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Diabetes mellitus is associated with liver metastasis of colorectal 
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ABSTRACT
High morbidity and mortality of cancer, especially colorectal cancer (CRC), in 

diabetic patients have been reported. In this study, we investigated the relationship 
between the presence of diabetes mellitus (blood hemoglobin A1C was 6.5% or 
higher at the time of diagnosis of CRC) and the progression and liver metastasis of 
CRC. Histopathological findings in the primary lesions, which were preferential to 
diabetes-complicated CRC (DM-CRC) and the liver metastasis, were also investigated. 
Of the 473 CRC patients who underwent curative surgical resection, 148 (31%) had 
diabetes. In DM-CRC cases, the stage was more advanced, with more cases in stage IV 
or postoperative disease recurrence. Histopathological findings correlated with liver 
metastasis in DM-CRC, including budding grade, perineural invasion, and myxomatous 
tumor stroma, and all were highly correlated with the stage. Additionally, myxomatous 
stroma showed the strongest correlation with liver metastasis in multivariate 
analysis. Myxomatous stroma in stage III cases correlated with liver recurrence. 
The myxomatous stroma was abundant in biglycan protein and contained numerous 
CD90-positive mesenchymal stem cells (MSCs). In human colon cancer cell line HT29, 
biglycan expression was induced by high sugar concentration, fatty acids, and insulin, 
and its contact co-culture with MSCs resulted in enhanced stemness and epithelial-
mesenchymal transition phenotype. Thus, DM-CRC has higher malignant phenotypes 
compared to non-DM-CRC, and the involvement of diabetes-induced biglycan may act 
as a pathogenic factor.

INTRODUCTION

Diabetes mellitus is a social problem in developed 
countries due to its frequency and the diversity and 
severity of its complications. It is estimated that there 
are about 463 million people with diabetes between the 
age of 20 and 79 in the world and about 7.39 million in 
Japan [1]. In recent years, attention has been focused on 
the relationship between diabetes and cancer, with the 
latter being one of the various complications observed 
in patients with diabetes. The incidence of cancer was 

reported to be higher in diabetic groups than in non-
diabetic groups, and the risk of carcinogenesis is increased 
in early stages of glucose metabolism disorders [2].

People with diabetes have an increased risk of 
carcinogenesis in most organs [3], including liver, 
pancreas, colorectum, stomach, breast, lung, oral cavity, 
and endometrium, and increased risk of associated 
mortality [2–4]. In particular, pancreatic, liver, and 
colon cancer are often associated with diabetes [3, 5, 6]. 
Smoking, diabetes, obesity, and lean meat diet are known 
as carcinogenic risks in colorectal cancer (CRC) [7]. The 

           Research Paper



Oncotarget2983www.oncotarget.com

meta-analysis of 15 studies found that among 2,593,935 
patients with CRC, those with diabetes had a hazard ratio 
of 1.30 and a mortality rate of 1.26 compared to the non-
diabetic patients [8]. Conversely, the incidence of diabetes 
in CRC is 5–8% [9, 10].

The causes of increased carcinogenic risk in 
diabetes include increased oxidative stress, high levels 
of insulin, related growth factors, and its binding factors, 
insulin receptor substrate-1 and their downstream 
phosphoinositide 3-kinase (PI3K), AKT, mitogen-
activated protein kinase (MAPK) signal, AMP activated 
kinase (PRKA), mammalian target of rapamycin, sirtuin 
1, and autophagy signal activation [2, 4–6, 11–13]. 
Advanced glycation end-product (AGE), receptor for 
AGE (RAGE), and high mobility group box-1 (HMGB1) 
are emphasized as the causes of complications in diabetes 
[14]. Previously, we reported the promotion of CRC 
carcinogenesis by AGE-RAGE and HMGB1-RAGE [15, 
16]. Furthermore, activation of renin-angiotensin system 
and aldolase A associated with hyperglycemia promotes 
CRC progression [17, 18]. Overexpression of biglycan, a 
class I small leucine-rich repeat proteoglycan (SLRP), is 
associated with progression, liver metastasis, recurrence 
and poor prognosis of CRC [19, 20].

Thus, diabetes is considered to be a factor that 
promotes CRC carcinogenesis and an exacerbation factor. 
One-fourth of CRC cases with invasion beyond the 
submucosal layer show liver metastasis during and/or after 
the operation [21]. One-third of CRC patients died of liver 
metastasis [22]. Therefore, it is important to elucidate the 
relationship between diabetes and liver metastasis of CRC. 
Furthermore, histopathological findings that show the effects 
of diabetes in CRC or the metastatic ability have not been 
reported so far. Here, we aimed to clarify the relationship 
between diabetes and CRC metastasis, especially liver 
metastasis via histopathological examinations.

RESULTS

Association of diabetes with liver metastasis in 
CRC cases

Clinicopathological factors were compared among 
the 473 CRC cases that had undergone surgical resection 
(Table 1). There was no difference in local progression 
(pT) between the two groups; however, lymph node 
metastasis (pN) and pStage were more advanced in 
diabetes mellitus-complicated CRC (DM-CRC). In 
particular, distant metastases were frequently observed in 
DM-CRC for all liver, peritoneum, and lung metastases.

Histological findings associated with liver 
metastasis in DM-CRC

Histological findings showed that budding, nerve 
invasion, vascular invasion, lymph vessel invasion, distant 

invasion, and myxomatous stroma were observed more 
frequently in DM-CRC than those in non-DM-CRC. As 
shown in Figure 1, myxomatous stroma was abundant 
in stromal cells and poor in collagen fibers, and stromal 
mucus-like weak basophilic deposits were observed. 
Furthermore, budding grade, nerve invasion, and the 
myxomatous stroma were significantly associated with 
pStage in DM-CRC cases with high significance (Table 2). 
Furthermore, the correlation between clinicopathological 
factors and liver metastases was examined by multivariate 
analysis (Table 3). Myxomatous stroma showed the highest 
correlation, followed by budding grade.

Properties of myxomatous stroma

The properties of myxomatous stroma were examined 
by immunostaining (Figure 2). The myxomatous stroma 
showed biglycan expression and the stromal cells comprised 
of many CD90-positive mesenchymal stem cells (MSCs). 
Biglycan expression was observed in all cases of myxomatous 
stroma, except for one case, but only in 11% in case of usual 
stroma (Table 4). In stage IV CRCs, biglycan expression was 
observed more frequently in liver metastasis cases (93%) than 
in non-liver metastasis cases (45%) (Table 5).

Myxomatous stroma predicted postoperative 
liver metastasis

We examined the relationship between myxomatous 
stroma and postoperative liver metastasis (liver recurrence) 
in stage III CRC cases (Table 6). Liver recurrence was 
found in 7 (7%) of 100 cases with usual stroma, whereas 
it was found in 19 (29%) of 65 cases with myxomatous 
stroma. Thus myxomatous stroma might predict liver 
recurrence in stage III CRCs.

Mesenchymal stem cells (MSCs) in myxomatous 
stroma

Next, we examined the number of CD90-positive 
MSCs in the stroma in the invasive front (Figure 3). 
The number of CD90-positive MSCs was significantly 
higher in pStage IV cases and higher in cases with liver 
metastases (Figure 3A). Compared with the expression 
of biglycan, there were significantly more MSCs in 
biglycan (+) cases than in biglycan (–) cases (Figure 
3B). Furthermore, comparison between the expression of 
biglycan and Claudin-4 in cancer cells showed that the 
expression of Claudin-4 was significantly decreased in 
biglycan (+) cases (Figure 3C).

Relationship between biglycan and epithelial-
mesenchymal transition (EMT) in HT29 cells

We examined the effect of diabetes-associated factors 
on biglycan expression in HT29 human colon cancer cells 
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Table 1: Comparison of clinicopathological parameters between non-DM-CRC and DM-CRC
Parameter Non-diabetic CRC Diabetic CRC1 P4

N 325 148
Sex Male 177 75 NS

Female 148 73
Age 71 (38–93) 72 (40–95) NS
Location Right 119 54 NS

Left 206 94
Histology2 Differentiated 293 133 NS

Undifferentiated 32 15
pT2 2 42 25 NS

3 219 92
4 64 31

pN2 0 182 61 0.0030
1–2 143 87

Stage2 I–II 170 50 0.0015
III 106 59
IV 49 39

Distant metastasis Liver 31 30 0.0018
Peritoneum 5 12 0.0008
Lung 2 9 0.0007

Recurrence Negative 314 130 0.001
Positive 11 18

Budding grade3 1 26 7 0.0002
2 157 45
3 142 96

Pn3 0 236 88 0.0055
1 89 60

Ly3 0 169 56 0.0054
1 156 92

V3 0 181 61 0.0040
1 144 87

Ex3 0 245 98 0.0455
1 80 50

Stroma Usual 245 69 0.0002
Myxomatous 80 79

1Blood hemoglobin A1C was equal or higher to 6.5% at the time of colorectal cancer (CRC) diagnosis. 2Clinicopathological 
classification is according to UICC-TNM Classification [61]. Differentiated type, pap, tub1, tub2; Undifferentiated type, 
por, sig, muc; pT2, tumor invades into muscularis propria layer; pT3, tumor invades into subserosa or adventitia; pT4, tumor 
exposes to the serosal surface or invades other organ; pN0, no lymph node metastasis; pN1–2, metastasis to regional lymph 
nodes; stage I–II, cases invaded into the submucosal layer or above; stage III, any case with lymph node metastasis; stage 
IV, any case with or without lymph node metastases but with distant metastases. 3Histopathological findings are according to 
Japanese Classification of Colorectal Carcinoma [62]. Budding grade 1, number of cancer nest of 5 or less cancer cells at the 
invasive front is 0–4/mm2; Budding grade 2, 5–9/mm2; Budding grade 3, 10/mm2 or more; Pn: 0, no perineural invasion and 1, 
presence of perineural invasion; Ly: 0, no lymphatic invasion and 1, presence of lymphatic invasion; V: 0, no venous invasion 
and 1, presence of venous invasion; Ex: 0, no extramural cancer deposits without lymph node structure and 1, presence of 
extramural cancer deposits without lymph node structure. 4P value was calculated by Fisher’s exact test or Chi2 test.
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(Figure 4A). Biglycan protein levels were increased in 
HT29 cells treated with high level of glucose (450 mg/dL) 
or the fatty acids, linoleic acid and elaidic acid. Furthermore, 
simultaneous treatment with insulin synergistically increased 
the glucose or fatty acid treatment-induced biglycan levels.

Alteration in the expression of EMT-associated 
proteins was examined when HT29 cells were co-
cultured with human MSCs and biglycan was knocked 
down (Figure 4B). In co-culture conditions where HT29 
cells contacted MSCs, biglycan knockdown increased 
E-cadherin and Claudin-4 expression and decreased 
Snail and CD44 expression, indicating a reduced EMT 
phenotype. In contrast, when MSC was placed in an 
insert chamber and co-cultured with HT29 cells in a non-
contact condition, the above alterations in expression were 
not observed. Biglycan knockdown also decreased cell 
proliferation in HT29 cells (Figure 4C).

Next, the number of liver metastases was examined 
when a mixture of HT29 cells and MSCs was inoculated 
into the spleen of nude mice (Figure 4D). Compared with 
HT29 alone, the mixed inoculation of HT29 and MSC 
increased the number of liver metastases by 1.7 fold. 
In contrast, the mixed inoculation of biglycan knocked 
down-HT29 cells and MSCs decreased the number of 
liver metastases to the same level as observed with the 
inoculation of HT29 alone; this indicated that biglycan 
knockdown suppressed the effect of the mixed MSCs.

DISCUSSION

In this study, myxomatous tumor stroma was 
observed as a histopathological finding that is frequently 
observed in CRC with diabetes and was shown to have a 
high correlation with liver metastasis. The myxomatous 

Figure 1: Histopathological findings of myxomatous stroma in colorectal cancer. (A) Usual type stroma with abundant 
collagenous fibers. (B) Myxomatous type stroma with weak basophilic stroma resembling cartilaginous mucin with abundant small spindle 
stromal cells. Inset, high magnification image. Hematoxylin and eosin staining. Scale bar: 100 μm.
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stroma was rich in extracellular matrix containing biglycan 
and CD90-positive MSCs.

Biglycan is a component of the cartilagenous matrix 
[23]. Biglycan is soluble and causes inflammation and 
autophagy [24, 25]. The stromal mucin-like findings of the 
myxomatous stroma upon hematoxylin & eosin staining 

was considered to be due to the nature of the biglycan 
cartilaginous matrix.

It has been reported that biglycan is overexpressed 
in various cancers and correlates with progression, 
metastasis, and angiogenesis of gastric cancer, endometrial 
cancer, prostate cancer, and bladder cancer [26–31]. 

Table 2: Relation of stage with histopathological parameters
Stage I–II Stage III Stage IV P

N 220 165 88
Budding grade 1–2 200 35 0 < 0.0001

3 20 130 88
Pn 0 198 113 13 < 0.0001

1 22 52 75
Stroma Usual 208 100 18 < 0.0001

Myxomatous 12 65 70
1Clinicopathological classification is according to UICC-TNM Classification [61]. Stage I–II, cases invaded into the 
submucosal layer or above; stage III, any cases with lymph node metastasis; stage IV, any case with or without lymph node 
metastases but with distant metastases. 2Histopathological findings are according to Japanese Classification of Colorectal 
Carcinoma [62]. Budding grade 1, number of cancer nest of 5 or less cancer cells at the invasive front is 0–4/mm2; Budding 
grade 2, 5–9/mm2; Budding grade 3, 10/mm2 or more; Pn0, no perineural invasion; Pn1, presence of perineural invasion. 3P 
value was calculated by Chi2 test.

Table 3: Multiple regression between liver metastasis and pathological parameters
Parameters Coefficient 95% confidential interval P5

Stage1 –0.1729 –0.3412–0.004714 0.0438
Subserosal invasion2 0.002473 –0.01050–0.01545 0.706
Ly3 –0.05134 –0.1400–0.03735 0.253
V3 0.04475 –0.01643–0.1059 0.1494
No. of nodal metastasis –0.01992 –0.04050–0.0006508 0.0573
Budding grade3 0.1246 0.02536–0.2239 0.0143
Myxomatous stroma 0.1852 0.04177–0.3287 0.0118
Pn3 0.05314 –0.06747–0.1737 0.0384
Ex3 0.1869 0.03655–0.3373 0.0152
Mucosal hyperplasia4 0.02277 –0.04788–0.09341 0.5236

1Pathological stage is according to UICC-TNM Classification [61]. 2Distance of subserosal or adventitial invasion from 
the lower edge of muscularis propria layer (mm). 3Histopathological findings are according to Japanese Classification of 
Colorectal Carcinoma [62]. 4Hyperplastic change in the mucosa adjacent to cancer [63, 64]. 5P value was calculated by 
multiple regression analysis using EZR program [60].

Table 4: Association of biglycan with myxomatous stroma
Biglycan1 Stroma P2

Usual Myxomatous
Negative 290 1 (0.3%)
Positive 36 146 (80%) < 0.0001

1When the biglycan expression levels were higher than those in the mucosa adjacent to cancer, it was judged as overexpression 
positive. 2P value was calculated by Fisher’s exact test.
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In melanoma, biglycan results in stromal stiffness 
and integrin activation [32]. Biglycan secreted from 
tumor vascular endothelial cells promotes invasion and 
metastasis of cancer cells through activation of NFkB and 
ERK1/2 [33, 34].

Biglycan expression is increased 6-fold in CRC 
compared with that in normal mucosa [35]. Biglycan 

expression also increases with progression of CRC and 
liver metastasis and correlates with recurrence and 
reduced survival [19, 20]. These findings support the high 
correlation between biglycan and CRC liver metastasis 
that we found in the present study.

In our data, knockdown of biglycan reduced stem 
cell markers and EMT phenotype. Overexpression of 

Table 5: Association of biglycan with liver metastasis
Biglycan1 Liver metastasis in stage IV P2

Negative Positive
Negative 17 2
Positive 14 (45%) 28 (93%) < 0.0001

1When the biglycan expression levels were higher than those in the mucosa adjacent to cancer, it was judged as overexpression 
positive. 2P value was calculated by Fisher’s exact test.

Table 6: Association of stroma with postoperative liver metastasis in stage III CRCs
Stroma Liver metastasis in stage III P1

Negative Positive
Usual 93 7 (7%)
Myxomatous 46 19 (29%) 0.0003

1P value was calculated by Fisher’s exact test.

Figure 2: Expression of biglycan and CD90-positive mesenchymal stem cells in cancer stroma. (A and B) 
Immunohistochemistry of biglycan. (C and D) Double immunostaining of biglycan (DAB) and CD90 (Fast Red). (A and C) Stage IV 
colon cancer with liver metastasis. (B and D) Stage II colon cancer without metastasis. Inset, high magnification image. Scale bar: 100 μm.
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biglycan has been reported in spheroids of CD133-positive 
cancer cells [36], and overexpression in colon cancer stem 
cells is considered to induce anticancer drug resistance 
[37]. Biglycan promotes EMT in cancer cells [20, 30], 
and its expression involves TGFβ/Snail and TNFα/NFkB 
signals [20, 37]. Thus, high expression of biglycan is 
associated with high stemness in cancer cells.

In addition, many CD90-positive MSCs were observed 
in the biglycan-positive myxomatous stroma. Biglycan has 
been reported to be involved in stemness maintenance of 
osteoblasts and MSCs by inhibiting their differentiation [38, 
39]. It is suggested that undifferentiated MSCs accumulate in 
the biglycan-positive myxomatous stroma.

MSCs are implicated in many tumor-promoting 
roles such as angiogenesis, EMT, metastasis, drug 
resistance, and anti-tumoral immune suppression in cancer 
[40]. MSCs promote stemness of cancer cells through 
contact with cancer cells, secretions such as exomes, and 
fusion with cancer cells [41–43]. Our data suggest that 
the action of biglycan is mediated by cell contact between 
cancer cells and MSCs. Such enhancement of EMT and 
metastatic potential by cell contact between cancer cells 

and MSCs has been reported in CRC and breast cancer 
[44, 45]. Upon contact between cancer cells and MSC, 
their interaction is suspected to occur through soluble 
bioactive substances and cytoplasmic and organelle 
interactions [46]. As this effect of MSCs on cancer cells 
disappears with their differentiation, it is thought that the 
maintenance of MSC stemness by biglycan is important 
for acquiring the metastatic potential of cancer cells.

In this study, biglycan overexpression was 
frequently observed in DM-CRC. Our data also showed 
that insulin induced biglycan production, with synergistic 
effects observed with simultaneous treatment with high 
concentration of glucose and pro-tumorous fatty acids, 
linoleic acid and elaidic acid [15, 16, 47–51]. Such high 
levels of insulin, glucose, and fatty acids are associated 
with diabetic condition. There are many reports on the 
overexpression of biglycan and the promotion of diabetic 
complications in diabetes patients. In diabetes, biglycan 
expression in aortic stromal cells is increased and 
promotes its destruction [52]. Biglycan expression is also 
increased in adipocytes in diabetes and is related to insulin 
resistance and fat inflammation [53]. In renal glomeruli, 

Figure 3: Features of myxomatous stroma. (A) Number of CD90-positive mesenchymal stem cells in cancer stroma at the invasive 
front. H+, stage IV cases with liver metastasis. (B) Number of CD90-positive mesenchymal stem cells in biglycan-overexpressed stroma. 
(+), biglycan overexpression positive; (–), biglycan overexpression negative. (C) Expression of claudin-4 in cancer cells in myxomatous 
stroma (stage IV) or usual stroma (stage II). Inset, high magnification image. Scale bar, 100 μm. Error bar, standard deviation.
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biglycan expression increases in diabetes and correlates 
with the development of diabetic nephropathy. TGFβ and 
PDGF have been reported to promote biglycan expression 
through AKT activation [54]. It is considered that biglycan 
expression is promoted by AKT activation even in diabetes 
showing hyperinsulinemia, which activates AKT [55, 56]. 
On the other hand, biglycan expression is induced in tumor 
vascular endothelial cells by promoter demethylation [33].

In this study, diabetes was defined as a blood 
hemoglobin A1C of 6.5% or higher at the time of CRC 
diagnosis. It was not possible to examine the timing of 
diabetes diagnosis or the treatment. It is thought that 
the role of diabetes on the malignant phenotype of CRC 

could be examined in more detail by examining the 
duration of diabetes, the control status of blood sugar, 
and the treatment content. However, blood hemoglobin 
A1C 6.5% at the time of CRC diagnosis was shown 
to be a higher blood glucose level than that at least in 
healthy individuals, which is considered as a potential 
indicator of diabetic metabolic disorder. The biglycan 
overexpression, which is thought to be associated with 
hyperinsulinemia, might also be considered as evidence 
of diabetes-related metabolic disorders. In future, it 
would be desirable to investigate the relationship with 
cancer, taking into account more detailed studies on 
diabetes, which will increase the importance of our data.

Figure 4: Biglycan expression and epithelial-mesenchymal transition (EMT). (A) Biglycan protein expression and 
phosphorylated AKT level in HT29 cells treated with glucose (100 mg/dL or 450 mg/dL), elaidic acid (70 μM) or linoleic acid (20 μg/ml) 
and/or insulin (1 μg/mL) for 24 h. (B) Effect of biglycan (BGN) siRNA or control siRNA (C) on EMT-associated proteins (E-cadherin, 
Claudin-4, and Snail) and stemness-associated protein (CD44) in HT29 cells. (C) Effect of BGN siRNA (siBGN) or control siRNA (siCont) 
on cell proliferation of HT29 cells. (D) Number of liver metastasis of HT29 human colon cancer cells in nude mice. HT29 cells (1 × 106) 
pretreated with BGN siRNA or control siRNA (C) were inoculated into the spleen with or without mixed mesenchymal stem cells (MSC, 
2 × 105). Error bar, standard deviation.
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In conclusion, our study suggests that diabetes 
promotes liver metastasis of CRC via biglycan, which 
induces cancer stemness and EMT from interaction with 
MSCs. This novel mechanism is believed to promote cancer 
malignancy in various cancers complicated with diabetes. 
The results of our study indicate the importance of diabetes 
management in malignant tumors in diabetes patients. And 
it is emphasized the significance of biglycan as a hopeful 
therapeutic target in malignant tumors with diabetes.

MATERIALS AND METHODS

Surgical specimens

We reviewed the pathological diagnosis and clinical 
data of 473 patients with surgically resected CRC, 
diagnosed at the Department of Molecular Pathology, 
Nara Medical University from 2006 to 2015. We used 
all cases above for analysis in this study without any 
selection. As written informed consent was not obtained, 
any identifying information was removed from the samples 
prior to analysis, in order to ensure strict privacy protection 
(unlinkable anonymization). All procedures were 
performed in accordance with the Ethical Guidelines for 
Human Genome/Gene Research enacted by the Japanese 
Government and were approved by the Ethics Committee 
of Nara Medical University (Approval Number 937).

Cell lines and reagents

HT29 human colon cancer cell line was purchased 
from Dainihon Pharmaceutical Co. (Tokyo, Japan). 
Human bone marrow-derived mesenchymal stem cell line 
(hMSC-BM) was purchased from Takara Bio (Kusatsu, 
Japan). Cells were cultured in Dulbecco’s modified 
Eagle’s medium supplemented with 10% fetal bovine 
serum at 37°C in 5% CO2.

For the attached co-culture of HT29 and hMSC-BM 
cells, HT29 cells (1 × 104) were mixed with hMSC-BM 
cells (2 × 103) and cultured for 24 h in a 24-well dish. For the 
separated co-culture of the two cell lines, HT29 (1 × 104) cells 
were seeded on the bottom of a 24-well dish and hMSC-BM 
cells (2 × 103) were seeded in an insert with 3 μm-pore (Thermo 
Fisher Scientific, Waltham, MA, USA) for 24 h. HT29 cells 
were pretreated with the siRNA for biglycan or control. HT29 
cells were separated from the MSCs with EasySep Human 
EpCAM Positive Selection Kit II (Veritas Corp., Tokyo, Japan) 
and were subjected to further examination.

Linoleic acid (20 μg/mL, Sigma), elaidic acid (70 
μM, Wako Pure Chemicals, Osaka, Japan), and insulin (1 
μg/mL, Wako) were used for cell treatments.

Animals

BALB/c nude mice (4-weeks-old, male) were 
purchased from SLC Japan (Shizuoka, Japan). The mice 

were maintained according to the institutional guidelines 
approved by the Committee for Animal Experimentation 
of Nara Medical University, in accordance with the current 
regulations and standards of the Ministry of Health, Labor, 
and Welfare (Approval number 12262).

To establish a liver metastasis model, HT29 cells 
(1 × 106) were inoculated into the spleen of nude mice. 
Then, with five mice in each group, pretreatment was 
carried out with siRNA for human biglycan for 24 h and/
or co-inoculation with hMSC-BM cells (2 × 105 cells). 
The livers were sectioned into 2-mm-thick slices, and 
metastatic foci were counted using a stereomicroscope 
(Nikon, Tokyo, Japan).

Immunohistochemistry

Consecutive 4-mm sections were 
immunohistochemically stained using anti-biglycan 
mouse monoclonal antibody (0.2 e mon, clone 3E2, 
Santa Cruz Biotechnology, Santa Cruz, CA, USA) 
and anti-CD90 rabbit monoclonal antibody (0.2 d ant, 
clone EPR2959, Abcam plc., Cambridge, UK) or anti-
CLDN4 antibody (0.2 µg/mL, clone 4D3), which was 
established in our laboratory [57], and a previously 
described immunoperoxidase technique [58]. Secondary 
antibodies for peroxidase-conjugated mouse IgG and 
alkaline phosphatase-conjugated rabbit IgG (Medical 
and Biological Laboratories, Nagoya, Japan) were used 
at a concentration of 0.2 µg/mL. Tissue sections were 
color-developed with diamine benzidine hydrochloride 
(DAKO, Glastrup, Denmark) for biglycan and with fast 
red (CosmoBio, Tokyo, Japan) for CD90. Slides were 
counterstained with Meyer’s hematoxylin (Sigma). 
Overexpression of biglycan was determined when the 
expression was stronger than that of biglycan in normal 
colon mucosa. For evaluation of CD90 immunostaining, 
number of positive cells was counted in 500 cells. For 
negative control, non-immunized rat IgG (Santa Cruz) 
was used as a primary antibody. Positive straining for 
biglycan was defined as stronger staining than that in 
normal colonic epithelium. We used placental tissue as a 
positive control.

Immunoblot analysis

Whole-cell lysates were prepared as previously 
described [59]. Lysates (20 μg) were subjected to 
immunoblot analysis using SDS-PAGE (12.5%), 
followed by electrotransfer onto nitrocellulose filters. The 
filters were incubated with primary antibodies, followed 
by peroxidase-conjugated IgG antibodies (Medical 
and Biological Laboratories). Anti-tubulin antibody 
was used to assess the protein levels loaded per lane 
(Oncogene Research Products, Cambridge, MA, USA). 
The immune complex was visualized using an Enhanced 
Chemiluminescence Western-blot detection system 
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(Amersham, Aylesbury, UK). Antibodies for biglycan 
(Santa Cruz), phosphorylated AKT (phosphoSer473, 
Proteintech Group Inc. Rosemont, IL, USA), E-cadherin 
(DAKO), CLDN4 (clone 4D3) [57], Snail (Biorbyt, 
St Louis, MO, USA), and CD44 (Abcam) were used 
as primary antibodies. β-actin, detected by antibody 
(Abcam), was used as the loading control.

Short interfering RNA (siRNA) assay

FlexiTube siRNAs targeting human biglycan gene 
(BGN) were purchased from Santa Cruz Biotechnology. 
AllStars Negative Control siRNA (Qiagen) was used as a 
control. Cells were transfected with 50 nM siRNA using 
Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA), 
according to the manufacturer’s instructions.

Statistical analysis

Statistical significance was calculated using a two-
tailed Fisher’s exact test, an ordinary ANOVA, and InStat 
software (GraphPad, Los Angeles, CA, USA). Multiple 
regression analysis was performed using EZR program 
[60]. A two-sided P value of < 0.05 was considered to 
indicate statistical significance.
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