any other subtype, Figure 4C. Previous work in breast 
cancer has identified basal breast cancer as particularly 
susceptible to MEK inhibition, and importantly notes a 
PI3K feedback loop that requires combination inhibition 
to overcome the compensatory signaling [64]. Overall, 
this work strongly supports that MEK inhibitors should 
be explored as a potential therapeutic for bladder tumors 
with a basal signature that are refractory to standard of 
care therapy, particularly in combination with an inhibitor 
of parallel signaling.

In summary, this work is a valuable resource for 
the identification of experimental therapeutics in bladder 
cancer, having screened 652 investigational therapeutics 
and 3 drug combinations in 17 bladder cancer cell lines, 
using a 3D cell culture format. As next steps, we pose that 
this work be used to further test additional therapeutic 
options for patients with bladder cancer. Moreover, this 
work highlights a need for biomarkers of drug response, 
beyond mutational data. Lastly, using these methods, 
we identify MEK inhibitors as a promising therapeutic 
in the basal bladder cancer subtype. Important future 
work will investigate the specific molecular features of 
the basal subtype that make these cells more sensitive to 
MEK inhibition, and if this MEK sensitivity signature is 
applicable to other cancer subtypes.

MATERIALS AND METHODS

Cell culture

Cells used in this manuscript have all been 
previously published and include: 5637, UM PDX 
BC8149, J82, SCaBER, SW780, T-24, TCCSUP, UM-
UC1, UM-UC-3, UM-UC-5, UM-UC-6, UM-UC-9, 
UM-UC-12, UM-UC-14, UM-UC-15, UM-UC-17, and 
UM-UC-18. 5637, J82, SCaBER, SW780, and TCCSUP 
were purchased from ATCC and expanded under ATCC 
recommended conditions. Remaining cell lines were 
expanded in HyClone DMEM w/ glutamine (Thermo 
Fisher Scientific), 10% HyClone FBS (Thermo Fisher 
Scientific), Penicillin-Streptomycin (Thermo Fisher 
Scientific), amphotericin b (Thermo Fisher Scientific), 
and gentamicin (Thermo Fisher Scientific) at 5% CO2. 
All cell lines were drug tested in 3D growth media: 
DMEM (Thermo Fisher Scientific), 10% FBS (Thermo 
Fisher Scientific), 1% matrigel (Corning), B-27 (Thermo 
Fisher Scientific), anti-anti (Thermo Fisher Scientific), 
gentamicin (Thermo Fisher Scientific), Human EGF (25 
ug/500 ml) (Sigma Aldrich), Human Heregulin β-1 (25 
ug/500 ml) (Stemcell Technologies), Human KGF (FGF-
7)(5 ug/500 ml) (Stemcell Technologies), Human FGF-10 
(5 ug/500 ml) (Stemcell Technologies), Human Noggin 
(50 ug/500 ml) (Stemcell Technologies), Human RSPO1 
(250 ug/500 ml) (Stemcell Technologies) at 10% CO2.
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Chemicals and reagents

Chemicals were purchased from Selleckchem 
(Houston, TX, USA), Sigma-Aldrich (St. Louis, MO, 
USA), Cayman Chemical (Ann Arbor, MI, USA), and 
Med Chem Express (Monmouth Junction, NJ, USA). 
Included is the Selleckchem L-3500 screening library, the 
highly selective inhibitor library of 339 inhibitors covering 
123 targets. Compounds were diluted in DMSO (Sigma-
Aldrich, D2650) or water, depending on solubility, except 
for copanlisib which was diluted in 10% Trifluoroacetic 
acid in DMSO due (Sigma-Aldrich, T6508). Compounds 
were prepared as a 10 mM solution unless solubility 
constraints required lower concentrations.

Drug screening

Cells were screened in 384-well ultra-low 
attachment plates (Corning, 4516 or S-Bio, MS-9384WZ) 
in singlicate or duplicate, 7-point dose-response format. 
Cells were plated on day 0 at 3000 cells per well. On 
day 0, drugs were added at 1:1000 using a 50 nl pin tool, 
resulting in 0.1% final DMSO concentration per well. 
On day 5, viability was measured using CellTiter-Glo 3D 
(Promega, G9683) on an Envision plate reader (Perkin 
Elmer).

Drug sensitivity score calculation

Drug dose response data were fit to the equation 
Y = bottom + (top − bottom)/(1 + 10(Log10IC50-X) × 
HillSlope) where X = Log10 (concentration, M) and Y = 
% inhibition (vs. vehicle) using CDD Vault. Constraints 
used were bottom = 0 and top ≤ 100. DSS3 values were 
calculated as described by Yadav et al. [30]. IC50 value, 
hillslope, maximum inhibition, and drug range were 
entered into the DSS package for Rstudio and DSS3 values 
(ranging 0 to 100) were calculated.

Prioritized somatic variants and copy number 
alterations

For all cell lines except SCaBER and TCCSUP, 
next-generation DNA sequencing (DNAseq) data using 
a targeted pan-cancer assay (Oncomine Comprehensive 
Panel) was previously published by our group [7, 65]. 
Briefly, OCP targets hotspot regions in recurrent mutated 
oncogenes (e.g., BRAF exon 15) and the entire coding 
region of tumor suppressor genes (e.g., TP53, etc.); 
well-supported variants with established or presumptive 
oncogenic roles were considered prioritized mutations. 
For a subset of genes with recurrent CNA, OCP targets 
genomic regions across the gene body to detect copy 
number gains and losses [65]; for the purposes of this 
study, only high-level amplifications (≥ 2 copy gain) or 
deep deletions (2 copy loss) were considered prioritized. 

For the SCaBER and TCCSUP cell lines, genome-wide 
somatic mutation and CNA data was obtained from the 
CCLE via cBioPortal for Cancer Genomics (http://www.
cbioportal.org/) [66] and reviewed by an experienced 
molecular pathologist (A.M.U.); only prioritized 
molecular alterations (as described above) occurring 
within the targeted regions of OCP were included for 
subsequent analyses.

RNA-based molecular subtyping

All transcriptomic data utilized in this study was 
generated from 2-D cultures using standard growth 
conditions. For all cell lines except SCaBER and TCCSUP, 
gene-level FPKM values were generated from whole-
transcriptome next-generation RNA sequencing (RNAseq) 
data as described previously [31]; for the SCaBER and 
TCCSUP cell lines, gene-level RPKM values derived from 
whole-transcriptome RNAseq data were obtained directly 
from the CCLE database (portals. broadinstitute. org/ccle) 
[67]. All FPKM and RPKM values were log2-transformed, 
and sample-level gene expression Z-scores were generated 
for inter-sample standardization and comparison. For each 
sample, the Basal-Luminal (B-L) score was calculated as 
the average of basal gene expression less the average of 
luminal gene expression, as described previously [7, 32]. 
Basal genes included CD44, CDH3, EGFR, TP63, KRT14, 
KRT16, KRT5, KRT6A, and KRT6B, while luminal genes 
included ERBB2, FGFR3, FOXA1, GATA3, KRT19, KRT20, 
PPARG, UPK1B, UPK2, and UPK3A. The median B-L score 
across all samples was -0.15 (inter-quartile range = −0.39 to 
0.55). All samples were assigned a molecular subtype based 
on their B-L score, as well as the average expression across 
all basal and luminal genes: B-L score > 0.55 was classified 
as “basal” subtype; B-L score < −0.39 was classified as 
“luminal” subtype; −0.39 ≤ B-L score ≤ 0.55 was classified 
as “mixed” subtype; and, average expression < 0 across all 
basal and luminal genes was classified as “null” subtype.

Correlations and statistics

Significant differences in groups were first 
identified by using the kruskalwallis function in R to 
prioritize compounds. Results were then filtered to 
eliminate compounds that had an average DSS3 < 10 for all 
groups. Remaining significant differences were validated 
in GraphPad Prism 7 using either a Mann-Whitney test 
(2 groups) or a Dunn test (3+ groups). MEK inhibitor 
normalization was carried out using the scale function in 
R. Normalized heat maps were generated using Morpheus 
(Broad Institute).
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