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ABSTRACT
Because cells are constantly exposed to micro-environmental changes, they 

require the ability to adapt to maintain a dynamic equilibrium. Proteins are considered 
critical for the regulation of gene expression, which is a fundamental process in 
determining the cellular responses to stimuli. Recently, revolutionary findings in RNA 
research and the advent of high-throughput genomic technologies have revealed a 
pervasive transcription of the human genome, which generates many long non-coding 
RNAs (lncRNAs) whose roles are largely undefined. However, there is evidence that 
lncRNAs are involved in several cellular physiological processes such as adaptation to 
stresses, cell differentiation, maintenance of pluripotency and apoptosis. The correct 
balance of lncRNA levels is crucial for the maintenance of cellular equilibrium, and the 
dysregulation of lncRNA expression is linked to many disorders; certain transcripts 
are useful prognostic markers for some of these pathologies. This review revisits the 
classic concept of cellular homeostasis from the perspective of lncRNAs specifically 
to understand how this novel class of molecules contributes to cellular balance and 
how its dysregulated expression can lead to the onset of pathologies such as cancer.

INTRODUCTION

Cellular homeostasis is a delicate condition that 
requires the ability of cells to adapt to minimal variation 
to maintain a “dynamic equilibrium”. Many factors 
such as nutrient availability and growth or death stimuli 
provoke diverse cellular responses; for example, cells 
can be induced to adjust their metabolic state, proliferate, 
differentiate or undergo apoptosis [1]. The regulation 
of gene expression is a crucial event in determining the 
cellular response to micro-environmental changes, and it is 
tightly controlled by specific factors, which are classically 
considered to be proteins. RNA, with the exception of 
tRNAs and rRNAs, has generally been considered an 
intermediate between DNA, the “sanctum sanctorum” 
of life, and proteins, the molecules through which life is 
expressed; therefore, the importance of RNA has been 
restricted to its coding role [2]. However, the discovery 
of RNA interference (RNAi) provided impetus to the 
identification and characterization of regulatory non-
coding RNAs. Over the last two decades, the improvement 
in high-throughput technologies has led to the detection 

of many long non-coding RNAs (lncRNAs). Although the 
vast majority of their functions remain unexplored, there is 
evidence that some lncRNAs are involved in physiological 
processes that maintain cellular and tissue homeostasis, 
and that consequently, the dysregulated expression of 
lncRNAs contributes to the onset and progression of 
many pathological conditions. Furthermore, a recent 
study demonstrated that the genetic knockout of some 
lncRNAs in mice resulted in peri- or post-natal lethality or 
developmental defects [3], consistent with the idea that the 
sequences that were previously considered “junk DNA” 
are essential for life. This review aims to advance the 
classic physiopathological view of cellular homeostasis 
by focusing on lncRNAs, highlighting how their balanced 
expression is crucial for the maintenance of cellular 
equilibrium and how their dysregulation contributes to the 
onset and progression of human pathologies. 
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Classification of lncRNAs: a brief update on an 
intricate scenario

The advent of high-throughput genomic 
technologies such as microarrays and next-generation 
sequencing has facilitated the discovery of the complexity 
of the eukaryotic transcriptome [4-7]. Up to 90% of the 
human genome is transcribed, but only a small percentage 
of the transcribed genes encode proteins [8]; therefore, 
the pervasive transcription generates many non-protein-
coding transcripts, referred by many as “dark matter 
RNAs” [9], whose functions remain largely unclear 
[10-13]. Several studies have provided an accurate 
landscape of the genomic context of lncRNAs [2, 14], 

but, as St Laurent and colleagues pointed out, these 
RNAs cannot be easily standardized due to “insufficient 
theoretical basis to classify and categorize the dark 
matter transcripts” [15]. Based on the current literature, 
we provide an updated classification of lncRNAs (Fig. 
1). LncRNAs are generally defined as transcripts longer 
than 200 nucleotides that generally lack protein-coding 
potential and can be processed like mRNAs, i.e. spliced 
and polyadenylated [16]. According to the GENCODE v7 
catalog, human lncRNAs can be divided into two main 
categories: the intergenic lncRNAs [4] and the genic or 
intragenic lncRNAs [2, 17]. The widespread transcription 
of long intergenic regions generates molecules named 
long intergenic non-coding RNAs (lincRNAs) or stand-

alone lncRNAs which transcriptional unit, thus, do not 
overlap protein-coding genes [18, 19]. LincRNAs are 
usually spliced and polyadenylated, and they can range 
from hundreds of nucleotides to several kb in length 
[18, 19]. Many of the known lincRNAs are associated 
with the polycomb repressive complex 2 (PRC-2) or 
other chromatin-modifying complexes, suggesting that 
these transcripts are involved in transcriptional control 
by functioning as scaffolds for chromatin remodelling 
proteins [18, 19]. It is to note, however, that some 
lncRNAs are exceptionally long, like, for instance, Airn 
and Kcnq1ot1 (108 and 91.5 kb in length, respectively) 
and some refers to these molecules as macroRNAs [15, 
20]. While Koerner and colleagues define macroRNAs 
as “ncRNAs that can be as short as a few hundred 
nucleotides or as long as several hundred thousand 
nucleotides, the function of which does not depend on 
processing into short or micro RNAs” [21], essentially 
assimilating the term “macro” to the term “long”, St 
Laurent and colleagues seem to consider macroRNAs as 
transcripts that are tens of kb in length [15]. MacroRNAs 
are very long, mostly unspliced and nuclear transcripts 
that are transcribed by RNA polymerase II and, as in 
the case of the above mentioned Airn and Kcnq1ot1, 
are involved in the regulation of imprinting [20]. Very 
recently, it has been demonstrated that long stretches of 
the genome are transcribed to generate unexpectedly long 
transcripts named very long intergenic non-coding RNAs 

Figure 1: Genomic organization of lncRNAs. Pervasive transcription of the genome occurs bidirectionally (arrows). Exons are 
schematically represented with colored boxes. Spliced transcripts are represented with lines; spots represent splice sites. LncRNAs that 
are transcribed from loci distinct from the sense transcript-encoding gene loci (protein-coding or non-protein-coding) are named long 
intergenic non-coding RNAs (lincRNAs). Exceptionally long lncRNAs are named macroRNAs and very long intergenic non-coding 
RNAs (vlincRNAs). Bidirectional transcription from the enhancer and promoter regions generates enhancer-associated RNAs (eRNAs) 
and promoter-associated long RNAs (PALRs), respectively. Antisense transcription can generate natural antisense transcripts (NATs) with 
varying degrees of overlap. NATs can overlap with sense transcripts at their 5’-ends (divergent NAT or head-to-head) or 3’-ends (convergent 
NAT or tail-to-tail). NATs and other lncRNAs can be expressed in linear or circular form. Modified with permission from Kung et al [4].
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(vlincRNAs), some of which reach the astonishing length 
of 1Mb [15]. VlincRNAs are expressed in normal primary 
and embryonic stem cells (ESCs), and also in blood and 
tumor cells [15, 20]. VlincRNAs cover a wider portion 
of the genome than lincRNAs, but there is a low overlap 
between vlincRNAs and lincRNAs [15]: however, when 
vlincRNAs and lincRNAs overlap, it seems that the 
vlincRNA version is functional [15]. Although the role of 
vlincRNAs is not clear, they are supposed to be crucial 
for cellular balance as siRNA-mediated downregulation 
of selected vlincRNAs in K562 cell line provokes an 
increase in cell death [15]. Given the fact that vlincRNAs 
predominantly localize to the nucleus, it is possible that 
these long transcripts function as “intelligent scaffolds” 
to connect different portion of the genome [9, 15]. The 
scaffolding function of lincRNAs is well established, 
as in the case of functional intergenic repeating RNA 
element (Firre), also known as linc-RAP-1: human Firre is 
transcribed from a 5 Mb gene locus located on the X chro-
mosome and is expressed on both X chromosomes before 
and after X-chromosome inactivation [22]. Firre localizes 
in the nucleus and is characterized by a 156 bp repeating 
RNA domain (RRD) that serves for Firre interaction with 
heterogeneous nuclear ribonucleoprotein U (hnRNP-U). 
Firre and hnRNP-U coordinate the topological 
organization of multiple chromosomes, thus providing a 
trans-acting scaffold for multichromosomal interactions 
[22]. Scaffolding activity is one of the many that lincRNAs 
can exert: in fact, recent studies demonstrate a wide panel 
of functions for lincRNAs. As we will discuss more deeply 
in this paper, lincRNAs can function as “pseudotargets” 
for miRNAs (or competing endogenous RNA, ceRNA), 
thus avoiding their suppressive role on target RNAs [23-
25]. LincRNAs can also compete for binding to proteins, 
thus preventing protein:protein interactions [26].

The pervasive transcription of the human genome 
occurs bidirectionally [12, 27], and this is particularly 
evident at promoter regions. RNA polymerase II 
promiscuously binds to gene enhancers, promoters, and 
transcription start and termination sites and generates 
several RNAs, including approximately 2 kb-long 
enhancer-associated RNAs (eRNAs), which are generally 
non-polyadenylated [28], and promoter-associated long 
RNAs (PALRs) [7, 11, 29]. While the role of PALRs 
remains unclear, there is now evidence that eRNAs 
promote chromatin opening and RNA polymerase II 
occupancy at and transcription of target genes [25, 30]. 
Conversely, the natural antisense transcripts (NATs) 
have been better studied and characterized. NATs 
are transcribed from the opposite strand of and are 
complementary to other RNA transcripts (sense) and 
usually undergo splicing and polyadenylation [31, 32]. 
Antisense transcription is enriched at both ends of sense 
genes [33, 34]. Therefore, NATs can be complementary to 
the 5’ or 3’ ends of sense mRNAs [35]: in the first case, the 
transcriptional machineries converge (head-to-head), and 

in the second, they diverge (tail-to-tail) [32]. Notably, the 
term “sense” used in the context of RNA often indicates 
protein-coding transcripts. Although NATs are mainly 
considered to be complementary to protein-coding RNAs, 
it is now well established that many lncRNAs possess an 
antisense counterpart, as in the case of the X-inactive-
specific transcript (Xist)/Tsix transcript pair, which is 
involved in X-chromosome silencing (see below) [32, 
36]. NATs can regulate gene expression by RNA:RNA 
interaction, thus modulating target RNA stability, splicing 
or translation [37-39], but also function as a scaffold for 
chromatin remodeling complexes such as PRC-2 [40-42].

Similarly to mRNAs, structural folding of lncRNAs 
is crucial for their functions [43]. Recently, it was 
discovered that many lncRNAs are expressed in a circular 
form [44, 45], indicating that lncRNAs, similar to proteins, 
can exert different roles depending on their isoforms, 
which highlights the magnitude of the functions performed 
by the “lncRNA world”. 

Inside the lncRNA world: a delicate balance of the 
factors involved in cell “stemness”, differentiation, 
adaptation and death

The X-factor: X chromosome inactivation as a 
paradigm for gene regulation by lncRNAs 

The complexity of the lncRNA world is nowhere 
more evident than in the X-chromosome inactivation 
(XCI) process [46]. XCI in female mammals represses 
gene expression on one X-chromosome to maintain a 
balance between the sexes [47]. The X-inactivation center 
(XIC) is a region of the X-chromosome that encodes many 
lncRNAs, which drive its transcriptional silencing [48]. 
One of the first lncRNAs discovered and characterized in 
mammals is Xist, an approximately 17 kb molecule that is 
expressed only from the inactive X-chromosome [49]. Xist 
is essential for the initiation of XCI. Xist recruits PRC-2, a 
machinery that trimethylates histone H3 at Lys27 through 
a repeated motif named repeated A (RepA), thereby 
causing the epigenetic repression of the X-chromosome 
[46]. Xist activity is controlled by its antisense partner 
Tsix, which mediates the methylation of the Xist promoter 
by associating with DNA methyltransferase 3a (Dnmt3a) 
to silence Xist expression [41, 42]. An additional 
layer of complexity is the regulation of the Xist/Tsix 
sense-antisense pair by other non-coding transcripts, 
X-inactivating intergenic transcript element (Xite), 
RepA and Just proximal to Xist (Jpx). Xite is a positive 
regulator of Tsix [50], whereas RepA and Jpx activate Xist 
to promote XCI [51, 52]. The work of Lee and colleagues 
and their review on non-coding “X-factors” underline the 
importance of lncRNAs, which adds a new perspective to 
the complexity of the non-coding RNA world [46]. 
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Cell “stemness” and cell differentiation: two sides 
of the same coin controlled by lncRNAs 

XCI is extremely important for cell differentiation 
and is regulated by many pluripotency factors, e.g., 
Oct-4, which activates Tsix and prevents XCI and cell 
differentiation [42, 53]. The differentiation of stem or 
progenitor cells depends on many factors that coordinate 
the expression of genes that drive the acquisition of 
lineage-specific features; the maintenance of stem cell 
pluripotency requires an equally specific molecular 
blueprint. In their milestone article, Takahashi and 
Yamanaka demonstrated that it is possible to reprogram 
differentiated cells to an embryonic-like state through 
the addition of few “core” transcription factors such 
as Oct-4 and Sox-2 [54]. Although most attention has 
focused on proteins, there is now growing evidence that 
lncRNAs play key roles in cell fate determination [55-
57]. LincRNA-regulator of reprogramming (linc-RoR) is 
crucial for cellular reprogramming and the maintenance of 
pluripotency; it is highly expressed in induced pluripotent 
stem cells (iPS) and self-renewing human ESCs and is 
strongly downregulated during human ESC differentiation 
[58]. Linc-RoR positively regulates the expression of the 
core transcription factors Oct-4, Sox-2 and Nanog by 
functioning as a miRNA sponge (or ceRNA) [23]. Certain 
miRNAs such as miR-145 directly target and repress the 
expression of pluripotency genes to inhibit human ESC 
self-renewal and induce lineage-restricted differentiation 
[59]; linc-RoR binds miR-145, thereby preventing the 
downregulation of Oct-4, Sox-2 and Nanog and human 
ESC differentiation [23].

Human genome consists of at least 50% repeat 
sequences, most of which derived from transposable 
elements [60]. Among them, human endogenous 
retroviruses (HERVs), which stem from ancient 
exogenous retroviral infection, account for 8% of the 
total human DNA [60]. More than 200 of the 1000 copies 
of HERV-H insertions in the human genomes are highly 
expressed in human ESCs, where they account for up 
to 2% of all polyadenylated transcripts [61]. HERV-H is 
an approximately 5 kb long lncRNA, which expression 
is essential for pluripotency maintenance of human 
ESCs; it has recently been demonstrated that knockdown 
of HERV-H in human ESCs results in upregulation 
of the pluripotency markers Oct4, Sox2 and Nanog, 
while the differentiation markers Gata6 and RunX1 are 
downregulated [62]. HERV-H functions as a scaffold to 
recruit Oct-4 and some transcriptional co-activators to the 
long terminal repeat (LTR) portion of its own gene loci, 
which in turn enhances the transcription of neighboring 
pluripotency-associated genes [62].

Tcl1 upstream neuron-associated (TUNA), 
an evolutionarily conserved transcript, contributes 
to ESCs maintenance and proliferation as well as 
neural commitment of ESCs [63]. TUNA, also known 

as Megamind, is located on chromosome 12 and is 
transcribed in the opposite direction to Tcl1: it is expressed 
in two isoforms of approximately 3 kb in length and it 
localizes in both nucleus and cytoplasm. ShRNA-mediated 
silencing of TUNA in mouse ESCs causes impaired cell 
proliferation, reduction of transcription of Oct-4 and 
Nanog; conversely, its overexpression increases such 
pluripotency-related genes expression and associates 
with elevated levels of proliferation [63]. TUNA is 
highly expressed in the central nervous system of many 
vertebrates and plays a role in neural commitment: in 
fact, its levels are highly upregulated during neural 
differentiation of mouse ESCs and knockdown of 
TUNA renders mouse ESCs unable to differentiate. It is 
noteworthy that TUNA is expressed at high level in the 
thalamus and striatum in the human brain and may have 
a role in the pathophysiology of Huntington’s Disease 
[63]. TUNA activates transcription of pluripotency-related 
genes by binding to their promoters and recruiting RNA 
Binding Proteins (RBPs) such as polypyrimidine tract-
binding protein 1 (PTBP1) and heterogeneous nuclear 
ribonucleoprotein K (hnRNP-K) [63].

Mistral, also known as Mira, is an approximately 
0.8 kb non-coding transcript that is generated from the 
genomic region between the Hoxa6 and Hoxa7 genes 
and drives the expression of the genes that are involved 
in germ-layer specification in differentiating mouse ESCs 
and are not expressed in pluripotent mouse ESCs [64]. 
Mistral is induced following treatment with retinoid 
acid, a potent inducer of differentiation, and recruits the 
epigenetic activator Mixed Lineage Leukemia 1 (MLL), 
thereby activating the expression of Hoxa6 and Hoxa7 
[64]. This causes the upregulation of the genes expressed 
during early germ-layer differentiation; the siRNA-
mediated knockdown of Mistral prevents this induction 
[64].

Many essential protein-coding genes also encode 
lncRNAs [65]. For instance, it is well established 
that lncRNAs are involved in the process of muscle 
differentiation. The steroid receptor RNA activator 
(SRA), an approximately 0.8 kb long transcript, was the 
first lncRNA whose secondary structure was solved [43, 
66], and it was originally characterized as a non-coding 
RNA that contributed to the activation of several sex 
hormone receptors [67]. However, an SRA isoform was 
identified that encodes the steroid receptor RNA activator 
protein (SRAP) [68]; both SRA and SRAP play a role 
in cell differentiation. Whereas SRA co-activates the 
myogenic differentiation 1 (MyoD) protein to enhance 
myogenic differentiation and the myogenic conversion 
of non-muscle cells, SRAP prevents this co-activation by 
interacting with SRA [68]. Interestingly, a 24 kb regulatory 
region upstream of the MyoD gene locus encodes for 
several eRNAs that are essential for MyoD expression, in 
particular the DNA enhancer elements Distal Regulatory 
Regions RNA (DRRRNA) and Core Enhancer RNA (CERNA) 
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[69]. CERNA contributes to chromatin remodeling at 
MyoD, thus promoting RNA polymerase II occupancy 
and transcription, while DRRRNA is an activator of the 
downstream myogenic genes [69]. Cesana and colleagues 
revealed the existence of a long intergenic transcript 
named lincRNA Muscle Differentiation 1 (linc-MD1) 
that is involved in myoblast differentiation [25]. Human 
linc-MD1 maps to chromosome 6p12.2; this transcript 
is polyadenylated and localizes in the cytoplasm, and its 
expression is induced upon myoblast differentiation [25]. 
Similar to linc-RoR, but with a pro-differentiation role, 
linc-MD1 functions as a ceRNA by binding miR-133 and 
miR-135, which target and inhibit the factors involved in 
myoblast differentiation [25]. Whereas linc-RoR prevents 
the miRNA-mediated repression of “stemness” factors, 
contributing to the maintenance of cell pluripotency 
and self-renewal, linc-MD1 sequesters miRNAs that 
repress the expression of myogenic factors, thereby 
enhancing muscular differentiation [25]. It has recently 
been demonstrated that the RBP human antigen R (HuR), 
which expression is inhibited by miR-133, intersects the 
linc-MD1-miRNAs network creating a regulative loop 
with linc-MD1 [70]. HuR and linc-MD1 levels increase 
during early phases of myogenesis, while they decrease 
as differentiation program progresses. HuR binds linc-
MD1 promoting its sponging activity and linc-MD1, in 
turn, attenuates this effect by sequestering miR-133 [70]. 
Recently, Kretz and colleagues identified two lncRNAs 
named anti-differentiation ncRNA (ANCR) and tissue 
differentiation-inducing non-protein coding RNA (TINCR) 
that are involved in epidermal differentiation [71, 72]. 
The ANCR gene maps to chromosome 4 and encodes 
an approximately 0.8 kb transcript whose expression is 
suppressed during keratinocyte, osteoblast and adipocyte 
differentiation [71, 73]. RNAi-mediated ANCR silencing 
in progenitor keratinocytes perturbs the expression of 
the genes associated with epidermal differentiation; 
for instance, ANCR depletion reduces the CEBPα 
level but increases the expression of the key epidermal 
differentiation proteins filaggrin, loricrin and keratin 1 
[71]. In humans, the TINCR locus maps to chromosome 
19 and generates a 3.7 kb transcript whose expression is 
strongly induced during epidermal differentiation [72]. The 
downregulation of TINCR causes the reduced expression 
of many genes during keratinocyte differentiation, 
including filaggrin and loricrin, and consequently causes a 
dramatic reduction in the ultra-structures that are essential 
for epidermal barrier formation, such as the protein-rich 
keratohyalin granules and lipid-rich lamellar bodies [72]. 
TINCR binds target mRNAs through a 25 nucleotide motif 
named the TINCR box [72]. Furthermore, TINCR strongly 
interacts with the staufen double-stranded RNA binding 
protein 1 (STAU-1), which mediates mRNA decay in 
cooperation with lncRNAs [74].

Fine tuning of cellular adaptation by lncRNAs 

Cells are often exposed to stressors, like thermal 
stress and hypoxia, that necessitate the activation of 
molecular mechanisms of adaptation. The heat-shock 
response in vertebrates features several cytoprotective 
proteins including the heat-shock transcription factor 1 
(HSF1), which is normally found as an inactive monomer 
in unstressed cells and trimerizes once activated by heat 
and other stress stimuli [75]. It was demonstrated that 
HSF1 trimerization is promoted by an approximately 
0.6 kb long non-polyadenylated lncRNA named heat 
shock RNA-1 (HSR1) [75]. HSR1 interacts with the 
translation elongation factor eEF1A and promotes HSF1 
trimerization and transcriptional activity. Inhibition of 
HSR1 secondary structure or silencing of HSR1 provokes 
a massive death in cell exposed to heat shock [75]. One 
of the critical aspects for cellular functions is oxygen 
availability which is fundamental for ATP generation; 
low oxygen tension causes a strong reduction in the 
ATP level and determines an overall repression of gene 
expression [76]. The main regulator of cellular response 
to low oxygen availability is the hypoxia inducible 
factor (HIF)-1, a heterodimer composed of two subunits, 
hypoxia-regulated HIF-1α and constitutively expressed 
HIF-1β: HIF-1 drives the transcription of the genes 
involved in the cellular adaptation to hypoxia, many of 
which are also important for cancer progression [77]. HIF-
1α is regulated at the protein level and the RNA level by 
many trans-acting factors [78]. Trash-Bingham and Tartof 
discovered a natural antisense transcript named antisense 
HIF (aHIF) that is expressed in several adult and fetal 
tissues and in cancer tissues; aHIF is also upregulated 
in Von Hippel-Lindau (VHL)-negative kidney cancer 
[79, 80]. aHIF is approximately 2 kb long and does not 
have any apparent post-transcriptional modification; 
it is perfectly complementary to at least 860 bases of 
the 3’-end of the HIF-1α mRNA and contributes to the 
post-transcriptional regulation of this mRNA. Indeed, 
it was recently demonstrated that under hypoxia, aHIF 
negatively regulates HIF-1α mRNA by interfering with 
its translation [81, 82], although the exact mechanism 
of aHIF action remains unclear. It is known that 
hypoxia causes increased glycolysis and it was recently 
demonstrated that lincRNA-p21 plays a role in this cell 
response [26]. LincRNA-p21 is approximately 3 kb 
long: its transcriptional unit resides approximately 15 kb 
upstream of the p21 gene locus and it is transcribed in the 
opposite orientation relative to p21 [83]. At low oxygen 
tension HIF-1α up-regulates lincRNA-p21 expression 
which in turn contributes to HIF-1α hypoxic accumulation 
by binding VHL and therefore preventing its binding to 
HIF-1α [26].

Hypoxia and other stimuli, such as DNA 
damage, starvation and oxidative stress, can activate 
the autophagic pathway as an adaptive response [84]. 
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Autophagy is a vital process that degrades damaged 
cellular components and mediates their recycling; it plays 
an important role in somatic, stem and cancer cells and 
can also trigger apoptosis [85]. Although very little is 
known about the role of lncRNAs in autophagy, it was 
recently demonstrated that the knockdown of maternally 
expressed gene 3 (MEG3) can activate autophagy and the 
proliferation of bladder cancer cells [86]. Human MEG3 is 
an approximately 1.7 kb lncRNA that is expressed at high 
levels in brain tissues but at very low levels or is absent 
in cancer tissues and cell lines [87]. Interestingly, MEG3 
can also activate p53 via repression of the mouse double 
minute 2 homolog (MDM2), and the overexpression of 
MEG3 in cancer cell lines suppresses cell proliferation 
[88].

Involvement of lncRNAs in apoptosis 

Programmed cell death, also known as apoptosis, is 
a fundamental process that regulates tissue homeostasis. 
The tumor suppressor p53 and the transcription factors 
E2Fs play crucial roles in the response to several stimuli 
like, for instance, DNA damage, and are involved in cell 
cycle progression/arrest, autophagy and apoptosis [89-
92]. Activation of E2F1 induces the expression of many 
lncRNAs including one named E2F1-Regulated Inhibitor 
of Cell death (ERIC), an approximately 1.7 kb long 
transcript [93]. ERIC is also upregulated by etoposide-
induced DNA damage attenuating apoptotic response and 
may thus have cancer promoting effects [93]. The WD 
repeat containing, antisense to p53 (Wrap53) gene encodes 
a protein that is essential for the formation of Cajal bodies, 
which are nuclear structures involved in ribonucleoprotein 
and small-nucleolar RNA (snRNA) processing [94]. 
The Wrap53 protein interacts with many small Cajal 
body-specific RNAs (scaRNAs), particularly with the 
telomerase RNA component (TERC), and telomerase 
reverse transcriptase (TERT), because it promotes 
telomerase localization in Cajal bodies [95]. Interestingly, 
the Wrap53 gene also encodes for an antisense transcript 
that exists in three alternatively spliced forms, Wrap53α, β 
and γ: only Wrap53α, though, is complementary to the first 
exon of p53. Wrap53α positively regulates p53 expression 
by targeting and stabilizing the 5’ untranslated region of 
its mRNA: in fact, whereas Wrap53α silencing causes the 
downregulation of p53 mRNA and protein expression, its 
overexpression potentiates p53-mediated apoptosis [37].

Recently, it was found that p53 induces the 
expression of several lncRNAs upon doxorubicin-
induced DNA damage; among these, the aforementioned 
lincRNA-p21 functions as a gene repressor in the p53 
pathway [83]. LincRNA-p21 mediates transcriptional 
repression via the physical interaction of a 780 nt region 
at its 5’-end with hnRNP-K; this complex binds to 
the promoters of target genes, thereby mediating their 
transcriptional repression and activating an apoptotic 

response to DNA damage [83]. Notably, lincRNA-p21 
can also inhibit the translation of the CTTNB1 and JUNB 
mRNAs, and the previously mentioned HuR enhances 
lincRNA-p21 degradation through the recruitment 
of Argonaute 2, a component of the RNA-induced 
silencing complex (RISC) that cleaves target mRNAs 
[96]. DNA damage also stimulates the expression of 
several lncRNAs in a p53-independent manner: for 
instance, JADE1 adjacent regulatory RNA (lncRNA-
JADE) is transcriptionally activated in MCF7 breast 
cancer cells following DNA damage induction in ATM/
NFkB-dependent fashion [97]. The lncRNA-JADE gene is 
adjacent to JADE1 gene and generates an approximately 
1.7 kb long transcript which is highly conserved across 
mammalian species. JADE1 is a component of a multi-
protein complex that drives H4 histone acetylation: 
lncRNA-JADE recruits p300 and BRCA1 to JADE1 
promoter and activates its transcription. Silencing of 
lncRNA-JADE impairs cell proliferation and increases 
apoptosis, while its overexpression enhances cell growth 
and diminishes apoptosis [97]. Notably, breast cancer 
tissues display a high level of lncRNA-JADE compared 
to normal breast tissue, suggesting that this transcript 
may play an important role in breast carcinogenesis and 
resistance to DNA-damaging chemotherapeutic drugs 
[97]. 

As previously mentioned, low oxygen tension is a 
stress cells often have to deal with and it was very recently 
showed that anoxia causes mitochondrial fission and 
apoptosis in cardiomiocytes [98]. Mitochondrial fission 
and apoptosis are inhibited by prohibitin 2 (PHB2), but 
anoxia also upregulates the expression of certain miRNAs, 
including miR-539 which provokes downregulation of 
PHB2 [98]. Anoxia also downregulates many lncRNAs, 
including one named cardiac apoptosis-related lncRNA 
(CARL) which is involved in PHB2 control [98]. CARL 
functions as a sponge for miR-539: in fact, CARL 
overexpression reduces miR-539 expression and activity, 
increases PHD2 levels and attenuates anoxia-induced 
mitochondrial fission and apoptosis in cardiomiocytes 
[98].

Dysregulated expression of untranslated 
RNAs: involvement of lncRNAs in the onset of 
pathologies and in the hallmark capabilities of 
cancer cells

LncRNAs are crucial for maintaining cellular 
physiology, and disequilibrium in the balance of lncRNAs 
could significantly contribute to the onset and development 
of several pathologies. Table 1 shows selected lncRNAs 
that are involved in human pathologies. Many reviews 
have highlighted the potential roles of lncRNAs in human 
diseases [99, 100], and lncRNAs are mainly associated 
with three classes of pathologies: neurodegenerative 
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disorders [17], such as Huntington’s [101] and 
Alzheimer’s [102] diseases, cardiovascular diseases [103] 
and cancer [104, 105]. For example, it is well known that 
the production of peptides derived from the cleavage of the 
amyloid precursor protein by β-secretase-1 (BACE1) is a 
leading cause of Alzheimer’s disease [106]. An antisense 
transcript of BACE1 that positively regulates BACE1 was 
recently characterized [106, 107]. As for cardiovascular 
diseases, the massive dysregulation of lncRNAs has been 
observed in ventricular septal defects, which are the most 
common form of congenital heart disease [108], and the 
long polyadenylated antisense noncoding RNA in the INK4 
locus (ANRIL) is strongly associated with cardiovascular 
diseases and other pathologies [109].

The impact of dysregulated lncRNA expression 
is most evident in cancer, which is likely the most 
heterogeneous and unpredictable pathology. The 
pathogenesis of cancer is a multistep process due to the 
genetic alterations that perturb cellular physiology. The 
accumulation of mutations causes the evolution of tumor 
malignancy: as normal cells evolve to a neoplastic state, 
they acquire a succession of “hallmark capabilities” 
that enable the progression of the cancer [110]. There 

is an unexpected involvement of lncRNAs in several 
cellular processes; alterations in the expression of certain 
transcripts can lead to dramatic changes in the cellular 
physiology, leading to further consequences. There is 
growing evidence that lncRNAs play a role in cancer 
onset and development [105, 111]; indeed, lncRNAs are 
involved in the canonical hallmarks of cancer that were 
first proposed in 2001 (Fig. 2) [112]. Recently, it was 
shown that the expression profiles of lncRNAs in cancer 
cells are significantly different from those in normal cells. 
For example, lncRNA highly expressed in hepatocellular 
carcinoma (lncRNA-HEIH) expression is higher in liver 
cancer and in cirrhotic liver samples compared to normal 
liver tissues [113]. LncRNA highly upregulated in liver 
cancer (HULC) is strongly upregulated in liver tumor 
samples and slightly upregulated in cirrhotic liver tissue 
and focal nodular hyperplasia compared to normal tissue 
[114], suggesting that the expression of a specific lncRNA 
may reflect or cause the grade of the alteration. Here, we 
discuss how lncRNAs and their dysregulated expression 
are associated with cancer onset and development.

Figure 2: LncRNAs impact the hallmarks of cancer. The six hallmarks of cancer are shown with selected associated lncRNAs that 
are involved in cancer onset and progression. References are listed in brackets. 
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Dysregulation of cell growth: reinterpreting the 
concept of oncogenes and tumor suppressor genes 
from a non-coding perspective 

In their milestone review “The Hallmarks of 
Cancer,” Hanahan and Weimberg discuss that the most 
distinctive characteristic of tumor cells is most likely 
“their ability to sustain chronic proliferation” [110]. The 
INK4A-ARF-INK4B gene cluster (INK4 locus) is located 
on human chromosome 9p21 and encodes three tumor 
suppressors genes that are also known as p16INK4A, 
p14ARF and p15INK4B [115]. Whereas p15 and p16 
suppress cell growth by inhibiting cyclin-dependent 
kinase (CDK) 4 and 6, p14 inhibits MDM2, thereby 
activating p53. The INK4 locus encodes ANRIL, which is 
transcribed from the antisense strand of p15INK4B [115]; 
ANRIL is approximately 3.8-kb long and is expressed in 
linear and circular isoforms [116]; furthermore, four major 
ANRIL isoform groups with four distinct transcriptions 
have recently been identified [117]. ANRIL directly 
interacts with PRC-2 component suppressor of zeste 12 
(SUZ12), thereby selectively repressing in cis p15INK4B 
transcription [40]: accordingly, the silencing of ANRIL 
causes an increase in the p15INK4B level and a strong 
reduction in cell viability. However, ANRIL isoforms 
can also regulate gene expression in trans: in fact, its 
overexpression causes broad changes in the expression 
of genes distributed across the genome and promotes cell 
growth and metabolic activity [117]. Alterations in the 
ANRIL structure or expression contribute to the onset of 
a variety of pathologies, including cancer [109, 117-119]. 

The Metastasis associated lung adenocarcinoma 
transcript 1 (MALAT-1), also known as non-coding 
nuclear-enriched abundant transcript 2 (NEAT2), is an 8,7 
kb transcript that is expressed at high levels in the normal 
pancreas and lungs and at varying levels in the prostate, 
colon and other organs but is absent in the skin, stomach, 
bone marrow and uterus [120]. MALAT-1 has been 
primarily studied for its role in cancer cells migration, 
invasion and metastasis [120, 121], but, in addition, it 
plays an important role in cell cycle progression. Tripathi 
and colleagues reported that MALAT-1 expression is low 
during G1 and G2 cell cycle phases and high during 
G1/S and mitosis in human normal and cancer cell 
lines; moreover, silencing of MALAT-1 induces cellular 
senescence in human lung fibroblasts and provokes G0/
G1 or G2/M phase arrest, depending on cell type [122]. 
MALAT-1 localizes at nuclear speckles and modulates the 
alternative splicing of RNAs by interacting with several 
pre-mRNA splicing factors and controlling their level 
of phosphorylation [123]. It has been demonstrated that 
MALAT-1-depleted cells show mitotic arrest due to an 
impaired level of B-MYB, a transcription factor involved 
in mitotic progression. B-MYB is overexpressed in many 
cancers and its expression and/or RNA processing is 

controlled by MALAT-1 [122]. 
The fusion protein Bcr-Abl derives from the 

rearrangement of chromosome 9 with chromosome 22 
and is a feature of more than 90% of Chronic Myeloid 
Leukemia cases. Bcr-Abl is a pro-proliferative and 
antiapoptotic protein and its aberrant expression leads to 
the upregulation of many lncRNAs [124]. Silencing of 
Bcr-Abl provokes a downregulation of these lncRNAs; 
among them, beta globin locus transcript 3 (non-protein 
coding) (lncRNA-BGL3) acts as a tumor suppressor 
transcript acting as a ceRNA for those miRNAs that 
target the oncosuppressor PTEN, such as miR-17, miR-
20 and miR-106. Indeed, tumor growth is much slower 
in nude mice injected with lncRNA-BGL3-overexpressing 
K562 cell line than in control mice. Furthermore, bone 
marrow cells derived from transgenic mice overexpressing 
lncRNA-BGL3 and infected with a retrovirus encoding 
for Bcr-Abl show a decreased transformation capacity 
compared to Bcr-Abl-expressing bone marrow cells from 
control mice [124]. 

These findings remark the role of lncRNAs in 
regulating cell growth and cell cycle progression and how 
dysregulations in their expression can lead to impaired cell 
proliferation: therefore, from a non-coding perspective, 
oncogenes and oncosuppressor genes could be called lnc-
ogenes and lnc-osuppressor genes.

Evading apoptosis: how lncRNAs influence the cell 
death threshold 

Alterations in cell death pathways are an important 
step in cancer progression and there is now evidence that 
lncRNAs play a role in this process [125]. A diminished 
sensitivity to apoptosis is a common feature of various 
cancers, such as B-cell lymphoma, which is characterized 
by the overexpression of Bcl-2 [126]. We discovered a Bcl-
2/IgH antisense transcript (Bcl2/IgH AS) that is expressed 
in the t(14;18) but not in the t(14;18)-negative lymphoid 
cell lines [38]. This antisense transcript originates in the 
IgH locus, encompasses the t(14;18) fusion site and spans 
at least the complete 3’ UTR region of the Bcl-2 mRNA 
[38]. The downregulation of the Bcl-2/IgH AS lowered 
Bcl-2 gene expression and inhibited neoplastic cell growth 
by inducing apoptosis in the t(14;18) lymphoid cell lines, 
suggesting that this transcript might positively regulate 
Bcl-2 expression [127]. We also demonstrated that the 
chimeric Bcl-2/IgH transcript stabilizes Bcl-2 mRNA at 
the post-transcriptional level by masking a destabilizing 
adenine + uracil-rich element (ARE) located in the 3′-UTR 
of the Bcl-2 mRNA [128].

An important regulator of apoptosis in lymphoid 
cells is the Fas-FasL system, which represents a 
major player in the extrinsic cell death pathway and 
its expression is often dysregulated in Non-Hodgkin 
Lymphomas [129]. Fas is expressed as a transmembrane 
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(mFas) or soluble (sFas) protein, depending on alternative 
splicing of its mRNA which is driven by RNA binding 
motif protein 5 (RBM5)-dependent exon skipping [130]. 
While mFas levels varies in lymphoma cells, sFas 
levels are high in the serum of patients with malignant 
hematological disorders, and tumor cells are therefore less 
sensitive to FasL-induced apoptosis [131]. The Fas gene 
encodes an antisense transcript named Fas-Antisense1 
(Fas-AS1) which is involved in Fas alternative splicing 
process [39]: Fas-AS1 sequesters RBM5 inhibiting exon 
6 skipping. Fas-AS1 expression is frequently repressed in 
lymphoma cell lines and primary lymphomas compared 
with controls, and ectopic overexpression of Fas-AS1 
determines a reduction of sFAS isoform and an increase 
of mFAS, thereby stimulating FasL-induced apoptosis 
[39]. Fas-AS1 promoter is hypermethylated in lymphomas 
by the methyl transferase EZH2, which is upregulated in 
these tumors. Interestingly, treatment of lymphoma cells 
with the methyl transferase inhibitor DZNeP results in a 
reduced methylation of Fas-AS1 promoter, a great increase 
of Fas-AS1 expression and consequently a reduction of 
sFAS isoform and an increase of mFAS [39].

Angiogenesis, epithelial-mesenchymal transition 
and metastasis: involvement of lncRNAs in the 
progression of cancer malignancy 

The dysregulated and rapid proliferation of cancer 
cells creates a local hypoxic microenvironment that is 
a common feature of many tumors [132]. Low oxygen 
tension activates the HIF transcription factors, which 
modulate the expression of many lncRNAs named 
hypoxia-induced noncoding ultraconserved transcripts 
(HINCUTs) that are involved in cell proliferation under 
hypoxic conditions [133]. Furthermore, HIFs play an 
important role in angiogenesis, which is regulated, at 
least in part, by non-coding transcripts [134]. Indeed, it 
was shown that the lncRNA MVIH (lncRNA associated 
with microvascular invasion in HCC) promotes tumor 
angiogenesis [135]. MVIH expression is high in 
hepatocellular carcinomas compared to normal tissues and 
targets phosphoglycerate kinase 1 (PGK1), a glycolytic 
enzyme that can inhibit angiogenesis when secreted 
by cells [135]. MVIH prevent PGK1 secretion, thereby 
activating angiogenesis, tumor growth and metastasis 
[135]. Furthermore, MVIH is as an independent risk factor 
for the poor recurrence-free survival of HCC patients after 
hepatectomy [135] and it and it has also been recently 
identified as a regulator of proliferation and invasion of 
tumor cells and as a poor prognostic biomarker in non-
small cell lung cancer (NSCLC) [136].

Hypoxia also increases the expression of MALAT-1 
in endothelial cells, modulating their angiogenic properties 
[137]. Silencing of MALAT-1 reduces HUVEC cell 
line proliferation and cell cycle progression lowering 

the level of cell cycle regulatory genes, but increase in 
vitro migration and angiogenesis [137]. Furthermore, 
MALAT-1 knockout mice present a delay in vessel 
extension and a reduction in vessel density in the retina 
[137]. An important event in cancer progression is the 
epithelial-mesenchymal transition (EMT), a complex 
cellular process that is mainly driven by two crucial 
factors, Snail1 and Twist [138], and is characterized by 
the loss of the epithelial phenotype and the acquisition 
of mesenchymal characteristics. The molecular features 
of the EMT include the downregulated expression of 
cell-cell adhesion molecules such as E-cadherin; Snail-1 
promotes the transcriptional repression of E-cadherin 
directly and indirectly by upregulating the expression 
of the transcription factors Zeb1 and Zeb2 [139]. 
Snail-1 strongly induces Zeb2 expression via the Zeb2 
NAT. Snail-1 upregulates Zeb2 NAT expression, which 
prevents the splicing of an IRES-containing 5’-UTR 
intron; this allows the ribosome machinery to bind to 
the ZEB2 mRNA and promote its translation [139]. The 
overexpression of Twist in a human breast epithelial cell 
line results in the altered expression of many lncRNAs; 
therefore, several other lncRNAs may be involved in 
the EMT [140]. The downregulation or inactivation of 
E-cadherin contributes to the invasion of cancer cells and 
enhances their metastatic potential [110]. Snail-1, Twist 
and Zeb1 are induced by TGF-β, a cytokine that is able 
to activate EMT and tumor invasion [141, 142]. TGF- β 
also modulates the expression of a multitude of lncRNAs 
and particularly up-regulates the levels of a non-coding 
transcript named lncRNA activated by TGF-β (lncRNA-
ATB) [142]. LncRNA-ATB plays a notable role in EMT: 
in fact, its overexpression induces EMT and promotes 
invasion of cancer cell lines and it is also noteworthy 
that lncRNA-ATB levels are higher in hepatocellular 
carcinoma specimens from patients than in correspondent 
normal hepatic tissues. LncRNA-ATB promotes and 
sustains EMT and tumor invasion via two mechanisms: 
on one hand, lncRNA-ATB up-regulates Zeb1 and Zeb2 by 
competitively binding the miR-200 family, which targets 
Zeb1 and Zeb2, thus acting as a ceRNA [141, 143]. On the 
other hand, lncRNA-ATB increases the stability of IL-11 
mRNA thereby promoting IL-11 autocrine pathway and 
STAT-3 activation, thus promoting EMT and the invasion-
metastasis processes in HCC [142]. 

LncRNAs also play a role in inhibiting EMT and 
tumor invasion, as for the case of BRAF-activated non-
coding RNA (BANCR). BANCR is an approximately 0.7 
kb transcript which expression is strongly downregulated 
in NCLSC tissues compared with normal tissues [144]. 
Low levels of BANCR are associated with poor survival 
while high levels of BANCR indicate a better prognosis 
of NSCLC patients. Overexpression of BANCR promotes 
apoptosis and upregulates the expression of E-cadherin 
while decreases the levels of N-cadherin and Snail-1 in 
A549 cells, thus inhibiting cell migration and invasion 
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[144]. Furthermore, BANCR suppresses NSCLC cell 
metastasis in vivo: in fact, nude mice injected with 
BANCR-overexpressing lung adenocarcinoma cells 
display a reduction of the number of metastatic nodules, 
confirming the potential tumor-suppressing role of BANCR 
[144].

Another well-studied lncRNA, the aforementioned 
MALAT-1, activates the migration, invasion and metastatic 
development of non-small cell lung cancer cells [120, 121, 
145]. It has recently been demonstrated that MALAT-1 is 
induced by TGF-β in bladder cancer cells and its level is 
highly upregulated in bladder cancer specimens [146]. 
MALAT-1 binds to SUZ12 and represses the expression of 
E-cadherin. TGF-β promotes the association of MALAT-1 
and SUZ12, thereby promoting bladder cancer cells 
invasion and metastasis both in vitro and in vivo [146]. 
It is noteworthy, however, that MALAT-1 knockout in 
human lung and liver cancer cell lines does not affect cell 
proliferation compared to the corresponding wild-type cell 
lines. Furthermore, MALAT-1 knockout mice do not show 
any detectable developmental or lethality phenotype when 
kept under normal stress-free conditions [147]: MALAT-1 

might thus be dispensable for normal development but 
highly important for cancer onset and progression. 

Hox transcript antisense intergenic RNA (HOTAIR) 
is an approximately 2 kb spliced and polyadenylated RNA 
that is generated from the HOXC locus. HOTAIR binds 
to the PRC-2 complex, which induces the transcriptional 
silencing of the HOXD locus by trimethylation of histone 
H3 at lysine-27 [148]. The high expression of HOTAIR 
observed in colorectal cancer samples is associated with 
bad prognosis, indicating its importance in the metastatic 
development of cancer [149, 150].

Prospects and Predictions

Research over the last two decades has illuminated 
the complexity of the transcriptome and led to the 
detection of many lncRNAs. While it is still valid to 
assume that proteins are the effectors of cellular processes, 
new roles for RNA have begun to emerge; several lines 
of evidence indicate that lncRNAs play important roles 
in the control of gene expression and the maintenance 
of cellular functions. The balanced expression of these 

Figure 3: LncRNAs orchestrate the “diminuendo” and “crescendo” of cellular functions. Duke Ellington was probably the 
greatest conductor, composer and arranger in jazz history. His longtime friend and colleague Billy Strayhorn once said: “Ellington plays 
piano. But his real instrument is his orchestra. Each member of his orchestra is to him a distinctive tone color and set of emotions, which 
he mixes with others equally distinctive to produce a third thing which I like to call the Ellington Effect” [199]. One of Ellington’s most 
important compositions is “Diminuendo and Crescendo in Blue”: the title refers to expression marks that mean decreasing or increasing the 
sound in volume. The conductor controls the elements of musical expression (tempo, dynamics, articulation) as lncRNAs orchestrate and 
modulate gene expression and cellular functions. (Graphic: Federico Di Gesualdo).
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transcripts appears to be crucial for the maintenance of 
cellular homeostasis; consequently, the dysregulated 
expression of lncRNAs contributes to the onset and 
progression of many types of pathology. The dysregulation 
of lncRNA expression in many pathologies highlights 
their potential use as diagnostic and prognostic factors 
[151] and therapeutic targets [100]. HULC is detected 
in the plasma of hepatocellular carcinoma patients, 
suggesting that it could be a useful diagnostic marker for 
this cancer [152]. MALAT-1 is a prognostic biomarker for 
the metastatic development of lung cancers [145], and 
aHIF is a marker for poor disease-free survival in breast 
cancer [153]. Targeting lncRNAs poses an intriguing 
challenge for therapy [100]. We demonstrated that the Bcl-
2/IgH AS discovered in our laboratory can be efficiently 
downregulated with synthetic oligonucleotides [127]. 
This results in the reduction of Bcl-2 expression and an 
induction of apoptosis in t(14;18)-negative lymphoid 
cell lines [127]. The RNAi-mediated knockdown of the 
BACE1 antisense RNA (BACE1-AS) induces the reduction 
of the BACE1 mRNA and protein levels in vitro and in 
vivo, suggesting that BACE1-AS could be a candidate drug 
target [106]. However, further studies are required on the 
structural and functional aspects of lncRNA biology to 
assess their potential as therapeutic targets [100].

The discovery of the fundamental roles of lncRNAs 
in the regulation of gene expression is both surprising and 
obvious, given that they can intrinsically interact with 
DNA using their nucleotide sequence and with proteins 
via secondary and tertiary structures [154, 155]. This 
cardinal role of lncRNAs evokes a “musical” analogy for 
the long non-coding RNA world (Fig. 3). An orchestra 
is an instrumental ensemble formed by many individual 
musicians. The complete score encodes all of the musical 
information; each section – or each player – possesses a 
timed blueprint, a part that can be read and translated into 
music using instruments. Each played part contributes to 
the fine and organized network of sounds. This parallels 
what occurs in cells as the DNA is transcribed to generate 
RNAs. mRNAs are translated via the ribosomal machinery 
to produce proteins, which act in a complex network of 
functions. However, a fine interpretation of the score 
needs someone who can coordinate the “diminuendo” 
and “crescendo” of each part: the conductor. Although 
the conductor does not produce sounds himself, his role 
is essential to coordinate all parts of the performance; 
similarly, lncRNAs are emerging as master regulators of 
cellular functions. Finally, the orchestral conductors are 
often exceptional player themselves, and in some cases, 
they perform with the other players. Recent studies have 
shown that lncRNAs are very rarely translated in cell lines 
[156] but are bound by ribosomes [157]. This finding raises 
questions about the effective coding potential/translation 
of lncRNAs and suggests further intricate scenarios; for 
example, lncRNAs might encode small active peptides or 
act as decoys for the translation machinery [157].
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