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ABSTRACT
Small cell lung cancer (SCLC) is a high-grade malignancy, and treatment 

strategies have not changed for decades. In this study, we searched for novel targets 
for antibody-drug conjugate (ADC) therapy for SCLC. We identified transmembrane 
proteins overexpressed specifically in SCLC with little or no expression in normal 
tissues and decided to focus on the cell adhesion molecule neurexin-1 (NRXN1). 
The cell surface overexpression of NRXN1 was confirmed using flow cytometry in 
SCLC cell lines (SHP77 and NCI-H526). The combination of a primary anti-NRXN1 
monoclonal antibody and a secondary ADC exhibited anti-tumor activity in SCLC cell 
lines. Moreover, the knockout of NRXN1 in SHP77 cells resulted in a loss of the anti-
tumor activity of NRXN1-mediated ADC therapy. Thus, NRXN1 could be a novel target 
for ADC therapy for the treatment of SCLC that is worth further research.

INTRODUCTION

Small cell lung cancer (SCLC) accounts for 10–15% 
of lung cancer, and its prognosis has remained relatively 
dismal for years [1]. Most patients have metastatic spread 
at the time of diagnosis [2]. Currently, conventional 
platinum-based chemotherapy regimens with or without 
radiation remain the standard first-line treatment for 
SCLC. Although atezolizumab was approved for use in 
combination with carboplatin and etoposide as a first-line 
treatment for adult patients with extensive-stage SCLC, 
the median overall survival period, compared with that 
for chemotherapy alone, was only prolonged for a few 
months [3]. On the other hand, the role of surgery has been 
limited to rare (less than 5% of patients) for early-stage 
disease [4]. Although SCLC is more responsive to initial 
cytotoxic chemotherapy than non-small cell lung cancer, 
most patients relapse with a relatively resistant disease.

Genome-wide sequencing studies of SCLC have 
failed to identify targetable driver mutations such as 
EGFR, ALK, ROS1, and BRAF that are frequently 
observed in lung adenocarcinoma. Recurrent mutations 

of SCLC include the loss of the tumor suppressors TP53 
and RB1, inactivating mutations in NOTCH family genes, 
and the amplification of MYC family genes, all of which 
are difficult to target [5]. The loss of PTEN, activating 
PI3K mutations, and aurora kinase activation have been 
reported as potential therapeutic targets [6]. There are 
ongoing trials for small molecule inhibitors of poly-ADP-
ribose polymerase (PARP) [7–9] and an enhancer of zeste 
homolog 2 (EZH2), which regulate the DNA damage 
response and chromatin modifications, respectively 
[10]. A recent study proposed a new model of SCLC 
subtypes defined by the differential expressions of four 
key transcription regulators, ASCL1, NeuroD1, YAP1, 
and POU2F3, which would help to accelerate therapeutic 
research leading to targeted approaches [11]. Novel 
therapeutic modalities for SCLC are long awaited.

Antibody-drug conjugates (ADCs) are an emerging 
technology that has already been implemented in clinical 
practice for some malignancies. An ADC is a monoclonal 
antibody conjugated with a cytotoxic drug via a chemical 
linker, enabling selective drug delivery by binding to 
specific cell surface proteins [12, 13]. Considering the 
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high sensitivity of SCLC to chemotherapy, the selective 
delivery of a cytotoxic agent using ADC could be a novel 
treatment strategy for SCLC [14].

Five ADCs have been approved by the Food and 
Drug Administration: brentuximab vedotin for Hodgkin 
lymphoma [15], ado-trastuzumab emtansine for HER2-
positive metastatic breast cancer [16, 17], inotuzumab 
ozogamicin for acute lymphoblastic leukemia [18], 
gemtuzumab ozogamicin for CD33-positive acute 
myeloid leukemia [19], and trastuzumab deruxtecan for 
unresectable or metastatic HER2-positive breast cancer 
patients who have received two or more prior anti-HER2-
based regimens in a metastatic setting [20]. To date, ADCs 
targeting solid tumors other than metastatic breast cancer 
have not exhibited distinct clinical benefits [21–29]. In 
SCLC, DLL3, a cell surface Notch ligand that appear 
to be a direct downstream target of ASCL1 [30, 31], has 
been identified as a novel target for ADCs [32]. However, 
a phase III trial comparing rovalpituzumab tesirine with 
topotecan as a second-line therapy had to be halted 
because of a shorter overall survival period in the ADC 
arm [33]. Trop-2, a glycoprotein overexpressed in many 
epithelial cancers, has also been reported to be a candidate 
target of ADCs [34, 35]. Sacituzumab govitecan, a Trop-
2-targeting ADC, showed a potential efficacy and was 
deemed safe in a phase I/II trial in SCLC patients [36]. A 
phase I/II study of a CD56-targeting ADC in combination 
with carboplatin and etoposide showed no improvement in 
efficacy over standard carboplatin and etoposide therapy 
in SCLC [37]. Recently, promiximab-duocarmycin, a 
new CD56-targeting ADC, was shown to demonstrate 
promising activity in a preclinical study of SCLC.

In this study, we aimed to identify novel molecular 
targets for ADCs in SCLC. The candidates were cell 
surface proteins overexpressed specifically in tumors with 
little or no expression in normal tissues. We searched for 
transmembrane proteins of SCLC using a computational-
biological approach. We herein report that NRXN1-
mediated ADC exhibited anti-tumor activity in vitro, and 
thus NRXN1 could be a novel target of ADCs for SCLC.

RESULTS

mRNA expression profile of cell surface proteins 
in SCLC

We analyzed the expressions of cell surface proteins 
using microarray data available in the Cancer Cell Line 
Encyclopedia using an unsupervised clustering analysis. 
Among the 565 genes coding membrane proteins, 31 genes 
showed an increased compensated fluorescence signal by 
three times or more, on average. The National Center for 
Biotechnology Information (NCBI) RNA sequencing data 
was used to select genes with little or no expression in 
normal tissues. Interestingly, SCLC cell lines were divided 
into two subgroups with and without overexpression of 

the 31 genes. Since Rudin et al. reported a new model 
of SCLC subtypes based on the expressions of four key 
transcription regulators (ASCL1, NeuroD1, YAP1, and 
POU2F3) [11], we compared the results of our clustering 
analysis with their subtypes (Supplementary Figure 1). The 
NRXN1-positive SCLC cell lines generally overlapped 
with ASCL1-high or NEUROD1-high subtypes.

NRXN1 expression in cell lines, surgical 
specimens, and human normal tissues

Among the 31 membrane proteins, we focused on 
NRXN1. NRXN1 expression was analyzed using two 
SCLC cell lines (SHP77 and NCI-H526) and HEK293 
cells. SHP77 had the highest mRNA expression, 
NCI-H526 displayed moderate expression, and HEK293 
showed little expression (Figure 1A). Patient-derived cells 
(PDC) showed a moderate NRXN1 expression level that 
was slightly lower than that in the NCI-H526 cell line. 
Cell-surface NRXN1 protein expression was verified 
using flow cytometry (Figure 1B). The percentage of 
NRXN1-positive cells determined using flow cytometry is 
generally correlated with mRNA expression (Figure 1C). 
An analysis of the surgical specimens revealed a high 
NRXN1 expression in a subset of primary SCLCs 
(Figure 1D).

NRXN1 expression in a commercially available 
human RNA panel was also analyzed to confirm the 
minimal or absence of NRXN1 expression in normal 
tissues. Consistent with the NCBI RNA sequencing data, 
NRXN1 expression was relatively limited to the brain. In 
other normal tissues, the expression of NRXN1 was less 
than one-third of the level observed in the brain (Figure 2).

Growth inhibition using a primary anti-NRXN1 
monoclonal antibody and a secondary ADC

To screen the ADC activity, we used a monoclonal 
antibody against NRXN1 and a common secondary ADC 
capable of binding the primary antibody. In SHP77 cells, 
the secondary ADC caused a dose-dependent cell growth 
inhibition in the presence of anti-NRXN1 monoclonal 
antibody, whereas anti-NRXN1 monoclonal antibody 
alone, secondary ADC alone, or an IgG isotype control 
plus the secondary ADC did not inhibit cell growth 
(Figure 3A). The inhibitory concentration 50 (IC50) value 
of the secondary ADC in the presence of anti-NRXN1 
monoclonal antibody was 3.8 nM, and the potency was 
more than 3-fold higher than that in the presence of the 
IgG isotype control antibody. On the other hand, NRXN1-
defficient SHP77 cells showed little susceptibility to the 
secondary ADC with anti-NRXN1 monoclonal antibody 
(Figure 3B). NRXN1 overexpression sensitized HEK293 
cells to the primary anti-NRXN1 monoclonal antibody and 
the secondary ADC (Figure 3C and 3D). In NCI-H526, 
growth inhibition by the secondary ADC in the presence 
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of anti-NRXN1 monoclonal antibody was still observed, 
but to a lesser extent compared to that in SHP77 (Figure 
3E). The PDC displayed reduced cell growth by secondary 
ADC, similar to that in the SHP77 cells, even in the 
presence of the IgG isotype control (Figure 3F).

Collectively, these results demonstrate that 
secondary ADC with anti-NRXN1 monoclonal antibody 
mediated cytotoxicity in a NRXN1 expression-dependent 
manner.

Induction of apoptosis by the primary anti-
NRXN1 monoclonal antibody and the secondary 
ADC

To verify actual cell death induced by secondary 
ADC with anti-NRXN1 monoclonal antibody, cells 
were treated with secondary ADC plus anti-NRXN1 
monoclonal antibody, anti-NRXN1 monoclonal antibody 

alone, secondary ADC alone, and secondary ADC plus an 
IgG isotype control. Consistent with the growth inhibition 
assay shown in Figure 3A, apoptosis was significantly 
induced in SHP77 cells by the combination of the anti-
NRXN1 monoclonal antibody and the secondary ADC 
(Figure 4). The induction of the apoptosis of PDC was also 
observed by secondary ADC alone or secondary ADC plus 
the IgG isotype control, suggesting that PDC had a high 
sensitivity to a low level of cytotoxic drug (PNU-159682) 
degraded from the secondary ADC.

DISCUSSION

We identified 31 membrane proteins as candidates 
for novel ADC targets and demonstrated that NRXN1 is a 
promising target for ADCs in SCLC.

Neurexins are single-pass transmembrane proteins 
encoded by three genes (NRXN1, 2, and 3), and 

Figure 1: NRXN1 expression in cell lines and surgical specimens of lung tissue including non-SCLC and normal 
tissues. (A) The relative expressions in cell lines were examined using qRT-PCR with the SYBR green dye assay; data for NRXN1 is 
shown. The log2-scale relative gene expression is indicated on the y-axis. Error bars, SD. (B) Flow cytometry of NRXN1 on cell lines. Cell 
surface NRXN1 was assessed using FITC-conjugated anti-rabbit polyclonal antibody following rabbit anti-NRXN1 (Black trace) or IgG 
isotype control (gray-filled) antibodies. FCM, flow cytometry. (C) Percentage of NRXN1-positive cells examined for each cell line using 
flow cytometry. Cells were stained with rabbit anti-NRXN1 polyclonal antibody followed by FITC conjugated goat anti-rabbit IgG. A one-
way analysis of variance (ANOVA) followed by the Tukey test was performed. (*P < 0.05; **P < 0.01; ***P < 0.0001; Tukey test). Error 
bars, SD. (D) Relative expression of NRXN1 in surgical specimens including normal lung by qRT-PCR using the SYBR green dye assay. 
The y-axis shows the NRXN1 expression levels relative to normal lung tissue. The horizontal bars indicate the median gene expression 
levels for each group. Error bars, SD. Ad, adenocarcinoma. NL, normal lung. SCLC, small cell lung cancer. Sq, squamous cell carcinoma.
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they function as cell adhesion molecules in synaptic 
transmission. Neurexins expressed in the presynaptic 
terminal bind postsynaptic neuroligins in a Ca2+-dependent 
manner, and the neurexin/neuroligin complex plays 
an important role in synaptic transmission [38]. The 
relationship between genomic alterations in NRXN genes 
and a wide variety of neuropsychiatric disorders, including 
autism spectrum disorders and schizophrenia, has been 
described in medical literature [39].

Each NRXN gene has at least two alternative 
promoters. An upstream promotor generates a longer 
α-isoform and a downstream promotor generates a shorter 
β-isoform. Moreover, multiple alternative splicing in 
both isoforms generates thousands of variants [40, 41], 
and it is difficult to strictly prove the selectivity of the 
used antibodies. As for the ADC experiments, the loss of 
cytotoxicity by specific NRXN1 knockout supported the 
selectivity of the primary antibody. In the flow cytometry, 
the loss of NRXN1 expression by specific NRXN1 
knockout also provided evidence for the selectivity of the 
antibody.

To reduce the toxicity of ADC therapy, the 
expressions of the ADC target should be low or absent in 
normal tissues. NRXN1 is expressed in a limited manner 
in the central nervous system (CNS) and is a favorable 
target, since ADCs are unable to pass through the blood-
brain barrier because of their large molecular size. A 
CD56-mediated ADC did not induce obvious damage to 
the CNS in xenograft models [42]. However, given that 
antineuronal autoantibodies are detected in paraneoplastic 
neurological syndrome, possible CNS side effects should 
be further validated using in vivo experiments.

Given the fact that NRXN1-mediated ADC exhibited 
favorable cytotoxic activity, monoclonal antibodies 
directly bound to cytotoxic agents should be generated 
and optimized for further study. Specifically, the use of 
different cytotoxic agents, cleavable or non-cleavable 
linkers, the optimal drug-antibody ratio, and epitopes 
should be explored and integrated comprehensively using 
many candidate antibodies. A smaller molecular size 
using a single antibody instead of two would contribute to 
more efficient drug delivery. The optimized ADCs should 
achieve their maximum effect while exhibiting a lower 
IC50 than that reported in this study through improvements 
in specific binding, efficient internalization, degradation 
and the potency of the cytotoxic agent.

Recently, a new nomenclature for SCLC subtypes 
based on the expressions of four key transcription 
regulators was reported [11]. NRXN1-positive cell lines 
generally overlapped with ASCL1-high or NeuroD1-
high subtypes, suggesting that NRXN1-positive cell 
lines belong to subtypes with enhanced neuroendocrine 
characteristics (Supplementary Figure 1). This result 
is convincing, considering that NRXN1 is expressed 
at synapses in the CNS. As to NRXN1 expression in 
SCLC, not all cases of SCLC are NRXN1-positive, 
and the proportion of NRXN1-positive cases remains 
unclear. We tested commercially available anti-NRXN1 
polyclonal antibodies (ANR-031 from Alomone Labs and 
ab214191 from Abcam) for immunohistochemistry using 
SCLC tissue microarrays, but they lacked specificity 
(data not shown). Still, the results of our study suggest 
that an NRXN1-enriched SCLC group could benefit from 
NRXN1-mediated ADCs.

Figure 2: NRXN1 expression in normal multiple organs in humans. The relative expressions of NRXN1 in normal multiple 
organs of human tissue were examined using qRT-PCR with the SYBR green dye assay. The y-axis shows the NRXN1 expression levels 
relative to normal lung tissue. The y-axis is set to the same scale as that of Figure 1D so that the expression intensities of both surgical 
specimens and normal organs can be visually compared. Error bars, SD.
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In the study, we did not directly verify the 
internalization and trafficking of anti-NRXN1 monoclonal 
antibody with secondary ADC. We could not conjugate 
sensor or fluorescent dyes directly to the secondary 
ADC, because the chemical information of the secondary 
ADC was a proprietary information of the manufacturer. 
Moreover, using the third antibody conjugated to sensor 
or fluorescent dyes to detect the secondary ADC would 
alter its behavior due to the enlarged size of the complex. 
In addition, the host species of the secondary ADC was 
also undisclosed by the manufacturer. Although the 

results of cell growth inhibition and the apoptosis assay 
in the present study imply the internalization of the anti-
NRXN1 antibody with the secondary ADC because of 
the significant anti-tumor effects that were observed, 
the internalization, efficiency of the internalization, and 
intracellular trafficking of NRXN1-mediated ADCs 
should be addressed in future research using optimized 
monoclonal antibodies directly conjugated to payloads.

In conclusion, we identified NRXN1 as a new 
target for ADCs by screening membrane proteins using 
a computational-biological approach. The combination 

Figure 3: In vitro growth inhibition of NRXN1-targeted ADC. (A–F) In vitro growth inhibition of anti-NRXN1 monoclonal 
antibody only, secondary ADC only, isotype control antibody (IgG) followed by secondary ADC, and anti-NRXN1 monoclonal antibody 
followed by secondary ADC on incubation with (A) SHP77, (B) SHP77 KO, (C) HEK293, (D) HEK293-NRXN1, (E) NCI-H526, and (F) 
PDC. All the assays were performed in triplicate. A two-way ANOVA followed by the Tukey test was performed to assess the difference 
between IgG with the second ADC group and anti-NRXN1 mAb with the second ADC group. A P value < 0.05 was considered significant 
(*P < 0.05; **P < 0.01; ***P < 0.0001). Error bars represent the SD of the mean. mAb, Monoclonal antibody. ns, Not significant.
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of the primary anti-NRXN1 monoclonal antibody and 
the secondary ADC exhibited anti-tumor activity in an 
NRXN1-expression dependent manner. NRXN1 could be 
a novel potential target of ADCs for SCLC that is worth 
further research.

MATERIALS AND METHODS

In silico selection of new potential targets for 
ADCs

We exported the gene expression profiles of 
51 SCLC cell lines available at the Cancer Cell Line 
Encyclopedia and those of 30 normal lung tissue samples 
examined using the Human Genome U133 Plus 2.0 Array 
(Thermo Fisher Scientific, Waltham, MA) at the Gene 
Expression Omnibus (GEO) of the NCBI (Supplementary 
Table 1). Genes coding membrane proteins were identified 
using Gene Ontology (GO) and its subontology, known 
as the Cellular Component Ontology, with the GO terms 
“plasma membrane” (GO: 0005886) and “anchored 
component of membrane” (GO: 0031225) or “integral 
component of membrane” (GO: 0016021).

Cell lines and clinical samples

SCLC cell lines were obtained from the American 
Type Culture Collection and were cultured according to 

the manufacturer’s instructions. SHP77 and H526 cells 
were cultured in Roswell Park Memorial Institute (RPMI 
1640) medium with L-glutamine and phenol red (Wako 
Pure Chemical Industries, Osaka, Japan) containing 
10% fetal bovine serum (FBS, Biowest, Nuaillé, France) 
and 5% Antibiotic-Antimycotic Mixed Stock Solution 
(Nacalai Tesque, Kyoto, Japan). HEK293 and HEK293-
NRXN1 cells were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM) with L-glutamine and phenol 
red (Wako Pure Chemical Industries) containing 10% 
FBS and 5% Antibiotic-Antimycotic Mixed Stock 
Solution (Nacalai Tesque). All the cells were cultured 
at 37°C in a humidified incubator with 5% CO2 and 
passaged every 3 to 4 days. As to patient-derived cells, 
the circulating tumor cells of an 84-year-old male with 
SCLC were derived from his peripheral blood after 
the approval of the Institutional Review Board at the 
University of Tokyo Hospital. The circulating tumor 
cells were purified using RosetteSep™ CTC Enrichment 
Cocktail Containing Anti-CD56 (STEMCELL 
Technologies, Vancouver, Canada) according to the 
manufacturer’s protocol. The purified cells were 
cultured in RPMI-1640 supplemented with bFGF (20 
μg/L, #13256029, Thermo Fisher Scientific), EGF (20 
μg/L, #PHG0314, Thermo Fisher Scientific), and B-27™ 
supplement (#17504044, Thermo Fisher Scientific) using 
Coster 24 Well Clear Flat Bottom Ultra Low Attachment 
Multiple Well Plates (Corning, Corning, NY) [43].

Figure 4: Apoptosis assay of NRXN1-targeted ADC at IC50 dose calculated by growth inhibition curves. Late apoptotic 
cells were quantified by Cy7-conjugated annexin-V and PI using flow cytometry. Results were analyzed using a one-way ANOVA followed 
by the Dunnett multiple comparisons test (*P < 0.05; **P < 0.01; ***P < 0.0001 versus no-treatment control group; Dunnett test). Error bars 
represent the SD of the mean. mAb, monoclonal antibody.
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Generation of NRXN1 KO cells

We knocked out the NRXN1 gene using the 
lentiviral CRISPR/Cas9 sgRNA mediated expression 
knockout protocol. Candidates for the sgRNA were 
configured using the CRISPR design tool CHOPCHOP 
[44] and CRISPRdirect [45]. Selected candidates for 
the sgRNA (Merck, Darmstadt, Germany) were cloned 
into Cas9 SmartNuclease All-in-one Vector (System 
Biosciences, Palo Alto, CA). The insert coding Cas9 and 
the sgRNA was ligated into the lentivirus vector CSII-
CMV-MCS-IRES2-Bsd (RIKEN BioResource Research 
Center, Tsukuba, Japan) after being removed from the 
Cas9 SmartNuclease All-in-one Vector. The SHP77 cells 
underwent lentiviral transduction using polybrene. After 
incubation for 14 days with medium containing 10 μg/mL 
blasticidin, the cell populations were screened using flow 
cytometry and qRT-PCR to confirm the efficiency of the 
CRISPR knockout of NRXN1 (Supplementary Figure 2).

mRNA expression analysis

RNA was extracted using RNAiso plus (TAKARA 
BIO, Shiga, Japan). Complementary DNA (cDNA) was 
generated from 1 μg of RNA using SuperScript III Reverse 
Transcriptase (Thermo Fisher Scientific). Each cDNA and 
primers specific for NRXN1 (forward primer 5′- GAT TCT 
TAC CAC AAC GGG CTA CA-3′, and reverse primer 5′-
GGG TTT CAA AGG TGA TTG GGT C-3′) and GAPDH 
(forward primer 5′-CAC CAC CAA CTG CTT AGC AC-
3′, and reverse primer 5′-TGG CAG GTT TTT CTA GAC 
GG-3′) were mixed with THUNDERBIRD SYBR qPCR 
Mix (TOYOBO, Osaka, Japan). The reaction mixes were 
run on the 7500 Fast Real-Time PCR System (Thermo 
Fisher Scientific). Relative gene expression was calculated 
using the ddCt method. NRXN1 expression in human 
normal tissues was examined using he FirstChoice Human 
Total RNA Survey Panel (Thermo Fisher Scientific).

Antibodies

Mouse anti-NRXN1α monoclonal antibody 
(sc-136001, Santa Cruz Biotechnology, Dallas, TX) 
recognizing amino acids 1063-1184 of rabbit NRXN1α 
was applied to the cell viability assay. Anti-NRXN1α 
polyclonal antibody raised in rabbits (ANR-031; 
Alomone Labs, Jerusalem, Israel) against amino acid 
residues 546-560 of rat NRXN1α was applied for NRXN1 
measurements using flow cytometry. The secondary ADC 
used in the study was αMFc-CL-PNU (AM-102-PN; 
Moradec, San Diego, CA), an anti-mouse IgG Fc-specific 
antibody conjugated to PNU-159682 with a cleavable 
linker. PNU-159682 is a derivative of nemorubicin, which 
induces cell death by intercalating DNA and topoisomerase 
inhibition. The antibody portion is a polyclonal antibody 
specific to the Fc region of mouse IgGs. The cleavable 

linker is stable in extracellular fluid, but is cleaved by 
cathepsin in endosomes once the conjugate is internalized 
into cells.

NRXN1 overexpression

cDNA was generated from RNA extracted from 
SHP77 cells. The DNA sequence coding NRXN1 was 
reconstructed by polymerase reaction with the first half 
and the latter half of the entire coding sequence [46]. The 
first half of the sequence was amplified with forward 
primer 5′-TCC CGC CTT TCC CCT TAC-3′ and reverse 
primer 5′-GCT GGA ATT ACA GTT AAT CCT GAT 
AC-3′. The latter half of the sequence was amplified 
with forward primer 5′-GGA GCA TGT TTA TGA AAA 
TTC AG-3′ and reverse primer 5′-CAT TCC CTG TCT 
TCT TTT GTA TG-3′. The full-length sequence was 
subcloned to the pGEM-T Easy Vector plasmid (Promega, 
Madison, WI). The plasmid was transformed into E. coli 
DH-5α Competent Cells (TaKaRa Bio) according to the 
manufacture’s protocol. The sequences of plasmids from 
colonies of the competent cells were verified after being 
extracted from transformed DH-5α using the PureYield™ 
Plasmid Miniprep System (Promega, Madison, WI). 
The collected plasmids were extracted from competent 
cells incubated overnight using the PureYield™ Plasmid 
Midiprep System (Promega). Fragments including the 
NRXN1 sequence were subcloned into pcDNA™3.1/
Zeo(+) (Thermo Fisher Scientific). HEK293 cells were 
transfected with HilyMax Reagent (Dojindo, Kumamoto, 
Japan) and incubated for 2 days, at which time the cells 
were examined to confirm the overexpression of the target 
genes using qRT-PCR and flow cytometry.

Flow cytometry

Cells were incubated with 2.5 μL of rabbit anti-
NRXN1 polyclonal antibody (ANR-031; Alomone Labs) 
or an isotype control at 1 × 105 cells/100 μL in PBS with 
2% FBS for 30 min in the dark. After two washes, the 
cells were incubated with 2 μL of goat anti-rabbit IgG 
FITC conjugate (ab97050; Abcam, Cambridge, United 
Kingdom) for 30 min.

After two washes, 2 μL of PI (Biolegend, San Diego, 
CA) were added to the cells for 15 min before the FC500 
flow cytometer (Beckman Coulter, Brea, CA) run. Data 
were analyzed using FC500 analysis software (Beckman 
Coulter).

In vitro cytotoxic assay

On day 1, the cancer cells, HEK293, and HEK293-
NRXN1 cells were seeded at a density of 1000 cells 
per well in 50 μL of medium on 96-well culture plates. 
PDCs were plated at a density of 2500 cells per well. On 
day 2, the primary antibodies (anti-NRXN1 monoclonal 
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antibody or IgG isotype control; 50 μL per well) were 
added to each well. After incubation in the presence of 
the primary antibodies for 10 min, 2 μL of the secondary 
ADC was added as a serial dilution. The primary antibody 
(anti-NRXN1 monoclonal antibody or IgG isotype 
control) and the secondary ADC were added at a constant 
volume ratio of 2:1 in each well. The cell lines and PDCs 
were incubated for 3 and 7 days, respectively, and were 
subjected to a cell growth assay using the Cell Counting 
Kit-8 (Dojindo).

Apoptosis assay

Apoptosis was analyzed using double staining 
with Annexin-V Cy7 conjugate (BioLegend) and PI 
(BioLegend) according to the manufacturer’s instructions. 
Briefly, cells were incubated in Annexin-V binding buffer. 
After incubation with 5 μL of Annexin-V Cy7 conjugate 
and 2 μL of PI for 15 min, the cells were examined using 
FC500. Data were analyzed using FC500 software.

Statistical methods

Data are presented as the mean ± SD, as stated in 
the figure legends. The statistical analysis of the gene 
expression profiles obtained from CCLE and NCBI GEO 
was performed using R (version 3.1.1, R Foundation for 
Statistical Computing) and Bioconductor. The statistical 
analysis of the NRXN1-positive cells detected using 
flow cytometry, the in vitro growth inhibition assay, and 
the apoptosis assay was performed using JMP Pro 14.2 
software (SAS Institute Inc., Cary, NC). The results of 
the NRXN1-positive cells detected using flow cytometry 
were analyzed using a one-way ANOVA followed by the 
Tukey test (*P < 0.05; **P < 0.01; ***P < 0.0001; Tukey 
test). Regarding the in vitro growth inhibition assay, a two-
way ANOVA followed by the Tukey test was performed 
for multiple comparison analyses of the in vitro cytotoxic 
activity (*P < 0.05; **P < 0.01; ***P < 0.0001; Tukey test). 
The percentage of late apoptotic cells (Annexin V and 
PI double-positive cells) were compared with those of 
untreated cells using a one-way ANOVA followed by the 
Dunnett test (*P < 0.05; **P < 0.01; ***P < 0.0001 versus 
no-treatment control group; Dunnett test). Differences were 
considered significant when the P value was less than 0.05.
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homologue; mAb: monoclonal antibody; MYC: cellular 
myelocytomatosis oncogene; NEUROD1: Neurogenic 
differentiation 1; NRXN: neurexin; PARP: poly-ADP- 
ribose polymerase; PBS: phosphate buffered saline; 
PI: propidium iodide; PI3K: phosphoinositide 3 kinase; 
POU2F3: POU class 2 homeobox 3; PTEN: phosphatase 
and tensin homologue deleted on chromosome 10; RB1: 
retinoblastoma; SCLC: small cell lung cancer; TP53: 
tumor suppressor protein p53; TROP2: Trophoblast cell 
surface antigen 2; YAP1: Yes-associated protein 1.
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