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ABSTRACT
Epithelial-mesenchymal transition (EMT) and its reverse process mesenchymal-

epithelial transition (MET) are central to metastatic aggressiveness and therapy 
resistance in solid tumors. While molecular determinants of both processes have 
been extensively characterized, the heterogeneity in the response of tumor cells 
to EMT and MET inducers has come into focus recently, and has been implicated in 
the failure of anti-cancer therapies. Recent experimental studies have shown that 
some cells can undergo an irreversible EMT depending on the duration of exposure 
to EMT-inducing signals. While the irreversibility of MET, or equivalently, resistance 
to EMT, has not been studied in as much detail, evidence supporting such behavior 
is slowly emerging. Here, we identify two possible mechanisms that can underlie 
resistance of cells to undergo EMT: epigenetic feedback in ZEB1/GRHL2 feedback 
loop and stochastic partitioning of biomolecules during cell division. Identifying the 
ZEB1/GRHL2 axis as a key determinant of epithelial-mesenchymal plasticity across 
many cancer types, we use mechanistic mathematical models to show how GRHL2 
can be involved in both the abovementioned processes, thus driving an irreversible 
MET. Our study highlights how an isogenic population may contain subpopulation 
with varying degrees of susceptibility or resistance to EMT, and proposes a next set 
of questions for detailed experimental studies characterizing the irreversibility of 
MET/resistance to EMT.

INTRODUCTION

Epithelial-Mesenchymal Transition (EMT) is a cell 
biological process involved in driving cancer metastasis 
and therapy resistance—the two grand clinically unsolved 
challenges. EMT and its reverse process Mesenchymal-
Epithelial Transition (MET) are believed to enable 
cancer cell dissemination from the primary tumor, 
facilitate survival in the bloodstream, and are implicated 
in extravasation and the formation of macrometastases 

at multiple distant organs [1]. Thus, understanding the 
dynamics of EMT and MET is essential to develop novel 
therapeutic interventions.

Recent studies have highlighted that EMT and MET 
are not binary processes as thought earlier [1]. Instead, 
besides the epithelial and mesenchymal phenotypes, 
cells can acquire and stably maintain one or more hybrid 
epithelial/mesenchymal (E/M) phenotypes. These hybrid 
E/M phenotypes may drive collective cell migration as 
clusters of tumor cells (CTCs) and can be more aggressive 
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than cells in pure epithelial or mesenchymal phenotypes 
[2]. Importantly, tumor cells may switch among different 
phenotypes: E, M, and hybrid E/M [3–5]. Such dynamic 
and reversible switching can help tumor cells to overcome 
various challenges during disease progression such as 
anoikis [6], and assaults by the immune system [7]. 
Thus, epithelial-mesenchymal plasticity (EMP)—a 
combination of EMT and MET—needs to be utilized 
with spatiotemporal precision to drive metastasis. For 
example, a failure to undergo MET at a metastatic site 
may compromise colonization [8, 9]. The reversibility 
of EMT and MET, mediated by multiple interconnected 
feedback loops regulating a balance between epithelial and 
mesenchymal traits, thus forms the backbone of metastasis 
[10].

Are EMT and MET always reversible? Recent 
experiments decoding the dynamics of EMT/MET using 
live-cell imaging and/or induction and withdrawal of 
various EMT-inducing external signals such as TGFβ or 
tuning the levels of EMT-specific transcription factors 
(EMT-TFs) have provided important insights into the 
reversibility of EMT and MET. Cells induced to undergo 
EMT for shorter durations (~2-6 days) may revert to an 
epithelial state after withdrawal of the signal/stimulus. 
However, some cells exposed to EMT-inducing signals 
for longer durations (~10 days or more) may get "locked" 
in a mesenchymal state, making EMT largely irreversible, 
at least for the timescale observed experimentally [11–14]. 
The possibility of an irreversible EMT is also supported 
by multiple phenomenological observations [15–17]. 
Multiple mechanisms have been proposed to explain 
the existence of a "tipping point"—a time point beyond 
which continued treatment with EMT inducing signals can 
drive an irreversible EMT. These include self-stabilizing 
feedback loops [18–21] in the regulatory circuits for EMT/
MET and/or epigenetic alterations [13, 22, 23]. However, 
similar investigations about the irreversibility of MET, or 
in other words, the resistance of epithelial cells to undergo 
EMT in response to EMT-inducing signals, remain to be 
done. Some sporadic observations about the resistance 
of epithelial cells to undergo EMT have been reported 
[14, 24], but a causative mechanistic understanding still 
remains elusive.

Here, we propose two independent mechanism 
that may explain the resistance of epithelial tumor cells 
to undergo EMT: 1) epigenetic feedback mediated 
via GRHL2—an MET-inducing transcription factor 
(MET-TF) [25–27]; and 2) stochastic partitioning of 
parent cell biomolecules among the daughter cells at 
the time of cell division [28–30]. GRHL2 and miR-
200 both form mutually inhibitory feedback loops with 
ZEB1—a key EMT-inducing transcription factor (EMT-
TF) [31]. Previously, we have shown that incorporating 
an epigenetic feedback term acting on the inhibition of 
miR-200 by ZEB1 could drive an irreversible EMT 
[13]. This epigenetic feedback term was incorporated at 

a phenomenological level to represent the idea that the 
longer a gene is turned on, the easier it becomes for it to 
stay transcriptionally active; thus, epigenetic feedback can 
modulate the thresholds for the influence of a transcription 
factor on its downstream target [32, 33]. Conversely, here, 
we show that incorporating this epigenetic feedback loop 
acting on the inhibition of ZEB1 by GRHL2 can cause an 
irreversible MET. Cells undergoing irreversible MET may 
exhibit resistance in undergoing EMT when exposed to 
EMT-inducing signal. Thus, our results offer a conceptual 
framework to decode the impact of various epigenetic 
mechanisms in terms of modulating the reversibility of 
EMT and MET in a cancer cell population. Further, our 
previous analysis illustrated how epithelial-mesenchymal 
heterogeneity can be generated from a phenotypically 
homogeneous population by stochastic partitioning of 
molecules during cell division [3]. Here, we demonstrate 
how this stochasticity in the presence of GRHL2 can lead 
to an irreversible MET or, in other words, a resistance 
to undergo EMT. Together, our results describe how an 
isogenic cellular population may contain these different 
subpopulations with varying degrees of susceptibility 
and resistance to undergo EMT in response to an EMT-
inducing signal.

RESULTS

GRHL2 correlates with a more epithelial 
phenotype across many cancer types

GRHL2 has been identified as an MET inducer in 
breast cancer [25–27], where it forms a mutually inhibitory 
feedback loop with ZEB1, an EMT-TF. Overexpression of 
GRHL2 suppresses EMT induced by TGF-β or Twist by 
directly binding to the ZEB1 promoter, and inhibits various 
other properties associated with a partial or complete EMT 
such as higher mammosphere-forming efficiency and 
anoikis resistance [6, 25, 34, 35]. In general, the GRHL2/
ZEB1 feedback loop was identified as a key regulator of 
EMP and associated traits in breast cancer, lung cancer 
[36], colorectal cancer [37] and ovarian cancer [38, 39]. 
Consistently, GRHL2 was shown to inhibit EMT in gastric 
cancer [40], oral cancer [41] and pancreatic cancer [42]. 
These reports drove us to investigate the correlation of 
levels of GRHL2 with EMT/MET across many cancer 
types both in the Cancer Cell Line Encyclopedia (CCLE) 
cohort [43] and in many TCGA datasets.

GRHL2 levels correlated positively with CDH1 
(E-cadherin) levels and negatively with ZEB1 in the CCLE 
dataset and TCGA datasets from breast cancer, ovarian 
cancer and colorectal cancer (Figure 1). Given that GRHL2 
is one of the top transcriptional activators of CDH1 and 
ZEB1 is one of its strongest transcriptional repressors, 
ZEB1 and CDH1 correlated negatively (Supplementary 
Figure 1). We also investigated the correlation of GRHL2 
levels with three transcriptomics-based EMT scoring 
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algorithms: MLR, KS, and 76GS. While MLR and KS 
methods assign higher scores to mesenchymal samples, 
the 76GS method assigns higher scores to epithelial 
samples [44]. As expected, GRHL2 levels correlated 
positively with EMT scores calculated via the 76GS 
method and negatively with EMT scores calculated 
by MLR or KS methods across these TCGA datasets 
(Supplementary Figure 1). Consistently, a constitutive 
expression of GRHL2 in an inducible EMT model 
system—HMLE cells that contain a Twist-ER fusion—
led to reduced ZEB1 levels and corresponding changes 
in EMT scores as identified by all three abovementioned 
EMT scoring metrics (Supplementary Figure 2).

Next, in the CCLE dataset, we calculated the 
pairwise correlations of various canonical epithelial and 
mesenchymal markers and regulators. We found that 
GRHL2 correlates positively with its family members 
GRHL1 and GRHL3, its downstream target OVOL2 and 
corresponding family member OVOL1, and with CDH1, 
while it correlates negatively with TWIST1/2, SNAI1, 
VIM, and ZEB1/2 (Figure 2A, Supplementary Figure 
3A). On the other hand, ZEB1 correlates negatively with 
GRHL1/2/3, OVOL1/2 and positively with SNAI1/2, 
TWIST1/2 and VIM (Figure 2A). With these consistent 
observations regarding the antagonistic roles of ZEB1 
and GRHL2 in regulating EMT/MET, we next calculated 
the correlation of all genes in CCLE with GRHL2 and 
with ZEB1, and observed that most genes that showed 
significant correlation with both of them were either 
positively correlated with GRHL2 and negatively with 
ZEB1 or vice-versa. The relatively smaller set of genes 

that correlated either positively or negatively with both 
ZEB1 and GRHL2 showed relatively weak correlations (R 
< 0.3) (Figure 2B, Supplementary Figure 3B). Together, 
these observations indicate that GRHL2 associates with 
epithelial traits across cancer types.

Epigenetic feedback on self-activation of GRHL2 
does not largely affect EMT/MET dynamics

We have previously analyzed the dynamics of the 
EMT/MET regulatory network that incorporates the 
connection of GRHL2 with the two double negative 
loops that are central to EMT/MET dynamics: miR-200/
ZEB1 and miR-34/SNAIL [36] (Figure 3A) miR-34 and 
miR-200 are EMT-inhibiting microRNAs that can inhibit 
the translation of EMT-TFs SNAIL and ZEB1, thus 
safeguarding an epithelial phenotype. ZEB and SNAIL 
can repress E-cadherin and other epithelial genes, and/or 
drive the expression of mesenchymal genes [31, 45]. The 
knockdown of GRHL2 drives EMT and impairs collective 
cell migration, while its overexpression may drive an MET 
[46], the reverse is true for ZEB1 [31, 47]. Finally, ZEB1 
and GRHL2 can both promote their own expression, albeit 
indirectly [31, 48].

The bifurcation diagram (Figure 3B) shows that 
this network can enable cells to exhibit three distinct 
phenotypes: epithelial (E), hybrid epithelial/mesenchymal 
(H) and mesenchymal (M). At low levels of an external 
EMT-inducing signal I, cells are in an epithelial phenotype; 
they switch to a hybrid E/M phenotype and finally a 
mesenchymal phenotype as the levels of I increase. For 

Figure 1: GRHL2 correlates with an epithelial phenotype. Scatter plots showing correlation of GRHL2 with EMT-TF ZEB1 
and CDH1 (E-cadherin) in TCGA datasets and CCLE: (A) breast cancer, (B) colon adenocarcinoma, (C) colorectal adenocarcinoma, (D) 
ovarian carcinoma, (E) CCLE. R, p denote Pearson’s correlation coefficient and corresponding p-value for corresponding plot.
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certain range of values of I, more than one phenotype may 
co-exist, enabling stochastic cell-fate transitions. Under 
these conditions, the phenotype exhibited by a cell may 
switch spontaneously under the influence of biological 
noise (Figure 3B) [49], leading to non-trivial phenotypic 
distributions.

Recent experiments showed how cells in an isogenic 
population can exhibit varying degrees of susceptibility or 
resistance to EMT in response to EMT induction [14]. A 
large subset of single-cell clones (SCCs) (72%) derived 
from this population successfully underwent EMT and 
displayed irreversible EMT upon withdrawal of the signal. 
The remaining 28% SCCs, in response to EMT inducing 
signal, did not exhibit a reduction in epithelial traits and 
only underwent a reversible and partial EMT. To capture 
this behavior in our simulations, we started from all cells 
in an epithelial state, but with each of them with different 
random values of threshold of the Hills function denoting 
the transcriptional inhibition of ZEB by GRHL2. Thus, in 
this simulation, each cell in this population has different 
extents of inhibition of ZEB by GRHL2. For a fixed value 
of EMT-inducing signal I = 75 × 103, molecules in 100 
heterogenous cells, only 58% of them underwent an EMT 
(Figure 3C). This percentage was higher for larger values 
of I, but a small subset of cells remained in H or E state, 
confirming that some cells can intrinsically resist EMT-
inducing signals (Figure 3D).

To depict these transitions, we plotted the stochastic 
dynamics of a population of 1000 cells. The mean value 
of the signal was fixed at 75 × 103 molecules and all cells 

were initially in an epithelial state. We observed a stable 
phenotypic distribution with 58% E, 37% hybrid E/M, 
and 5% M cells (Figure 4B). Next, we added a strong 
epigenetic feedback governing the threshold value of 
GRHL2 that governs its self-activation. The threshold 
value, instead of being a static variable, is now governed 
by a dynamical equation with a lower steady-state value 
which is proportional to the feedback factor α. This 
feedback has a minimal effect on the bifurcation diagram 
of the circuit (compare the black and blue curves in Figure 
4A); this feature is true for all biologically relevant values 
of α. We next investigated the effect of this feedback on 
the equilibrium phenotypic distribution. We started with a 
scenario where the entire population (n = 1200) exhibits 
an epithelial phenotype, and tracked the dynamics when 
a noise term was added to induce spontaneous transitions 
among the different states (SI sections 1–3). We noticed 
that the phenotypic distribution seen for the case with 
epigenetic feedback (55% E, 37% H and 8% M) is largely 
similar to the scenario without any such feedback (58% E, 
37% H, and 5% M) (Figure 4B).

These results strengthen the observations made from 
the bifurcation diagram. Moreover, a comparative analysis 
of the dynamics of two cases show minimal  differences; 
in both cases, instances of partial EMT/MET and complete 
EMT/MET can be observed, and cells can continue to 
transition among all three phenotypes (Figure 4C and 4D). 
Together, these results suggest that epigenetic feedback 
acting only on self-activation of GRHL2 has only a weak 
effect on the dynamics of EMT/MET.

Figure 2: GRHL2/ZEB1 axis correlates with EMT/MET across cancer types. (A) Pairwise Pearson’s correlation between 
different EMT and MET regulatory genes in the CCLE dataset. Pearson’s correlation value (cor) of each gene pair is represented as the 
size of the circle and filled with corresponding color from the color palette represented below the ranging from −1(red) to +1(blue). Boxes 
highlighted by the black squares represent insignificant (p > 0.01) correlation. (B) Scatter plot of genes correlated using Pearson correlation 
method with GRHL2 and ZEB1 in CCLE dataset. Each dot represents one gene and coordinates are Pearson cor values with ZEB1 and 
with GRHL2. Color of the dots is based on the p-value obtained from correlation test, Blue dots for genes having p < 0.05 with GRHL2 
and p > 0.05 with ZEB1. Red dots for genes having p < 0.05 with ZEB1 and p > 0.05 with GRHL2. Green dots for genes having p < 0.05 
with GRHL2 and ZEB1. Black dots for genes having p > 0.05 with GRHL2 and ZEB1. Numbers in each quadrant represent the number of 
genes in that quadrant.
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Epigenetic feedback on the inhibition of ZEB by 
GRHL2 can stabilize an epithelial state

Next, we examined the effect of adding an 
epigenetic feedback on the inhibition of ZEB by GRHL2. 
Unlike the scenario of epigenetic feedback on GRHL2 
self-activation, incorporating epigenetic feedback on 
the inhibition of ZEB by GRHL2 significantly alters the 
bifurcation diagram.

Compared to the case without any epigenetic 
feedback (black curve), the bifurcation curve for a case of 
strong epigenetic feedback case (blue lines) shifts to the 
right (Figure 5A), suggesting that a higher external stimuli 
is required to induce EMT. In other words, this epigenetic 
feedback can stabilize an epithelial state, or in other 
words, offer resistance to undergo an EMT. Consistently, 
large changes were noted in the population distribution as 
well—the equilibrium population distribution for the case 
including epigenetic feedback on inhibition of ZEB by 
GRHL2 was 79% E, 20% H, and 1%M—thus, compared 
to the control case, the epithelial population increased by 

22%, while H and M populations both decreased (Figure 
5B). Moreover, corresponding dynamical trajectories 
show that in the presence of a strong epigenetic feedback 
on inhibition of ZEB by GRHL2, it becomes exceedingly 
difficult for cells to reach a mesenchymal state. Thus, most 
cells stay much more robustly in an epithelial state (Figure 
5C and 5D). Hence, a sufficiently strong epigenetic 
feedback on the inhibition of ZEB by GRHL2 can make 
cells resistant to undergoing a full EMT.

The abovementioned analysis was also conducted on 
the EMT circuit without miR-34 (because miR-34/ SNAIL 
has been proposed to be a noise-buffering integrator 
for EMT). In this simplified model, SNAIL serves as 
inducing signal. The simulation showed similar results 
that epigenetic feedback of GRHL2 on the inhibition of 
ZEB can stabilize an epithelial state, while the epigenetic 
feedback on GRHL2’s self-activation does not largely 
change EMT/MET dynamics (SI section 5; Supplementary 
Figures 4–6).

Next, we studied whether adding an epigenetic 
feedback on the inhibition of ZEB by GRHL2 can affect 

Figure 3: EMT decision-making network. (A) A core network regulating EMT via two mutually inhibition loops between miR-34 
(miR-200) and SNAIL (ZEB). Signal I represents external EMT-inducing signals such as HGF, TGF-β, NF-κB and HIF1α, among others. 
GRHL2 is a transcription factor which forms a mutually inhibitory loop with ZEB. (B) Bifurcation diagram (shown for the levels of ZEB 
mRNA) with I as the bifurcation parameter. Solid lines represent stable states, i.e., epithelial, hybrid or mesenchymal state, and dashed 
lines represent unstable states. Shaded rectangle represents the values of I for which all three phenotypes can co-exist. (C) Starting from 
epithelial state (miR-200 = 17,000, mZEB = 50, ZEB = 10,000 molecules) with different pre-fixed threshold value of inhibition of ZEB by 
GRHL2, 100 cells are treated by fixed high EMT-inducing signal (I = 75,000 molecules). (D) Population distribution changes as a function 
of signal I.
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the reversibility of EMT. To mimic the experiment where 
cells are treated with an EMT-inducing signal (say TGF-β; 
represented by I in simulations) for varying time durations, 
here, we increased the value of I = 125 × 103 molecules 
and then decreased it back to original value of I = 71 × 
103 molecules. In the case without any epigenetic feedback 
case, for a short duration increase in the levels of I, cell 
can quickly revert to epithelial state upon the removal of 
the signal (Figure 6A). For somewhat longer treatment, 
the cell can stay in hybrid E/M phenotype for a long time 
and eventually revert to being epithelial (Figure 6B–
6C). A further increase in the duration of cells to EMT-
induction can render the induced EMT irreversible; i.e., 
cells can stay in mesenchymal state and not revert to being 
epithelial even after the EMT-inducing signal is effectively 
withdrawn. However, the presence of epigenetic feedback 
on the inhibition of ZEB by GRHL2 can alter the 
abovementioned dynamics. In presence of such feedback, 
a cell can revert to being epithelial rapidly soon after the 
external signal is withdrawn, irrespective of the duration 
for which cells were exposed to this signal (Figure 6D–
6F). All these results reveal that epigenetic feedback on the 

inhibition of ZEB by GRHL2 can significantly stabilize an 
epithelial state and thus increase the reversibility of EMT.

Noise in the partitioning of parent cell 
biomolecules among the daughter cells can cause a 
seemingly irreversible MET at the population level

So far, we have described an epigenetic-based 
mechanisms which may underlie irreversibility of MET. 
We next investigated the effect of another stochastic 
behavior in population of cancer cells—partitioning of 
molecules during cell division [28–30]—independent of 
epigenetic feedback. Thus, we investigated the dynamics 
of EMT/MET at a population level, where we incorporated 
cell division with an average doubling time of 38 hours, 
typical of cancer cells [50]. At every instance of cell 
division, we incorporated some noise in the partitioning 
of parent cell biomolecules among the daughter cells.

Our previous analysis has shown that such noise in 
the distribution of biomolecules during cancer cell division 
can generate epithelial-mesenchymal heterogeneity in 
an initially homogeneous population of cancer cells [3]. 

Figure 4: Epigenetic feedback on GRHL2 self-activation. (A) The bifurcation diagrams for core EMT circuit with/without 
epigenetic feedback on self-activation of GRHL2. Black curve denotes the case without any epigenetic feedback; blue curve represents the 
epigenetic feedback case. (B) Starting from 100% cells in an epithelial state (miR-200 = 17,000, mZEB = 50, ZEB = 10,000 molecules), 
simulation results showing how the population changes as a function of simulation time, on addition of noise. Dashed lines represent no 
epigenetic feedback case, solid lines represent case with strong epigenetic feedback (a = 0.22) on GRHL2’s self-activation (Signal I0 = 
75,000 molecules). (C) A representative dynamical trajectory for no epigenetic feedback case. (D) A representative dynamical trajectory 
for strong epigenetic feedback case.
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Thus, a daughter cell may or not have the same phenotype 
(E, hybrid E/M, or M) as the parent cell. Further, this 
noisy partitioning can lead to some cells in the population 
undergoing a seemingly irreversible EMT if the cells are 
treated with an EMT-inducing signal followed by the 
withdrawal of the EMT-inducing signal. We investigated if 
the noisy partitioning model described previously can also 
lead to a seemingly irreversible MET at the population 
level.

Starting with a population of all mesenchymal 
cells on day 0 (all cells had high concentration of the 
EMT-inducing signal initially), fixed dosages of the 
EMT-inducing signal were withdrawn each day for a 
period of 10 days (to simulate MET). Day 11 onwards, 
fixed dosages of the EMT-inducing signal were added 
for another 10 days. We carried out the simulation in the 
absence and presence of GRHL2, and in both cases, ~40% 
of the cells had undergone MET by day 10. In the absence 
of GRHL2, upon treatment with the EMT-inducer starting 
on day 11, almost all the cells in the population that had 
undergone MET returned to a mesenchymal state by day 
10. Thus, in this scenario, MET was reversible. However, 
in the scenario when GRHL2 was present, it was observed 
that > 10% of cells still exhibited an epithelial phenotype 
on day 20 (Figure 7). These cells thus represented a sub-
population that had under-gone an irreversible MET; i.e., 

a subpopulation which would exhibit resistance to EMT 
upon exposure to EMT-inducing signal.

DISCUSSION

With an increasing appreciation of the nonlinear 
dynamics of EMT/MET at the single-cell level [51–
53] and its implications for metastatic aggressiveness 
[9], questions regarding the degree of reversibility/
irreversibility of EMT/MET in different contexts and 
the molecular determinants of these processes have 
gained importance. Recent studies have illustrated that 
the trajectories taken by individual cells in the high-
dimensional molecular and/or morphological landscape of 
EMP en route to EMT and MET may be different [51, 54]; 
thus, MET cannot be simply thought of as a mirror image 
of EMT. There may be molecular and/or morphological 
changes happening at different stages of EMT/MET to 
varying degrees, hence making it difficult to identify the 
molecular mechanisms that may render the dynamics of 
EMT/MET as reversible or irreversible.

The dynamics of EMT has been studied much more 
in detail as compared to that of MET [51–56]; therefore, it 
is not surprising that irreversible EMT has been reported 
more frequently. The degree of reversibility of EMT has 
been proposed to be largely a function of the timescale 

Figure 5: Epigenetic feedback on inhibition of ZEB by GRHL2. (A) The bifurcation diagrams for core EMT circuit with/without 
epigenetic feedback on the inhibition of ZEB by GRHL2. Black curve represents the case without any epigenetic feedback; blue curve 
represents the epigenetic case. (B) Starting from all cells in an epithelial state (miR-200 = 17,000, mZEB = 50, ZEB = 10,000 molecules), 
simulation results showing how the population changes as a function of simulation time. Dashed lines represent no epigenetic feedback 
case, and solid lines represent case with strong epigenetic feedback (α = 0.14) on the inhibition of ZEB by GRHL2 (Signal I0 = 75,000 
molecules). (C) The percentage of population which exhibit M phenotype, for varying values of α. (D) A sample dynamical diagram for 
strong feedback case.
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of EMT induction and corresponding epigenetic changes. 
However, a causative role of epigenetic changes in 
regulating the irreversibility of EMT remains to be firmly 
established [11–14]. Here, we propose two independent 
mechanisms that may enable an irreversible MET: 1) 
epigenetic feedback mediated by the inhibitory action 
of GRHL2 on the promoter of ZEB1; and 2) noise in the 
partitioning of biomolecules during cell division.

GRHL2 can inhibit and reverse EMT and associated 
molecular and/or morphological traits. Specifically, 
overexpression of GRHL2 has been shown to induce 
epithelial gene expression, inhibit mesenchymal gene 
expression, restore metabolic reprogramming caused 
by EMT, and suppress tumor cell migration/invasion, at 
least in breast and ovarian cancer cell lines [46]. It can 
also activate directly or indirectly other drivers of an 
epithelial phenotype such as p63 [57, 58], OVOL2 [59, 

60], and miR-200 [38, 61]. While epigenetic changes 
induced by EMT-TFs have been reported extensively [62], 
recent studies have pointed out the possibility of GRHL2 
contributing to epigenetic control of genes involved 
in EMT/MET [39]. GRHL2 can employ both DNA 
methylation and histone modification to inhibit and/or 
reverse EMT, and also act as a pioneer transcription factor 
that can regulate chromatin accessibility at epithelial 
enhancers [39, 63, 64].

The experimental observations described above 
offer a possible underlying mechanism by which GRHL2 
overexpression can resist EMT, as demonstrated by our 
model simulations. Indeed, a global epigenetic program 
that limits the action of ZEB1 was found to underlie the 
retention of epithelial traits in cells exposed to persistent 
Twist1 activation for 21 days [14]. In single-cell clones 
established from an inducible HMLE-Twist1 population, 

Figure 6: Reversibility of EMT starting from epithelial state (miR-200 = 17,000, mZEB = 50, ZEB = 10,000 molecules), 
a cell is treated by different time duration (5, 10, 20 arbitrary units [a.u], as marked by arrow) of high EMT-inducing 
signal (I = 125,000 molecules), corresponding to the {H, M} bistable region. Then, this signal is reduced to a lower level (I 
= 71,000 molecules) corresponding to the {E, M} bistable region. (A–C) Represents the case without epigenetic feedback, and (D–F) 
represents the case with strong epigenetic feedback on inhibition of ZEB by GRHL2.
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two subsets responded quite differently (E-SCCs, 
M-SCCs); while both E-SCCs and M-SCCs exhibited an 
upregulation of mesenchymal markers to a similar degree 
upon Twist1 induction, but E-SCCs did not display any 
reduction in epithelial genes even after 28 days of Twist1 
induction. Upon inactivation of Twist1, E-SCCs reverted 
to an epithelial phenotype, while M-SCCs did not. 
Changes in chromatin accessibility seen in E-SCCs also 
reverted upon Twist1 deactivation, but not in M-SCCs, 
suggesting a strong correlation of transcriptional changes 
induced in E-SCCs/M-SCCs and dynamic epigenetic 
status. Intriguingly, this study highlighted that isogenic/
clonal cells can also exhibit variability in terms of their 
susceptibility or resistance to EMT/MET, indicating 
non-genetic mechanisms at play [65], as indeed captured 
via our simulations. Our simulations also offer a causal 
connection between the two axes phenomenologically 
associated with one another in this study: epigenetic 
changes driven by GRHL2 and consequent resistance to 
EMT.

More generally, resistance to EMT has also been 
observed across many cell lines, where their treatment 
with 5 ng/ml TGFβ for 48 hours led to varying degrees 
of changes in molecular and morphological axes of EMT: 
spindle-shape acquisition, loss of junctional E-cadherin 
and/or ZO-1, and actin stress fiber formation [24]. 
Another recent study in multiple breast cancer cell lines 
showed that 100pM TGFβ treatment for 9 days need not 
be sufficient for at least a subset of cells within a cell line 
to lose their E-cadherin expression [52]. While longer-
time measurements would probably be more appropriate 
to fully assess the degree of resistance to EMT (in other 
words, the degree of irreversibility of MET), both these 
studies emphasize the possible implications of non-genetic 
heterogeneity prevalent in multistable regulatory networks 

[66] as seen in EMT/MET and its associated traits such 
as stemness [67]. Different degrees of couplings between 
these multistable networks may enable co-occurrence of 
partial or full EMT with these associated traits. However, 
a mechanism-based mathematical modeling of these 
networks suggests that this association is not likely to be 
universal [68], hence offering a reconciliatory framework 
to integrate various contradictory results associating the 
epithelial, mesenchymal and hybrid E/M phenotypes with 
degrees of stemness [69–75].

Aside from epigenetic feedback, our results 
indicate one additional mechanism possibly contributing 
to irreversible MET (or resistance to EMT), namely 
stochasticity in the partitioning of molecules during cell 
division. Such noise in the distribution of molecules may 
affect cell-fate and drive non-genetic heterogeneity [28–
30], leading to different phenotypic distributions in terms 
of EMT [3]. While EMT is believed to repress the cell 
cycle [76, 77], this association remains controversial [78]. 
Thus, noise in the partitioning of parent cell biomolecules 
among the daughter cells can further alter the subpopulation 
structure, and may underlie different bimodal distributions 
of surface CDH1 expression seen in breast cancer cell 
lines [52]. Another factor contributing to these non-genetic 
differences explored here could be the different EMT vs. 
MET trajectories. When a cell undergoes MET, it need 
not return to the precise epithelial (E) state coordinates 
that it started form [51], possibly due to hysteresis in EMT 
dynamics [79]. Even if it returns to the same state, the 
minimum action path (MAP) from E to M need not be the 
same as the MAP from the M to the E state [80].

There are various limitations to our analysis. First, 
we do not consider the detailed molecular mechanisms 
underlying epigenetic changes; instead, our treatment 
is phenomenological; we assume the net effect of 

Figure 7: A seemingly irreversible MET at the population level. Starting with a population of mesenchymal cells on day 0 (all 
cells with very high value of the EMT inducer), the EMT inducer was withdrawn in fixed dosages each day for the first 10 days. As a result, 
a large fraction of cells in the population underwent MET. Day 11 onwards, fixed dosages of the EMT inducer were added each day for 
the next 10 days. In the absence of GRHL2 (left panel), the fraction of mesenchymal cells went back to nearly 100%, same as the value on 
day 0. However, in the presence of GRHL2 (right panel), ~15% of the cells in the population were epithelial on day 20. These cells thus 
represented a subpopulation that had undergone a MET that is irreversible at least on the time scale investigated here. The mean over 16 
independent simulation runs is shown here. The error bars indicate the standard deviation over the independent runs.
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these changes is the feature that if gene i can regulate 
the expression of gene j, when gene i is expressed, the 
activation of gene j is more likely to become stronger 
[32]. A more detailed molecular mechanism based 
epigenetic model would be needed in order to study in 
more detail how epigenetics regulates EMT, including 
for example, the PRC2-mediated histone methylation 
epigenetic framework [81]. This will become possible 
as more details emerge regarding epigenetic regulation 
of EMT [62]. Also, we have not considered any spatial 
effects in our model; these may become more relevant in 
crowded regions in terms of enabling access to signaling 
molecules. Spatially extended frameworks of EMT [79] 
can be integrated with our epigenetic framework to 
investigate the effect of crowding and nutrient/oxygen 
access.

Together, our results offer mechanistic insights into 
two possible mechanisms that may drive varying degrees 
of susceptibility and resistance to undergoing EMT in 
response to an EMT-inducing signal in a given isogenic 
population. Future efforts should decode the molecular 
mechanisms of any such epigenetic feedback of GRHL2 
on ZEB1 expression as well as track the distribution of 
molecules during cell divisions happening while cells are 
being induced to undergo EMT/MET. Moreover, our study 
calls for concerted efforts to map the single-cell dynamics 
of MET induction.

MATERIALS AND METHODS

The analysis shown in Figures 1 and 2 was carried 
out using publicly available datasets. TCGA data was 
obtained from https://xenabrowser.net/datapages/. 
Different EMT scoring metrics were calculated as 
described previously [44].

The set of differential equations used to simulate 
the dynamics of the EMT/MET regulatory circuit are 
enumerated in the SI. The SI also includes all the model 
parameters and a description of how epigenetic feedback 
was incorporated into the mathematical model of EMT/
MET regulation (Supplementary Tables 1–3). Finally, 
the analysis shown in Figure 7 was carried out using 
the population-level model described previously (3). 
The computer code used to generate the data shown in 
Figure 7 is available online (https://www.github.com/
st35/cancer-EMT-heterogeneity-noise/tree/master/
ExternalIntervention; see files "DailyIntervention_MET.
cpp" and "DailyIntervention_GRHL2_MET.cpp").
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