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ABSTRACT
Epithelial ovarian cancer (OVCA) is the most lethal gynecologic cancer. Current 

treatment for OVCA involves surgical debulking of the tumors followed by combination 
chemotherapies. While most patients achieve complete remission, many OVCA will 
recur and develop chemo-resistance. Whereas recurrent OVCA may be treated by 
angiogenesis inhibitors, PARP inhibitors, or immunotherapies, the clinical outcomes 
of recurrence OVCA are still unsatisfactory. One new promising anti-tumor strategy 
is ferroptosis, a novel form of regulated cell death featured by lipid peroxidation. In 
this review, we have summarized several recent studies on the ferroptosis of OVCA. 
Also, we summarize our current understanding of various genetic determinants of 
ferroptosis and their underlying mechanisms in OVCA. Furthermore, ferroptosis can 
be combined with other standard cancer therapeutics, which has shown synergistic 
effects. Therefore, such a combination of therapeutics could lead to new therapeutic 
strategies to improve the response rate and overcome resistance. By understanding 
the genetic determinants and underlying mechanisms, ferroptosis may have significant 
therapeutic potential to improve the clinical outcome of women with OVCA.

CURRENT THERAPEUTIC STRATEGIES 
FOR ADVANCED OVARIAN CANCER 

Epithelial ovarian cancer (OVCA) originates from 
a layer of cells covering the surface of the ovaries or 
fallopian tubes and accounts for ~90% of the primary 
ovarian tumors [1]. Throughout the world, OVCA is the 
most lethal gynecologic cancer, with 46% survival five 
years after diagnosis [2]. NCI Seer data (https://seer.
cancer.gov/) predict that approximately 21,750 American 
women will be diagnosed with OVCA in 2020, which 
will lead to the death of 13,940 American women.  The 
diagnosis of OVCA is challenging due to the vague and 
non-specific symptoms at the initial stage. Thus, OVCA is 
often misdiagnosed as other common ailments. Moreover, 
due to the deficiency of early-stage OVCA screening 
strategies, the correct diagnosis of OVCA usually occurs 
at advanced stages, resulting in poor prognosis and low 
survival rate [3, 4].  For most low-grade OVCA confined 
in ovaries and pelvis, a debulking surgery is curative. For 

high-grade OVCA, standard therapy involves surgical 
debulking of the tumors followed by combination 
chemotherapies with carboplatin and paclitaxel [5]. Most 
patients initially respond favorably to this combined 
treatment and achieve remission [6].  However, in many 
cases, tumors will eventually recur, and recurrent tumors 
will become resistant to chemotherapies, which were 
effective for primary tumors.  Therefore, angiogenesis 
inhibitors, PARP inhibitors, and immunotherapies are 
employed to treat recurrent OVCA [7, 8].

Angiogenesis inhibitors aim to inhibit the growth 
of new blood vessels in tumors by blocking the vascular 
endothelial growth factor (VEGF), VEGF receptors, 
or its downstream signaling pathway [9]. In most solid 
tumors, including OVCA, the uncontrolled tumor 
growth, combined with inadequate blood perfusion, 
leads to low tumor pO2, tumor hypoxia, and other tumor 
microenvironmental stresses [10–13]. Hypoxia triggers 
the HIF-mediated hypoxia gene expression program that 
leads to the invasion, migration, and metastasis of tumor 
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cells [14–16]. Tumor hypoxia also induces abnormal 
angiogenesis, creates dysregulated blood vessel networks 
defective in drug delivery and contributes to chemo-
resistance [14–16]. Therefore, angiogenesis inhibitors, 
such as bevacizumab, may normalize tumor blood 
vessels, mitigate tumor hypoxia, and restore response to 
chemotherapeutics [17]. 

Poly (ADP-ribose) polymerases (PARPs) are a 
family of proteins that catalyze the transfer of ADP-ribose 
to target proteins (poly ADP-ribosylation). PARPs mediate 
many biological processes, including the repair of single-
strand break (SSBs) through base excision repair [18]. 
PARP inhibitors, such as Olaparib and Rucaparib, have 
emerged as effective treatments for a subset of OVCA 
bearing mutations in BRCA1 and BRCA2 [18]. Both 
BRCA1 and BRCA2 proteins promote homology-directed 
repair (HDR) of DNA double-strand break (DSB) [19]. 
Therefore, BRCA1 and BRCA2 mutations lead to defects 
in DNA DSB repair, rendering these BRCA1 and BRCA2 
mutated cells rely on a PARP-mediated DNA repair 
pathway. Hence, they are highly sensitive to the death 
caused by PARP inhibitors [20, 21]. In contrast, healthy 
cells with intact BRCA1/BRCA2 are not susceptible to 
PARP inhibitors, creating the synthetic lethal relationship 
and significant therapeutic window [20, 21]. Olaparib was 
initially approved for maintenance for BRCA-mutated 
recurrent OVCA [18]. Recently, the FDA expanded the 
approval of Olaparib and bevacizumab as the front-line 
treatment for women with advanced ovarian cancer [22].

Immune checkpoint blockade is a powerful new 
therapeutic option for many cancers [23]. The most 
common immune checkpoint blockage refers to blocking 
immune inhibitory receptors (CTLA4, PD1 on T cells, 
or PDL1 on tumor cells and tumor-infiltrating immune 
cells) using antagonistic antibodies. Programmed 
death 1 (PD1) and its ligands PDL1 and PDL2 play a 
key role in dampening T cell responses in the tumor  
[24–26]. Blocking the PD1/PDL1 inhibitory axis allow the 
CD8+ CTL to attack tumor cells, leading to a sustained 
anti-tumor response. However, the clinical responses of 
advanced OVCA to immunotherapy are unsatisfactory, 
with response seen in only 10–25% patients [27–31]. 
Therefore, there are increasing interests in combining other 
novel therapeutic approaches with the immune checkpoint 
blockade to improve response rate and efficacy.

FERROPTOSIS–A NOVEL FORM OF 
REGULATED CELL DEATH WITH 
SIGNIFICANT THERAPEUTIC POTENTIAL

Even with all these advancements, clinical 
outcomes of advanced OVCA are still unsatisfactory [7]. 
Therefore, new therapeutic options are urgently needed. 
One new strategy to eliminate tumor cells is to identify 
and target their metabolic Achilles’ heel and specific 
nutrient preference [32]. Cystine deprivation of cancer 

cells with specific cellular origins and somatic mutations 
triggers ferroptosis, a novel form of regulated cell death 
characterized by lipid peroxidation [33, 34]. Ferroptosis 
was first uncovered during the investigation of the death 
mechanisms induced by erastin, an agent that was selected 
based on its ability to selectively eradicate RAS-mutated 
cancer cells [33]. Since then, significant progress has 
been made in understanding the biological processes and 
genetic determinants of ferroptosis, as summarized in 
some excellent reviews [35–38]. Here we review some 
key players relevant to the ferroptosis of OVCA.

GPX4 and FSP1 mediate two ferroptosis 
protection pathways

There are two known ferroptosis protection 
mechanisms mediated by glutathione peroxidase 4 (GPX4) 
and ferroptosis suppressor protein 1 (FSP1). Both proteins 
neutralize ROS and prevent lipid peroxidation. GPX4 is a 
phospholipid hydroperoxidase that protects cells against 
membrane lipid peroxidation using glutathione (GSH) 
as its cofactor. Therefore, ferroptosis can be triggered by 
either the depletion of GSH or direct inhibition of GPX4.  
RSL3 and several other ferroptosis-inducing agents (FINs) 
[39] induce ferroptosis by blocking the function of GPX4 
downstream of the NADPH-GSH that supply the cofactors 
for GPX4.

Many ferroptosis-inducing agents work by the 
depletion of GSH or cysteine. For example, erastin is 
an xCT inhibitor that induces ferroptosis by preventing 
cystine import and depleting GSH. Similarly, the cystine 
deprivation also leads to GSH depletion and death in 
a subset of cystine-addicted cancer cells [40–42]. In 
contrast, enhanced GSH synthesis upon the activation of 
NRF2 by various mechanisms would protect cells from 
ferroptosis [43, 44]. 

Several pathways can also compensate for the 
cystine deprivation and rescue ferroptosis. Upon cystine 
deprivation or xCT inhibitors, the cysteine can be generated 
by the transsulfuration pathway to prevent ferroptosis. For 
example, a forward genetic screen revealed that the removal 
of cysteinyl-tRNA synthetase (CARS) protected ferroptosis 
[45]. This protection occurred through the induction of 
the transsulfuration pathway to replenish cysteine [45]. 
Furthermore, the addition of coenzyme A (CoA), from 
the de novo CoA synthesis pathway [46], also replenishes 
cysteine and rescued ferroptosis [47]. In addition, 
pharmacogenomic analyses identified NAPDH as a robust 
determinant of ferroptosis [48], probably by regenerating 
GSH. Consistently, we have found that MESH1, the 
metazoa homolog of SpoT, is the first cytosolic NADPH 
phosphatase [49] whose induction is responsible for the 
NAPDH depletion during ferroptosis [50]. 

FSP1 and Coenzyme Q10 (CoQ10) axis have been 
identified as a new ferroptosis protection mechanism [51, 
52]. FSP1 is an NADH-dependent CoQ10 oxidoreductase 
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that reduces CoQ10. When FSP1 is myristoylated, it moves 
to the plasma membrane to limit lipid peroxidation and 
suppress ferroptosis. Therefore, the removal of FSP1 
also leads to lipid peroxidation, membrane damage, and 
ferroptosis.

Promotion of ferroptosis by NOXs and iron

During ferroptosis, the oxidative radicals are 
generated by NOXs (nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidases), a family of oxidases that 
use NADPH as cofactors. Therefore, NOX inhibitors 
consistently inhibit ferroptosis. Interestingly, each member 
of NOXs expresses differently in a tissue-specific manner 
[53]. Therefore, the specific members of the NOXs 
mediate ferroptosis may vary in distinct cell and tissue 
types. 

Iron metabolism and labile iron pools are also 
critical for ferroptosis [33]. “Ferroptosis” indicates 
that iron is indispensable. Iron is postulated to drive 
the Fenton reaction that amplifies the free oxidative 
radicals, generated by NOXs and other sources, to trigger 
ferroptosis [54]. Therefore, iron chelator blocks ferroptosis 
by limiting cellular iron levels. For example, enhanced 
ferroptosis susceptibility is noted in erythrocyte-ingested 
macrophages [55] and hepatocytes in patients with 
hemochromatosis [56].

Similarly, NRF2 activation also limits ferroptosis 
by inducing the transcription of Ferritin Heavy Chain 1 
(FTH1, involved in iron storage) to reduce labile iron [57]. 
Chen et al. found that the serine/threonine kinase ATM 
involved in the DNA damage pathway also regulated 
ferroptosis. Inhibition of ATM by genetic and chemical 
means prevents ferroptosis by reducing cellular iron 
through the induction of both iron storage (FTH1, FTL 
– Ferritin Heavy, and Light Chain), and export (FPN1- 
Ferroportin) [58]. 

FERROPTOSIS SUSCEPTIBILITY 
OF OVARIAN CANCER CELLS AND 
RELEVANT GENETIC DETERMINANTS

Inducing ferroptosis has been shown to have potent 
anti-tumor potential for many tumor types [35–37]. 
However, relatively little is known about the determinants 
and therapeutic potential of ferroptosis in OVCA. Several 
recent studies have investigated the genetic determinants 
of ferroptosis and demonstrated the potential role in 
OVCA therapy. We summarize these studies and their 
findings in Figure 1. Torti group first described that the 
high-grade OVCA has a lower level of the iron exporter 
(ferroportin) and a higher level of the iron importer 
(transferrin receptor), resulting in the accumulation of 
intracellular labile iron. High intracellular labile iron 
enhances the invasion and metastasis of OVCA by 
inducing matrix metalloproteases and interleukin 6 [59]. 

Since the iron chelators can eradicate these OVCA, 
they termed such observations “iron addiction” [59]. As 
expected, such high intracellular iron also promotes the 
ferroptosis of these OVCA [59]. In the follow-up studies, 
the Torti group elucidated the role of stearoyl-CoA 
desaturase (SCD1) in ferroptosis. SCD1 catalyzes the rate-
limiting step in the monounsaturated fatty acid synthesis. 
Inhibition of SCD1 depletes CoQ10, an endogenous 
membrane antioxidant used by FSP1 to protect cells from 
ferroptosis [60] (Figure 1). 

The altered metabolism of cancer cells may render 
specific nutrients indispensable. Such nutrient addiction 
can be identified in a nutrigenetic screen by dropping off 
individual nutrient and analyze its transcriptome responses 
and cell viability [61]. Such a nutrigenetic approach 
revealed glutamine [62] and cystine addiction of renal 
cell carcinoma [40], breast cancer [41] and non-small cell 
lung cancers (NSCLC) [42]. When a similar nutrigenetic 
screen was used to analyze a panel of serous and clear-
cell type OVCA cells, these OVCA cells were highly 
sensitive to cystine-deprived death [63]. Interestingly, 
cell density seemed to be a critical factor. As the Hippo 
effectors YAP/TAZ are the sensors of cell density [64], 
we identified that TAZ regulated ferroptosis in OVCA 
by affecting the expression of ANGPTL4 and NOX2 
[63]. Therefore, ferroptosis-inducing agents may have 
significant therapeutic potential for OVCA with activated 
TAZ [63].

The immunotherapy depends on the ability of the 
CD8+ CTL to eradicate target tumor cells. Li’s group 
recently showed that CD8+ CTL and γ-interferon (IFN-γ)  
killed ID8, a murine OVCA cell, through the ferroptosis 
mechanism [65]. IFN-γ suppressed the cystine import 
by repressing the expression of SLC3A2 and SLC7A11, 
both subunits of the xCT that mediate the cystine import 
(Figure 1). Importantly, ferroptosis-inducing agents can 
enhance the efficacy of immunotherapy. This landmark 
study draws the unexpected connection between 
ferroptosis and immunotherapy.

One major clinical challenge of OVCA is the 
chemo-resistance of recurrent OVCA [7, 8]. One 
mechanism of docetaxel resistance is the overexpression 
ATP Binding Cassette Subfamily B Member 1 (ABCB1), 
which pumps out the docetaxel [66]. A recent study on 
the docetaxel-resistant OVCA [67] has shown that erastin 
mitigates the overexpression of ABCB1. Thus, when 
erastin was combined with docetaxel, erastin significantly 
increased the intracellular level of docetaxel. Therefore, 
erastin reverses the ABCB1-mediated chemo-resistance 
in OVCA, showing the therapeutic value of combining 
erastin and docetaxel [67] (Figure 1).

Another interesting paper focuses on ferroptosis 
resistance in OVCA induced by long-term erastin 
exposure [67]. Prolonged erastin eventually leads to 
ferroptosis resistance by activation of the transsulfuration 
pathway. Ferroptosis resistance is caused by the NRF2-
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mediated upregulation of cystathionine β-synthase (CBS) 
and transsulfuration. Therefore, genetically repression 
of NRF2 enhanced ferroptosis susceptibility of these 
ferroptosis-resistant cells, consistent with the anti-
ferroptosis role of NRF2 [43, 44, 68].

THERAPEUTIC IMPLICATION AND 
FUTURE DIRECTION 

These studies have provided compelling evidence 
that OVCA is highly sensitive to ferroptosis. However, 
much remained unknown about the genetic determinants 
of ferroptosis in OVCA to enable the selection of ovarian 
tumors, which may best respond to ferroptosis-inducing 
therapies. First, OVCA is an extremely heterogeneous 
disease based on the histopathology, somatic mutations, 
cellular origins, and various clinical parameters. For 
example, OVCA is classified into different histological 
subtypes, including serous, mucinous, endometrioid, 
clear cell, transitional cell, carcinosarcoma, mixed 
epithelial tumor, and undifferentiated carcinoma [69]. 
It is not clear whether these histological types guide the 
use of ferroptosis for OVCA. While most of the current 
studies of ferroptosis focus on the serous OVCA, future 
efforts will expand the investigations to other histological 
types. It is interesting to note that clear-cell type OVCA, 
characterized by the clear cytoplasm due to lipid and 
glycogen accumulation, is highly addicted to cystine and 
sensitive to the GPX4-removal ferroptosis [70]. However, 
the ferroptosis phenotypes of other OVCA remain largely 
unknown.

Another critical source of OVCA heterogeneity 
is the somatic mutations. TGCA analysis of OVCA has 
revealed the landscapes of somatic mutations [71]. As 
expected, TP53 was found to be mutated in > 90% of 
tumors. The next most common mutations are in BRCA1 
or BRCA2 in 11–12% of OVCA. Other statistically 
recurrently mutated genes include RB1, NF1, FAT3, 
CSMD3, GABRA6, and CDK12 [71]. TP53 is one of the 
most important tumor suppressor genes, and different 
mutations of TP53 have been reported to either promote 
or limit ferroptosis in a highly context-dependent manner 
[72–75]. Therefore, it will be fascinating to elucidate 
further whether and how p53 mutations affect the 
ferroptosis in OVCA. Other than p53, retinoblastoma 
protein (RB1) also limited the sorafenib-induced 
ferroptosis [76]. Therefore, these somatic mutations may 
alter the metabolic states of the OVCA to enhance or limit 
ferroptosis sensitivity. However, much remains unknown 
about how to incorporate these histological subtypes and 
somatic mutations into reliable and robust predictors of 
ferroptosis sensitivity of OVCA.

Even many studies have identified genetic 
determinants of ferroptosis in other cancer types, it will 
still be important to validate and identify the specific 
determinants in OVCA. For example, the Hippo pathway 
has been shown to regulate ferroptosis in multiple tumor 
cell types [63, 77–80]. However, different Hippo effectors 
are employed in different cancer cells. In breast cancer 
and mesothelioma, YAP regulates ferroptosis in response 
to cellular contacts [79]. In contrast, in renal and ovarian 
cancer, TAZ is the relevant Hippo effector [63, 78] due 

Figure 1: Current genetic determinants and its molecular mechanisms to trigger ferroptosis in OVCA.
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to the predominant expression pattern. Similarly, while 
NOXs are essential for ferroptosis, distinct NOX members 
execute ferroptosis in different tumors. In OVCA, NOX2 
was highly expressed to mediate ferroptosis [63]. In 
contrast, the ferroptosis of renal cell carcinoma is mediated 
by renal-specific NOX4 [78]. Therefore, Identifying the 
particular genetic determinants and relevant mediators 
of ferroptosis in OVCA may help to predict the response 
to ferroptosis-inducing therapies and potential resistant 
mechanisms.

 Employing ferroptosis in combination therapeutics 
may have the opportunities to enhance the efficacy of 
existing therapeutic approaches. Ferroptosis is found 
to enhance the efficacy of immunotherapies [65], 
chemotherapies [81], and ionization radiations [82–84]. 
DNA damage and ATM/ATR activation have been found 
to promote ferroptosis [58]. PARP inhibitors may also 
trigger DNA damage, ATM/ATR activation [85], thus 
sensitizing OVCA to ferroptosis. Therefore, future efforts 
on optimizing the best strategies combining ferroptosis 
with standard cancer therapeutics would greatly improve 
outcomes and survival of patients with advanced OVCA.

While xCT inhibitors and cystine deprivation are 
established means to induce ferroptosis in vitro, it is not 
clear how best to induce ferroptosis in vivo for therapeutic 
purposes. Recently, imidazole ketone erastin (IKE) has 
been developed for in vivo application because of its 
potency, solubulity and metabolic stability [86]. Another 
promising agent with significant translational potential is 
the engineered human cyst(e)inase modified from CBS 
[87]. Cyst(e)inase suppresses tumor growth in multiple 
syngeneic and xenograft tumor models without apparent 
weight loss or other adverse effects. Cyst(e)inase can 
also synergize with immunotherapy [65] and is effective 
in pancreatic cancers [47]. Therefore, these reagents will 
be further optimized for the future clinical application of 
triggering ferroptosis to improve the outcomes of women 
with advanced OVCA. Studies have demonstrated a 
different angle on targeting anti-ferroptosis components, 
GPX4, or FSP1. However, it remains unknown whether 
the inhibitors of GPX4 or FSP1 can safely induce 
ferroptosis in vivo without severe side effects. The genetic 
removal of GPX4 leads to acute renal injuries [88] and 
hepatocyte death that can be preventable by vitamin 
E [89]. Therefore, we would not be surprised if GPX4 
inhibitors have significant liver and renal toxicities. In 
contrast, the genetic removal of FSP1 in mice results in 
modest phenotypes [90, 91]. Therefore, targeting FSP1 
may have fewer side effects and better tolerated than 
GPX4 inhibitors. 

We expect that ferroptosis will emerge as a promising 
therapy to enhance the efficacy of immunotherapy, 
chemotherapeutics, and PARP inhibitors for advanced 
OVCA. However, much work remains to be accomplished 
toward that goal. Especially, the identification of robust 
predictive biomarkers of ferroptosis sensitivity to select 

tumors that are most likely to respond. Additionally, it 
is critical to identify the best means of inducing in vivo 
ferroptosis as well as optimize the combination strategies. 
In the long-term, we expect that the similar targeting of the 
altered metabolisms in OVCA may present an entirely new 
avenue of therapeutic opportunity for OVCA, which can be 
incorporated with current treatments.
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