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AbstrAct:
The proteasome inhibitor Bortezomib has been identified as a potent 
enhancer of TRAIL-induced apoptosis in several human cancers. However, the 
identification of the underlying molecular mechanisms of this synergistic cell 
death induction has been ongoing over the last years. A recent study identifies 
a new mechanism of action for the synergism of TRAIL and Bortezomib.

Evasion of apoptosis (programmed cell death) 
belongs to the hallmarks of cancers and contributes 
to tumor progression and treatment resistance [1]. 
There are two major apoptosis signaling pathways that 
culminate in the activation of caspases, i.e. the death 
receptor (extrinsic) pathway, which is triggered by the 
ligation of death receptors at the cell surface, and the 
mitochondrial (intrinsic) pathway, which involves the 
release of apoptogenic proteins from mitochondria into 
the cytosol to initiate caspase activation [2]. In principle, 
agents that trigger agonistic TRAIL receptors such as 
TRAIL receptor antibodies or recombinant soluble 
TRAIL present promising cancer therapeutics, since they 
can directly initiate the apoptotic machinery in cancer 
cells [3]. However, many human cancers have developed 
mechanisms to escape the induction of apoptosis upon 
treatment with TRAIL [4]. This underscores the need to 
identify and validate novel agents that could be used in 
combination protocols with TRAIL receptor targeting 
agents to potentiate the antitumor activity of TRAIL-
based regimens. 

Inhibition of the proteasome presents one such 
strategy to enhance the sensitivity of cancer cells towards 
TRAIL. For example, Bortezomib (PS-341, VELCADE) 
is a dipeptidyl boronic acid compound that reversibly 
blocks the proteolytic activity of the proteasome and 
is a FDA-approved drugs for the treatment of multiple 
myeloma [5]. While Bortezomib has been shown to 
increase the sensitivity to TRAIL-induced apoptosis in 
several human cancers as single agent and in combination 
protocols [6, 7], the identification of the underlying 

molecular mechanisms that are responsible for this 
synergistic induction of apoptosis has been the subject of 
intensive investigations over the last years. 

A recent study identifies a novel mechanism of 
action that underlies the synergistic cooperation of 
TRAIL and Bortezomib by demonstrating for the first 
time that Bortezomib enhances the stability of TRAIL-
derived tBid, the cleaved form of Bid [8]. Bid is a 
pro-apoptotic BH3-only domain protein of the Bcl-2 
family [9]. Upon stimulation of death receptors such as 
TRAIL receptors or CD95, activation of caspase-8 at 
the death-inducing signaling complex (DISC) results in 
the proteolytic processing of Bid into tBid [2]. tBid in 
turn translocates to mitochondria to promote activation 
of Bax and Bak, cytochrome c release into the cytosol 
and caspase activation, thus connecting the extrinsic to 
the intrinsic pathway of apoptosis [2]. The novelty of the 
current study resides in the demonstration that TRAIL 
and Bortezomib act together to cause the accumulation 
of tBid at the mitochondria [8]. To this end, tBid was 
found to accumulate at higher levels in cells that were 
treated with the combination of Bortezomib and TRAIL 
compared to cells that were exposed to TRAIL alone [8]. 
Since tBid has been reported to be prone to proteasomal 
degradation upon its ubiquitination [10], proteasome 
inhibition by Bortezomib prevents the degradation of tBid 
that is newly generated upon stimulation with TRAIL 
via TRAIL-induced caspase-8 activation, leading to the 
accumulation of tBid. This conclusion is supported by 
data showing that cells, which were treated with TRAIL to 
trigger the cleavage of Bid to its truncated form tBid, then 
washed to remove the remaining TRAIL and incubated in 
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the presence of the broad-range caspase inhibitor zVAD.
fmk to prevent any further processing of Bid by activated 
caspases, harboured markedly increased levels of tBid 
compared to cells, which were incubated in the absence 
of Bortezomib after the initial stimulation with TRAIL 
[8]. Since no tBid is produced any longer after removal 
of TRAIL and in the presence of the caspase inhibitor 
zVAD.fmk, neither by ongoing TRAIL stimulation 
(since TRAIL was removed by a washing step) nor by 
continued caspase activity (due to the addition of the 
wide-range caspase inhibitor zVAD.fmk), tBid levels 
under these experimental conditions are largely controlled 
by its degradation rate. Thus, the breakdown of tBid 
after TRAIL stimulation was substantially delayed in 
the presence of Bortezomib compared to cells that were 
incubated in the absence of Bortezomib after exposure 
to TRAIL. These findings support the conclusion that 
treatment with TRAIL results in cleavage of Bid into tBid, 
while the addition of Bortezomib markedly increases the 
stability of tBid that is produced by TRAIL-stimulated 
proteolytic cleavage. The functional relevance of tBid in 
the Bortezomib-conferred sensitization of neuroblastoma 
cells to TRAIL-induced apoptosis was demonstrated by 
RNA interference experiments showing that silencing of 
Bid also significantly reduced apoptosis in cells co-treated 
with TRAIL and Bortezomib [8]. Together, these results 
demonstrate that Bortezomib primes for TRAIL-mediated 
apoptosis at least in part by stabilizing tBid.

Various mechanisms of action have been proposed to 
mediate the cooperative action of TRAIL and Bortezomib 
in the induction of apoptosis in cancer cells, involving 
modulation of both the extrinsic and the intrinsic pathway 
of apoptosis. As far as the intrinsic apoptosis signaling 
pathway is concerned, Bortezomib has been reported to 
stimulate upregulation of the BH3-only domain proteins 

Bim and/or Bik [11, 12], to block the degradation of 
Bax [13] or to promote the release of Smac from the 
mitochondria into the cytosol [14]. Also, Bortezomib 
alone or in combination with TRAIL has been shown to 
downregulate or cleave anti-apoptotic Bcl-2 proteins such 
as Bcl-2, Bcl-XL or Mcl-1 [15, 16]. It is interesting to note 
that Noxa turned out in the current study to determine 
only the kinetic of apoptosis induction, while it became 
dispensable for apoptosis upon prolonged exposure 
to Bortezomib and TRAIL [8]. In contrast, Noxa has 
been shown to be a critical mediator of apoptosis upon 
monotherapy with Bortezomib [17-19], pointing to 
differences in the role of Noxa between single agent and 
combination therapy with Bortezomib.

Bortezomib-mediated modulation of the extrinsic 
pathway of apoptosis has been attributed to upregulation 
of the agonistic TRAIL receptors TRAIL-R1 and/or 
TRAIL-R2 in several studies [16, 20-26], to promote 
the formation of the TRAIL DISC [27], to downregulate 
c-FLIP expression [27-29] or to block the degradation 
of caspase-8 [30]. Also, reduced expression of XIAP 
has been linked to Bortezomib-mediated sensitization to 
TRAIL-induced apoptosis [31-33] as well as inhibition of 
NF-κB by Bortezomib [24, 34].

In addition to providing new mechanistic insights 
into the synergistic interaction of Bortezomib and TRAIL 
the present study is the first demonstration that Bortezomib 
acts in concert with TRAIL in a childhood cancer, i.e. 
neuroblastoma. Previous studies on the combination of 
TRAIL and Bortezomib were performed in adult tumors. 
As single agent, Bortezomib has been reported to suppress 
neuroblastoma growth in preclinical studies [35-38], 
also in chemoresistant or metastatic disease [39-41]. By 
comparison, Bortezomib showed limited in vitro or in 
vivo activity as monotherapy when it was tested against 

Figure 1: scheme of the role of bid for the synergistic interaction of trAIL and bortezomib. TRAIL induces cleavage of 
Bid into tBid, while Bortezomib increases the stabilization of tBid by inhibiting its proteasomal degradation, resulting in accumulation of 
tBid at mitochondrial membranes. This in turn promotes activation of Bax/Bak, release of cytochrome c from mitochondria into the cytosol, 
caspase-3 activation and caspase-dependent apoptosis.
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the solid tumor cell line or xenograft panel of the pediatric 
preclinical testing program that includes models for 
neuroblastoma [42]. In phase I clinical trials in children 
with refractory solid tumors or leukemia Bortezomib 
proved to be well tolerated, although little single agent 
activity was reported [43, 44]. Together with our findings 
showing that Bortezomib sensitizes neuroblastoma cells 
towards TRAIL, the currently available data indicate 
that Bortezomib represents an interesting experimental 
agent for the treatment of neuroblastoma especially 
in combination protocols, which warrants further 
investigation.
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