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ABSTRACT
Background: To investigate quantitative ultrasound (QUS) based higher-order 

texture derivatives in predicting the response to neoadjuvant chemotherapy (NAC) 
in patients with locally advanced breast cancer (LABC).

Materials and Methods: 100 Patients with LABC were scanned before starting 
NAC. Five QUS parametric image-types were generated from radio-frequency data 
over the tumor volume. From each QUS parametric-image, 4 grey level co-occurrence 
matrix-based texture images were derived (20 QUS-Tex1), which were further 
processed to create texture derivatives (80 QUS-Tex1-Tex2). Patients were classified 
into responders and non-responders based on clinical/pathological responses to 
treatment. Three machine learning algorithms based on linear discriminant (FLD), 
k-nearest-neighbors (KNN), and support vector machine (SVM) were used for 
developing radiomic models of response prediction.

Results: A KNN-model provided the best results with sensitivity, specificity, 
accuracy, and area under curve (AUC) of 87%, 81%, 82%, and 0.86, respectively. 
The most helpful features in separating the two response groups were QUS-Tex1-Tex2 
features. The 5-year recurrence-free survival (RFS) calculated for KNN predicted 
responders and non-responders using QUS-Tex1-Tex2 model were comparable to RFS 
for the actual response groups.
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Conclusions: We report the first study demonstrating QUS texture-derivative 
methods in predicting NAC responses in LABC, which leads to better results compared 
to using texture features alone.

INTRODUCTION

Breast cancer is the second most common cancer 
globally in terms of incidence, comprising 11.6% of all 
new cancers and is the 5th leading cause of mortality 
attributed to 6.6% of all cancer deaths [1]. For patients 
with locally advanced breast cancer (LABC), pre-operative 
or neoadjuvant systemic therapies with chemotherapy with 
or without targeted agents constitute standard treatment 
protocols [2–4]. The rationale of using NAC is to downsize 
the primary tumor improving resectability, and also the 
assessment of response to therapies that serve as a reliable 
prognostic marker of outcomes. Imaging modalities like 
ultrasonography (USG), mammography (MMG), magnetic 
resonance imaging (MRI), and computed tomography 
(CT) are commonly used in response monitoring of NAC, 
which primarily considers long-term size related changes 
of the disease [5, 6]. Also, functional or metabolic imaging 
in the form of positron emission tomography (PET) is 
recognized in evaluating treatment response.

Radiomics is an emerging field in medicine 
and oncology, which has been made possible through 
advanced computer-based image analysis, often combined 
with machine learning algorithms for data interpretation 
[7–9]. Radiomics has made it possible to extract 
biological characteristics in a non-invasive manner, 
which can help in predicting the natural history of the 
disease as well as in detecting early changes associated 
with treatment. Quantitative ultrasound (QUS) is a non-
invasive, easily accessible, and relatively inexpensive 
imaging modality that can lead to useful insights into 
the tissue microstructure [10]. Radiofrequency (RF) data 
from QUS provides valuable information compared to 
conventional B-mode ultrasound imaging, where there is 
a loss of crucial details involved with instrument-based 
signal processing. The analysis of the power spectra from 
ultrasound RF data can be used to determine quantitative 
parameters, which include average scatterer diameter 
(ASD), average acoustic concentration (AAC), mid-band 
fit (MBF), spectral slope (SS), spectral 0-MHz intercept 
(SI). These reveal useful information about elastic 
properties in tissue at the microscopic level, with each 
parameter having distinct biological implications [11]. 
Also, QUS features are capable of detecting temporal 
events at the cellular level following various treatments, 
including cell death [12, 13]. The spatial distribution of 
features within QUS parametric images can be further 
studied using grey-level co-occurrence matrix (GLCM) 
analyses, which represent the angular relationship and 
distance between neighboring pixels. The GLCM method 
can be used to extract various QUS-texture (QUS-Tex1) 

features like contrast (CON), energy (ENE), correlation 
(COR), and homogeneity (HOM). Earlier studies have 
evaluated baseline QUS parameters and texture analysis 
extracted from the tumor to predict the response to 
systemic therapies [14, 15].

In the study here, higher-order imaging features 
in the form of QUS texture-derivatives (QUS-Tex1-
Tex2) have been determined from pretreatment QUS 
data for patients with LABC undergoing NAC to predict 
treatment response. To the best of our knowledge, this is 
the first study to demonstrate the effectiveness of texture 
derivatives applied to any form of imaging data, leading to 
the improvement of classifier performances.

RESULTS

Patient, tumor and treatment characteristics

Patient and treatment-related features are 
summarized in Table 1. According to the clinical and 
pathological criteria, 83 and 17 patients were classified 
as responders and non-responders to NAC, respectively. 
The most common chemotherapy regimen used was 
AC-T (Adriamycin, Cyclophosphamide, and Paclitaxel) 
in 59%, followed by FEC-D (5-Fluorouracil, Epirubicin, 
Cyclophosphamide, and Docetaxel) in 29%. Along with 
neoadjuvant chemotherapy, 31% of patients received 
trastuzumab in the neoadjuvant setting. None of the 
patients received any endocrine therapy before surgery. 
All of the patients included in this analysis had completed 
systemic therapy as planned. Pathological complete 
response (pCR) was seen in 23 patients (23%). Following 
surgery adjuvant therapies with radiation, maintenance 
Trastuzumab for human epidermal growth factor receptor 
2 (HER2) positive tumors or endocrine therapy (for 
hormonal receptor-positive) was continued as per standard 
institutional practice. Details on individual patient basis 
have been mentioned in Supplementary Table 1. The 
5-year recurrence-free survival (RFS) for the responders 
and non-responders was 84% and 62%, respectively, with 
a p-value of 0.04 (Supplementary Figure 1).

Quantitative ultrasound and texture parameters

Representative ultrasound B-mode images, MBF 
parametric images and MBF-CON, MBF-ENE, MBF-
COR, and MBF-HOM texture images corresponding 
to three responding and three non-responding patients 
are displayed in Figure 1. None of the parameters 
demonstrated significant differences in terms of 
distribution between the two groups. The classification 
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performances using the different algorithms have been 
summarized in Table 2. The accuracies from QUS and 
QUS-Tex1 features using Fisher’s linear discriminant 

(FLD), k-nearest neighbors (KNN), and radial-basis-
function support vector machine (SVM) classifiers were 
62%, 69%, and 69%, respectively. Selecting from 105 

Table 1: Patient, disease and treatment related characteristics in the two groups (responders and 
non-responders)
Characteristics Responders (n = 83) Non-responders (n = 17) Total (n = 100) p-value

Age

Median (range) 50 (31–84) years 42 (29–66) years 49 (29–84) years 0.25

Menopausal status

Premenopausal 46 (55%) 11 (65%) 57 (57%)

Postmenopausal 29 (35%) 5 (30%) 34 (34%) 0.85

Perimenopausal 5 (6%) 0 (0%) 5 (5%)

Unknown 3 (4%) 1 (5%) 4 (4%)

Tumour size (baseline)

Median (range) 5.3 (1.6–12) cm 5.3 (2.5–12.8) cm 5.3 (1.6–12.8) cm 0.62

Histology

IDC 76 (92%) 14 (82%) 90 (90%)

ILC 4 (5%) 1 (6%) 5 (5%) 0.36

Others 3 (3%) 2 (12%) 5 (5%)

Tumour stage

T1 0 (0%) 0 (0%) 0 (0%)

T2 34 (41%) 8 (47%) 42 (42%) 0.89

T3 39 (47%) 7 (41%) 46 (46%)

T4 10 (12%) 2 (12%) 12 (12%)

Nodal stage

N0 21 (25%) 5 (29%) 26 (26%)

N1 51 (61%) 8 (47%) 59 (59%) 0.14

N2 8 (10%) 1 (6%) 9 (9%)

N3 3 (4%) 3 (18%) 6 (6%)

Hormonal status

Positive 51 (61%) 12 (71%) 63 (63%) 0.48

Negative 32 (39%) 5 (29%) 37 (37%)

HER2 status

Positive 28 (34%) 3 (18%) 31 (31%) 0.19

Negative 55 (66%) 14 (82%) 69 (69%)

Systemic therapy

AC-T 51 (61%) 8 (47%) 59 (59%)

FEC-D 22 (27%) 7 (41%) 29 (29%) 0.46

Others 10 (12%) 2 (12%) 12 (12%)

Trastuzumab

Yes 28 (34%) 3 (18%) 31 (31%) 0.19

No 55 (66%) 14 (82%) 69 (69%)

Surgery

Mastectomy 64 (77%) 15 (88%) 79 (79%)

Breast-conserving surgery 19 (23%) 1 (6%) 20 (20%) 0.13

No surgery 0 (0%) 1 (6%) 1 (1%)

Tumour size (post-NAC)

Median (range) 1.4 (0–8.4) cm 5 (2.4–19.0) cm 1.8 (0–19.0) cm < 0.01

Abbreviations: IDC: Infiltrating duct carcinoma; ILC: Infiltrating lobular carcinoma; HER2: Human epidermal growth factor receptor 2; AC-T: Adriamycin, 
Cyclophosphamide, and Paclitaxel; FEC-D: 5-Fluorouracil, Epirubicin, Cyclophosphamide, and Docetaxel; NAC: Neoadjuvant chemotherapy.
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features inclusive of the texture derivatives, accuracy 
improved to 67%, 82%, and 69% for FLD, KNN, and 
SVM, respectively. Amongst all the models, KNN 
classification resulted in the best performances. The 
sensitivity, specificity, accuracy, and area under curve 
(AUC) for the best classifier was 87%, 81%, 82%, and 
0.86, respectively. The comparison of the performance 
using QUS+QUS-Tex1 and QUS-Tex1-Tex2 is shown in 

Figure 2A and 2B, respectively. The Receiver operating 
characteristics (ROC) curves (Figure 3) indicate the 
improvement in AUC values for the KNN model (0.86 vs. 
0.74), whereas it remained relatively stable for FLD (0.61 
vs. 0.60) and SVM (0.79 both) methods.

The best-selected features for model development 
are summarized in Table 2. The model used 1 feature 
for classification when no further improvement (or 

Table 2: Classifier performance for different machine learning models using QUS-Tex1 and QUS-
Tex1-Tex2

Classifier Features Sensitivity Specificity PPV NPV Accuracy AUC Selected parameters

FLD QUS-Tex1 73% 60% 28% 92% 62% 0.60 SI-COR

QUS-Tex1-Tex2 67% 67% 29% 91% 67% 0.61 SI-COR

KNN QUS-Tex1 67% 69% 31% 91% 69% 0.74 SI-COR

QUS-Tex1-Tex2 87% 81% 48% 97% 82% 0.86 AAC-CON-ENE, MBF-COR-ENE, SI-
COR-ENE

SVM QUS-Tex1 74% 67% 33% 94% 69% 0.79 MBF, AAC-ENE, ASD-ENE

QUS-Tex1-Tex2 74% 67% 33% 94% 69% 0.79 SI-ENE, ASD-ENE-CON, MBF-COR-
COR

Abbreviations: QUS: Quantitative ultrasound; QUS-Tex1: QUS first-order texture; QUS-Tex1-Tex2: QUS-texture derivatives; FLD: Fisher’s linear 
discriminant; SVM: Support vector machine; KNN: k-nearest-neighbors; SI: Spectral 0-MHz intercept; MBF: Mid-band fit; AAC: Average acoustic 
concentration; ASD: Average scatterer diameter; SS: Spectral slope; COR: Correlation; ENE: Energy; CON: Contrast; PPV: Positive predictive value; NPV: 
Negative predictive value.

Figure 1: Parametric maps for the two response groups. Representative ultrasound B-mode images with MBF parameter overlays, 
and MBF-CON, MBF-ENE, MBF-COR, and MBF-HOM feature overlays acquired from three responder and non-responder patients before 
chemotherapy. To generate the parametric maps, the values were normalized across all the patients (irrespective of treatment response) for 
individual features. The normalized values for the feature were then represented quantitatively as colors across the sub-regions of interest 
across the entire tumor volume. The scale bar in ultrasound images represents 5 mm. The color bars represent scales for the MBF parameter 
of -9 to 18 dBr, for the MBF-CON parameter of 0 to 2.7, for MBF-ENE parameter of 0 to 1, for the MBF-COR parameter of -0.4 to 0.9, and 
for MBF-HOM parameter of 0 to 1. MBF: Mid-band fit; CON: Contrast; ENE: Energy; COR: Correlation; HOM: Homogeneity.
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decrease) in the classifier performance was evident on 
the subsequent addition of 2nd or 3rd features (for FLD 
both models and KNN-texture model). The best classifier 
model (KNN-texture derivatives) used three higher-order 
features (AAC-CON-ENE, MBF-COR-ENE, SI-COR-
ENE) for the group classification.

DISCUSSION

Locally advanced breast cancer encompasses stage 
III breast cancer, denoting a higher disease burden, either 
with an extensive primary disease (T3, T4) or advanced nodal 
involvement (N2, N3) or both [16]. With existing treatment 
protocols, the five-year overall survival has been reported 
to be 50–80% and is influenced by clinical, molecular, 
and treatment-related features [16–19]. Often, due to the 
extensive nature of the disease, upfront surgery appears 
challenging for patients with LABC. Systemic therapies 
before surgery have been shown to result in downsizing 
tumors and improve resectability [4, 19–21]. Also, the use 
of NAC permits the assessment of response to systemic 
treatment, which may serve as a reliable prognostic marker 
for survival [22]. Response monitoring during therapy with 
various imaging modalities with the early identification of 
non-responders provides a window for adopting personalized 
medicine. Similarly, the anticipation of response before the 
initiation of treatment may further facilitate decision making 
by permitting appropriate therapies to be selected. In this 
study, a novel approach is presented using QUS higher-order 
texture derivatives in predicting the response to NAC.

Several strategies have been explored for response 
prediction and monitoring, including molecular analysis 
and different imaging modalities. It has been shown 
that the response rates to NAC are dependent on the 
molecular profiles, with pCR being higher for HER2 

overexpression and triple-negative breast cancer subtypes 
[23, 24]. Molecular signatures based on stromal-related 
genes have been able to predict resistance to neoadjuvant 
chemotherapy [25]. Similarly, transcriptional profiling had 
been used to develop a multigene model to predict pCR in 
breast cancer patients treated with neoadjuvant paclitaxel 
and fluorouracil, doxorubicin, and cyclophosphamide [26]. 
Recently, the circulating tumor DNA (ctDNA) has been 
used as a potential biomarker for response monitoring in 
breast cancer receiving NAC [27, 28].

Imaging constitutes an integral role in the current 
oncological practice. Various imaging modalities like 
MMG, USG, CT, MRI, and PET-CT are used in the 
management of patients with breast cancer in diagnostic 
work up, staging, therapy guidance, response evaluation, 
and surveillance following treatment completion. 
Radiomics can help in determining imaging features that 
can lead to information reflecting underlying cellular 
biology predicting biological behavior. Literature is 
limited regarding the utility of baseline imaging features 
to predict response to NAC or survival outcomes in breast 
cancer. A study involving patients with triple-negative 
breast cancer (TNBC) analyzing clinic-pathological 
factors, found that the presence of microcalcifications 
on baseline imaging was associated with predicting 
residual disease as opposed to patients with pCR [29]. 
Radiogenomics involves the integration of imaging 
characteristics with molecular information and has shown 
promising results in breast cancer using baseline MRI 
features [30]. Texture analysis of T1-weighted dynamic 
contrast-enhanced MRI features has been used to predict 
response to NAC in a set of 58 patients with LABC [31]. 
In previous studies, QUS features from breast tumors were 
indicated to predict response to NAC and predict survival 
in a cohort of 56 patients with LABC [14]. The work here 

Figure 2: Bar diagram of classifier performance for different models. Classification performance represented as bar diagram 
based on QUS + QUS-Tex1 (A) and QUS + QUS-Tex1 + QUS-Tex1-Tex2 parameters (B) using FLD, KNN, and SVM-RBF classifiers. QUS: 
Quantitative ultrasound; FLD: Fisher’s linear discriminant; SVM: Support vector machine; KNN: k-nearest-neighbors.
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extended that data to include 100 patients and uses higher-
order features to improve classifier performance further.

The clinical application of QUS spectral and texture 
analysis to identify a subset of patients likely to respond to 
NAC as early as four weeks (serial scans) or even before 
the initiation of treatment (baseline imaging) [14, 32, 33]. 
In the work here, we included five spectral features and 
generated a set of 20 texture (QUS-Tex1) and, finally, 80 
higher-order texture derivatives (QUS-Tex1-Tex2). Each 
spectral parameter reflects different aspects of underlying 
cellular biology; MBF, ASD, and AAC can be related to 
microstructure and cellular organization, scatterer size, 
and scatterer number density.

In our previous work involving comparative analysis 
of QUS parameters from pretreatment and intra-treatment 
scans, the most evident changes were noticed in mean 
values of MBF and SI, suggesting microenvironment 
changes in response to NAC [32]. Here, the KNN model 
exhibited the best diagnostic matrices, with all the 
three features selected by the algorithm being texture-
derivatives. This resulted in better classifier performance, 

as evident from improvements in AUC. It is possible that 
the second-order texture derivatives represent intratumoral 
heterogeneity better, therefore leading to improved 
prediction of clinical outcomes. In addition, it may be 
possible with further sequential texture analysis that 
underlying information is extracted at finer levels, which 
otherwise is obscured.

As expected, clinical outcomes were distinctly 
different between the responders and non-responders 
as defined by the clinical-pathological criteria and 
demonstrated in survival plots. This reflects the strong 
influence of response to neoadjuvant treatment on tumor 
biological behavior and outcomes depicted by a relapse of 
breast cancer. It is essential to note although the sensitivity 
of the three models was comparable (Figure 2B), the 
specificity and accuracy were higher for classification 
using the KNN model.

The early identification of patients not responding to 
NAC does have potentially significant clinical implications. 
Alternative chemotherapy regimens or upfront surgery 
should be considered in patients who are refractory to 

Figure 3: Receiver operator characteristics curves for different models. Receiver operator characteristics curves for the 
response predictor model obtained based on QUS+QUS-Tex1 (dotted line) and based on QUS + QUS-Tex1 + QUS-Tex1-Tex2 (solid line) 
using FLD, SVM, and KNN classifiers. QUS: Quantitative ultrasound; FLD: Fisher’s linear discriminant; SVM: Support vector machine; 
KNN: k-nearest-neighbors; AUC: Area under curve.
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the standard protocols rather than continuing with the 
ineffective regimens. In a phase 2 randomized study 
involving HER2+ breast cancer, PET was used for response 
assessment before the 1st and 2nd cycles of neoadjuvant 
therapy with docetaxel and trastuzumab. Predicted non-
responders were randomly assigned to 4 cycles of the same 
treatment or the addition of bevacizumab. The addition 
of bevacizumab for predicted non-responders resulted in 
better pathological complete response rates [34]. Other 
studies have indicated a benefit to intensifying treatment 
in non-responding patients [35]. In addition, there is recent 
interest in avoiding surgery for patients achieving pCR 
to NAC, particularly in patients with TNBC or HER2+ 
tumors, being explored in ongoing trials [36]. The QUS-
based model has the potential of identifying such patients 
ahead of time, helping in treatment decisions.

Based on the results from previous observational 
studies, the clinical utility of QUS-radiomics is being 
evaluated in a randomized clinical trial, where patients 
predicted to have inadequate response can have 
modifications made to their NAC (http://ClinicalTrials.
gov identifier NCT04050228). In that work, the goals are 
the identification of biological non-responders as soon 
as the first cycle of chemotherapy to modify the protocol 
early and avoid unnecessary treatments; the identification 
of pathological complete responders to possibly avoid 
surgical procedures.

QUS is a simple, easily accessible imaging modality, 
with similar scanning techniques akin to the B-mode US, 
which is widely used in clinical practice. With appropriate 
data processing, it is possible to use the information 
normally processed to generate B-mode images to obtain 
additional information from tumors. These are related 
to tumor acoustic properties, which can be linked with 
biological features and clinical behavior. In this research, 
we established the role of higher-order imaging analysis 
(radiomics) of QUS in predicting treatment response 

to NAC involving 100 patients with LABC. The work 
provides a framework for using QUS-radiomics in clinical 
practice to choose appropriate chemotherapy regimens 
or other treatment modalities like upfront surgery (in 
predicted chemo-resistant tumors), leading the way 
towards personalized oncology.

MATERIALS AND METHODS

Patient selection and treatment protocols

All the patients included in this report were obtained 
from a prospective study approved by the Sunnybrook 
Health Sciences Centre research ethics board and registered 
with http://ClinicalTrials.gov (NCT00437879). Patients 
accrued between January 2009 and January 2017 were 
included in the current analysis. Written informed consent 
was obtained from patients before accrual to study. Patients 
with LABC receiving NAC were considered eligible for 
the study. All patients were required to have a histological 
diagnosis of primary breast malignancy before initiation 
of any treatment with documentation of pathological and 
molecular information like hormonal receptor or HER 2 
status. The choice regarding the NAC regimen and timing 
was at the discretion of the treating medical oncologist, 
with almost all patients receiving anthracycline and taxane-
based chemotherapy regimens. Also, patients receiving 
HER 2 targeted therapies in addition to neoadjuvant 
chemotherapy were allowed in the study.

Following surgery, surgical specimens were 
evaluated by a board-certified pathologist for the 
assessment of histological characteristics and tumor 
response. Patients were classified into responders 
and non-responders based on the combined clinical 
and pathological evaluation. This modified response 
grading system was based on combined radiological 
and pathological assessment, and had been described in 

Figure 4: Generation of parametric and texture maps from radiofrequency data. Diagram showing flowchart of the 
generation of QUS parametric maps, texture, and texture derivative from radiofrequency ultrasound data. QUS: quantitative ultrasound; 
GLCM: grey level co-occurrence matrix.

http://ClinicalTrials.gov
http://ClinicalTrials.gov
http://ClinicalTrials.gov


Oncotarget3789www.oncotarget.com

our previous studies [14, 15, 37]. Responders (R) were 
required to have tumor reduction by at least 30% of 
pretreatment dimensions, and/or a decrease in cellularity 
(residual invasive and in-situ < 1%), with all other patients 
being considered as non-responders (NR).

Ultrasound data acquisition

As a part of this study, ultrasound RF data was 
acquired using a Sonix RP clinical research system 
(Analogic Medical Corp., Vancouver) with a linear array 
transducer (L14-5/60, Analogic Medical Corp., Vancouver) 
having a central frequency of 7 MHz (bandwidth 4–9 MHz). 
Imaging was conducted before the initiation of NAC. The 
sampling frequency of 40 MHz was considered for digital 
acquisition of ultrasound data with a 16-bit resolution. The 
tumor was scanned at intervals of 1 cm across the breast 
to cover the entire range of the primary tumor, with the 
transducer focused towards the center of the tumor. For the 
determination of QUS features, the region of interest (ROI) 
was manually drawn corresponding to the edge of the 
tumor in all image planes. A recent publication had shown 
the effects associated with different clinical ultrasound 
systems, or other factors related to image acquisition can be 
overcome with appropriate normalization techniques [38]. 
All the acquired images related to the selected slices for 
image extraction, segmentation of the tumor were verified 
by the principal investigator (GJC).

Feature extraction

Quantitative ultrasound parametric maps, including 
MBF, SS, SI, ASD, and AAC, were determined using 
quantitative ultrasound techniques described in previous 
studies [11]. A reference phantom method was used 
to remove any clinical system dependencies in QUS 
parameters estimation and standardization. The entire ROI 
was divided into window blocks (considered as sub-ROIs) 
of size 10l × 10l with a 94% overlap in axial and lateral 
directions, where l represents the ultrasound wavelength. 
This corresponded to 15 by 15 pixels or 2.2 mm by 2.2 
mm approximately. For each of the QUS features, values 
were determined from each sub-ROIs assigning specific 
values on a quantitative scale, leading to the generation of 
QUS parametric maps.

For individual QUS features, mean values were 
determined by averaging QUS values obtained from all 
the sub-volumes. Four texture features, including CON, 
ENE, COR, and HOM, were evaluated using a GLCM 
method to generate QUS-Tex1 features from the QUS 
parametric maps. Corresponding color-coded QUS-
texture feature maps for each QUS parametric map were 
constructed by making a spatial map of the texture values 
computed over all the sub-ROI. Subsequently, a second-
pass texture analysis using the QUS parametric maps 
as input was applied to create QUS-Tex1-Tex2 features 

(texture-of-texture features) (Figure 4). A total number of 
105 features (5 QUS, 20 QUS-Tex1, 80 QUS-Tex1-Tex2) 
were determined from ultrasound data for each tumor.

Statistical analysis and classification algorithms

The mean values for all features (QUS, QUS-Tex1, 
QUS-Tex1-Tex2) between the two response groups were 
compared. A Shapiro-Wilk normality test was undertaken 
on feature-based data to determine its distribution. An 
unpaired t-test was completed for normally distributed 
data; otherwise, a Mann-Whitney test was used. The 
distribution of categorical variables between the two 
response groups was studied using the Pearson chi-square 
test and Fisher’s exact test as indicated. The continuous 
variables (age, tumor size) were compared using an 
unpaired t-test or the Mann-Whitney test as appropriate. 
A value of p < 0.05 was considered to be statistically 
significant. In this study, three multi-feature machine 
learning classifiers were used to classify patients into the 
two response groups. These included FLD, KNN, and 
SVM analyses. Classification analyses were performed 
using two data sets independently; (i) QUS means, and 
QUS-Tex1; or (ii) QUS means, QUS-Tex1 and QUS-Tex1-
Tex2. Receiver operating characteristics (ROC) were 
determined for each classifier-based algorithm (responders 
versus non-responders) to obtain the AUC, and other 
indices like sensitivity, specificity, and accuracy were also 
calculated. Tumor segmentation, QUS data extraction, and 
classification analyses were performed using MATLAB 
R2016B (Mathworks, USA). Before performing class 
analyses, the class imbalance problem was circumvented 
by subsampling the original data into seven subsets, such 
that each unit had an equal number of responders and 
non-responder selected randomly. The feature selection 
was performed based on a sequential-forward selection 
method. Analyses permitted a maximum of 3 features in 
the classification model to avoid overfitting of the model 
given the number of samples in the cohorts used. Leave 
one out cross-validation was adopted to test the reliability 
of the classifiers. Survival analysis was done using a 
Kaplan Meier product-limit method with the factors 
compared using a log-rank test.

CONCLUSIONS

In summary, the work here reports ultrasound 
radiomics can detect tumor response before neoadjuvant 
chemotherapy with high accuracy using texture derivative 
analysis of parametric images using a machine learning 
approach. The use of quantitative ultrasound-texture 
derivative biomarkers can serve as pretreatment survival-
linked surrogates of response to cancer-targeting therapies 
leading the way towards personalized medicine and 
facilitate in selecting appropriate treatment regimen on an 
individual patient basis.
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Radiofrequency; ASD: Average scatterer diameter; AAC: 
Average acoustic concentration; MBF: Mid-band fit; SS: 
Spectral slope; SI: Spectral 0-MHz intercept; GLCM: 
Grey-level-co-occurrence matrix; HER 2: Human 
epidermal growth factor 2; R: Responder; NR: Non-
responder; ROI: Region of interest; CON: Contrast; ENE: 
Energy; COR: Correlation; HOM: Homogeneity; ROC: 
Receiver operating characteristics; AC-T: Adriamycin, 
Cyclophosphamide, Paclitaxel; FEC-D: 5-Fluorouracil, 
Epirubicin, Cyclophosphamide, Docetaxel; pCR: 
Pathological complete response.
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