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ABSTRACT
Here we tested the hypothesis that SNPs associated with prostate cancer risk, 

might differentially affect RNA expression in prostate cancer stroma. The most 
significant 35 SNP loci were selected from Genome Wide Association (GWA) studies 
of ~40,000 patients. We also selected 4030 transcripts previously associated with 
prostate cancer diagnosis and prognosis. eQTL analysis was carried out by a modified 
BAYES method to analyze the associations between the risk variants and expressed 
transcripts jointly in a single model. We observed 47 significant associations between 
eight risk variants and the expression patterns of 46 genes. This is the first study to 
identify associations between multiple SNPs and multiple in trans gene expression 
differences in cancer stroma. Potentially, a combination of SNPs and associated 
expression differences in prostate stroma may increase the power of risk assessment 
for individuals, and for cancer progression.

INTRODUCTION

Prostate cancer is the most frequently diagnosed 
male cancer and the second leading cause of cancer death 
in men in the United States [1]. However, only a fraction 
of cases of prostate cancer lead to death. Thus, reliably 
identifying individuals at higher risk of progression to 
metastatic disease is of great potential utility.

GWA (Genome-wide association) studies have 
been performed to identify more than 70 risk variants 
associated with overall risk of developing prostate cancer 
[2–13]. A few recent GWA studies showed that some of 
these risk variants may correlate with the progression 
of prostate cancer [14–19] and, thus, could be clinically 
useful given that the majority prostate cancer cases are 
indolent and not a threat to life. Individually, the identified 
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risk variants are low-penetrance susceptibility loci and 
have little clinical utility. Almost all are located in non- 
protein-coding or intergenic regions with unknown 
mechanisms of influence on phenotype. GWA follow-up 
studies have identified possible associations between the 
risk variants and gene expression levels of nearby or local 
genes (cis-associations) [6, 10, 13]. Remote associations 
(trans-) between these SNP variants and significant 
expression changes are likely but unknown, as yet.

Prostate cancer risk alleles can ultimately manifest 
their phenotype in a variety of ways. A subset may do so 
by altering gene expression in one or more cell types, 
including prostate epithelium, prostate stroma, the 
immune system, or others. In addition, an overlapping 
subset of risk SNPs may also affect progression after 
cancer has arisen, mediated by expression in one or more 
cell types.

Independent of SNP data, progression risk within 
the tumors has been associated with differences in 
gene expression [20–23] and in DNA methylation 
[24–26]. However, the cell, genetic, and epigenetic 
heterogeneity within a tumor and between tumors is a 
barrier to developing biomarkers for reliable prognosis. 
The number of candidate biomarkers that agree across 
studies is very small [23]. Similarly, mapping the effect 
of SNPs on expression in tumor could also be noisy. 
Reactive stroma initiates during early prostate cancer 
development and coevolves with prostate cancer 
progression. Recent evidence suggests that prostate 
epithelium and stroma interact in a highly organ-
specific, androgen-dependent, and temporally related 
manner [27, 28]. Meanwhile, few somatic genetic 
differences have been identified in the stroma of prostate 
cancer [29, 30] and we have shown that the stroma 
undergoes expression differences with diagnostic [31] 
and prognostic potential [32].

If SNP risk markers could be linked with diagnostic 
and prognostic expression data in the relatively genetically 
stable environment of the stroma then, together, these 
associations may increase the utility of low risk SNPs by 
identifying a subset of patients where an otherwise low 
penetrance risk SNP was relevant.

To make the first step towards this goal, we applied 
eQTL (Expression Quantitative Trait Loci) analysis to 
expression data from tumor-adjacent stroma, to define 
associations between gene activity and risk variants 
[33–36]. This is a powerful method that treats each gene 
as a quantitative trait and identifies loci whose genotype 
variation such as in SNPs is associated with gene 
expression difference. The identified loci are considered 
as eQTLs.

In the eQTL analysis, we modified a Bayesian 
clustering method [34] to analyze expressed prostate 

cancer-related genes and susceptible loci jointly in a 
single model. Applying the approach to stroma-enriched 
samples, we identified 47 eQTL associations. In particular, 
the variant rs10896449 is associated with 32 significant 
expression differences in the stroma. This is the first study 
to identify trans-eQTL associations occurring between 
multiple SNPs and multiple significant expression 
differences in cancer stroma. The possible relationships 
between the identified associations and clinical properties, 
including cancer outcome, is examined and trends are 
identified.

RESULTS

Identification of SNP-transcript associations

A literature search of prostate cancer-related 
genes was conducted through the electronic database 
PubMed [20–23, 31, 32, 37–39] including differential 
expressed genes of utility for diagnosis and prognosis 
and genes with local distance to susceptible loci as 
reported in GWA studies. A total of 4030 such genes were 
identified. A second literature search of GWA studies of 
prostate cancer was conducted through the electronic 
database PubMed [2–14, 18, 40–43] covering a total of 
~40000 prostate cancer cases, identifying more than 70 
susceptible SNPs that were reported to have significant 
association with prostate cancer. 35 SNPs were selected 
and summarized in Supplementary Tables S2 and S3  
for eQTL analysis.

In eQTL analysis, we examined possible 
associations between the 35 SNPs and 4030 transcripts 
using 49 stroma-enriched samples. Four eQTL analyses 
were performed in total. Samples with stroma cell type 
percentage greater than 50%, 60%, 70%, and 80% were 
used for the four eQTL analyses. Table 1 shows the 
number of selected samples in the four eQTL analyses. In 
addition to the “80%” criterion described above, an eQTL 
was only accepted when the transcript-SNP association 
appeared in all four eQTL analyses.

A total of 47 associations including 8 SNPs and 
46 transcripts were identified in all four eQTL analyses. 
Table 2 shows in detail the combinations of associations 
among 8 SNPs and 46 transcripts. For example, the SNP 
rs10896449 is associated with the most transcripts, 32 
transcripts.

In order to test whether any of the 47 associations 
are false-positives, we carried out two extensive 
resampling studies in order to estimate false discovery 
rates for the associations. The first resampling study is a 
permutation test as follows:
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Table 2: 47 associations between 8 SNPs and 46 transcripts in eQTL analysis. 
Association ID Probe Set Gene Symbol Location

SNP rs10896449 (G) 11q13

1 209716_at CSF1 1p13

2 204175_at ZNF593 1p36

3 204197_s_at RUNX3 1p36

4 202546_at VAMP8 2p11-p12

5 205174_s_at QPCT 2p22

6 218864_at TNS1 2q35-q36

7 226766_at ROBO2 3p12

8 219551_at EAF2 3q13

9 232099_at PCDHB16 5q31

10 205100_at GFPT2 5q34-q35

11 208583_x_at HIST1H2AJ 6p22

12 223475_at CRISPLD1 8q21

13 204501_at NOV 8q24

14 205041_s_at ORM1 /// ORM2 9q32

15 205127_at PTGS1 9q32-q33

16 213004_at ANGPTL2 9q34

17 203666_at CXCL12 10q11

18 204396_s_at GRK5 10q26

19 203835_at LRRC32 11q13-q14

20 211964_at COL4A2 13q34

21 201562_s_at SORD 15q15

22 203151_at MAP1A 15q15

23 214297_at CSPG4 15q24

24 224476_s_at MESP1 15q26

25 229730_at SMTNL2 17p13

26 218980_at FHOD3 18q12

27 37996_s_at DMPK 19q13

28 222106_at PRND 20p13

29 205439_at GSTT2 22q11

30 201787_at FBLN1 22q13

Table 1: Number of samples used in four eQTL analyses on the basis on varying stroma cell type 
percentage.
Stroma percentage >50% >60% >70% >80%

Number of samples 49 41 33 25

(Continued )



Oncotarget1868www.impactjournals.com/oncotarget

1. Permute SNP samples for the smallest data set 
(>80% stroma).

2. Move to the next smallest data set and permute 
the SNP samples which are not included in previous 
permutated data set.

3. Repeat step 2 until all four data sets are permuted.
After permutation, the modified BAYES method 

was used to perform eQTL analyses between the randomly 
permutated SNP data and original expression data. The 
associations that appear in all four eQTL analyses were 
considered as false discovered associations. A total of 
1000 permutations were performed. No permutation was 
identified with associations greater than 47 associations. 
The average number of falsely discovered associations is 
1.57 compared to the 47 observed, and a false discovery 
rate of 3.3% was estimated.

In the second resampling study, 35 SNPs were 
randomly selected from over 1 million SNPs represented 
on the Illumina SNP array and used to perform four eQTL 

analyses. Again a total of 1000 random selections were 
performed. Again no permutation was identified with 
associations greater than 47 associations. The average 
number of falsely discovered associations is 2.55 compared 
to 47 observed, and the false discovery rate was estimated 
as 5.4%. Thus, the two resampling studies are consistent 
and strongly indicate that only three of our identified 
47 transcript-SNP associations could be considered to 
occur by chance. The genes of the significant expression 
differences linked to 8 SNPs are given in Table 2.

Association of SNP-transcript associations with 
clinical parameters

We followed a two-step procedure (see 
Supplementary methods for details) to boost the power of 
identifying possible associations with clinical properties. 
This was necessary because the power to identify highly 
significant correlations with clinical parameters is limited 

Association ID Probe Set Gene Symbol Location

31 220663_at IL1RAPL1 Xp21-p22

32 204584_at L1CAM Xq28

SNP rs1859962 (G) 17q24

33 238079_at TPM3 1q21

34 206307_s_at FOXD1 5q12-q13

35 203438_at STC2 5q35

36 205040_at ORM1 9q32

SNP rs401681 (C) 5p15

37 206529_x_at SLC26A4 7q31

38 204846_at CP 3q23-q25

39 203021_at SLPI 20q12

SNP 9623117 (C) 22q13

40 206307_s_at FOXD1 5q12-q13

41 220120_s_at EPB41L4A 5q21

42 228256_s_at EPB41L4A 5q21

43 214676_x_at MUC3A 7q22

SNP rs12621278 (G) 2q31

44 211734_s_at FCER1A 1q23

SNP rs1465618 (A) 2p21

45 205132_at ACTC1 15q14

SNP rs620861 (C) 8q24

46 210452_x_at CYP4F2 19p13

SNP rs6983267 (G) 8q24

47 223775_at HHIP 4q28-q32
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due to the small sample size which needs to be further 
divided into subgroups for such an analysis.

First, the 49 patients were subdivided into 
three risk groups (high, intermediate, and low risk 
group) defined by each transcript-SNP association. 
Supplementary Figure 1 shows the way that the three risk 
groups were defined. Then ordinal logistic regression 
analysis was performed to identify associations between 
risk groups and clinical properties. Supplementary 
Table S3 shows the results of ordinal logistic regression 
analysis. Association 40 (FOXD1 and rs9623117 C) is 
the most interesting association because the p-values in 
both univariate and multivariate models were less than 
0.05. Furthermore, we examined the high and low risk 
groups only defined by association 40. A Kaplan-Meier 
survival analysis (Figure 1) has an estimated hazard ratio 
2.23 and significant p-value of 0.034 (logrank test).

DISCUSSION

In previous studies, gene signatures were identified by 
gene expression profiling and genetic variants were identified 
by GWA studies. These results were used to develop 
biomarkers for prostate cancer diagnosis and prognosis. 
However, the low concordance among gene signatures of 
profiling studies and the marginal risk of the best loci found 
in GWA studies have reduced the utility of such markers, 

to date. We speculated that by combining expression data 
with known genotypes, the resulting associations would add 
value and provide new evidence of a mechanism for the 
association between SNP and risk of prostate cancer.

We have established significant associations 
between risk-associated SNPs and RNA expression levels 
in tumor-adjacent prostate stroma. We used tumor-adjacent 
stroma instead of tumor for the study because there are 
very few genetic alternations in stroma [29, 30, 44, 45]. 
Studying the stroma does not preclude observing eQTLs 
in the tumor however. On the contrary, variants affecting 
expression in the tumor can in turn affect expression in 
the stroma because there are many active interactions 
between tumor and tumor-adjacent stroma in prostate 
cancer [31, 46, 47]. Epithelial cells of prostate cancer 
infiltrate and propagate in a microenvironment consisting 
largely of myofibroblast cells as well as inflammatory 
cells and other supporting cells and structures. The 
mesenchymal component is not passive but responds to 
signals from the tumor component and, in turn, alters 
tumor properties, some of which are essential for tumor 
growth and progression [46, 48]. Similarly SNPs affecting 
the endocrine and immune system may also be detectable 
in the response of prostate stroma.

We modified the BAYES method to perform an 
eQTL study to identify potential associations between risk 
loci and genes differentially expressed in prostate cancer 

Figure 1: Survival analysis of high and low risk groups defined by FOXD1-rs9623117.
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stroma. The comprehensive mapping between SNPs 
and transcripts is one of the advantages of the modified 
BAYES method, allowing the eQTL study to identify 
not only cis-linkages but also trans-linkages. We utilized 
an extensive amount of information that is available for 
prostate cancer from prior GWA studies, encompassing 
around 40,000 patients, in order to form a short list of 35 
SNPs for further consideration. Similarly a short list of 
4030 prostate cancer-related genes were selected based 
on previously reported prostate cancer diagnosis and 
prognosis studies. To reduce false discovery rate, we 
performed eQTL analysis on four data sets with increased 
stroma percentages. Our two permutation tests also showed 
that the false discovery rate is very low. We obtained both 
expression and SNP data for 49 patients, 27 non-relapse, 
20 relapse, and 2 unknown (Supplemental Table S1 for list 
of parameters) and observed 47 associations between eight 
SNPs and 46 transcripts (45 genes).

Next we examined if there was any evidence that 
the SNP-expression associations could better stratify 
patients for risk of progression of prostate cancer. Most 
SNPs associated with prostate cancer have been identified 
in case-control GWA studies. However, SNPs associated 
with disease progression are beginning to be identified. A 
recent study reported that two variants at 10q11 and one 
variant at 8q24 associated with susceptibility influence 
biochemical recurrence following radical prostatectomy 
[49]. Variants at 8q24 have been evaluated for risks of 
aggressiveness of prostate cancer based on age at onset, 
familial aggregation and tumor grades and stages. Some 
GWA studies have reported that the aggressive forms of 
the disease are influenced by the same variants associated 
with susceptibility to prostate cancer [15, 16, 18, 19]. 
A recent study also showed that variants at 8q24 act as 
enhancers of proto-oncogene c-MYC [50]. c-MYC is 
also located at 8q24, a known regulator of cell growth, 
and has a critical role in prostate cancer development and 
progression. It is likely that a subset of SNPs affecting 
the probability of getting prostate cancer will also affect 
the probability of progressing to advanced disease once 
prostate cancer has developed.

Using a two-step procedure described in supplemental 
method, we looked for prognostic correlation between 
clinical properties and SNP-expression associations. In 
one case, association 40 (FOXD1 and rs9623117 C), the 
penetrance of the association appears to extend to an 
association with survival. This association is consistent 
with the properties of FOXD1. FOXD1 is a member of 
Forkhead family of transcription factors involved in the 
Wnt pathway [51], which regulates epithelial-mesenchymal 
transition (EMT) in cancer. EMT is an important 
mechanism by which prostate cancer gains aggressive 
properties in cell migration, vascular invasion and early 
metastases. Moreover, Koga et al. characterized FOXD1 
as a mediator and indicator of the cell reprogramming 
process, the prevention of FOXD1 expression resulted in a 

reduced number of iPSCs (induced pluripotent stem cells) 
[52]. Thus the properties of FOXD1 suggest one testable 
mechanism that explains the association of the FOXD1-
rs9623117 C with survival observed here.

Multiple trans-associations between SNPs and gene 
expression in prostate cancer have not been observed 
before. Our results provide new ways for understanding 
the basis of risk for eight SNPs previously associated with 
occurrence of prostate cancer, namely involving altered 
expression among identified genetically unlinked genes. 
In future studies, it will be desirable to expand the number 
of samples in our study to more reliably test parameters 
associated with progression. It will also be desirable to 
obtain both expression and SNP data from archived normal 
stroma samples that have many years of follow-up data on 
the subsequent occurrence of prostate cancer. Such samples 
may reveal the role of SNPs in regulating expression in 
stroma not only after cancer has occurred, as we have 
studied here, but also during the onset of prostate cancer.

MATERIALS AND METHODS

Prostate cancer patient samples

Tissues for a total of 55 patients treated by radical 
prostatectomy (RP) for prostate cancer were analyzed. 
Informed consent was obtained in all cases following 
a protocol approved by the UCI Office Research 
Administration Institutional Review Board (IRB) as part 
of the NCI “SPECS” consortium at UCI for Strategic 
Partners for the Evaluation of Cancer Signatures for 
Prostate Cancer. All tissues were collected at surgery and 
escorted to pathology for expedited review, dissection and 
snap freezing in liquid nitrogen.

Demographic and clinical parameters such as 
Pre-operative Prostate Specific Antigen (Pre-PSA), 
surgical margin status, post-prostatectomy Gleason sum, 
age, T stage, are presented in Supplementary Table S1. 
Biochemical relapse was defined as post-operative 
PSA >0.2 ng/ml following a post-operative PSA nadir of 
undetectable for patients with surgical negative margins.

DNA and RNA preparation

The frozen tissue of each subject was manually 
microdissected while mounted in a cryostat into multiple 
sections for RNA/DNA preparation. Tissue for RNA 
preparation was monitored by frozen section preparation 
and examination of sections with hematoxylin and eosin 
stains to ensure the location of tumor enriched tissue. 
Frozen tissue was directly dissolved in TRIzol® Reagent. 
RNA was prepared from stroma adjacent to tumor and 
used for expression analysis as previously described [31, 
53]. DNA was prepared from prostate tissue remote from 
tumor for hybridization to Illumina Human 1M-Duov3 B 
arrays exactly as recommended by Illumina Inc.
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Expression, genotyping, and eQTL analysis

80 RNA samples from 55 patients, providing two 
or three biological replicates for some patients, were 
hybridized to Affymetrix GeneChip U133plus2 for 
gene expression analysis. The raw intensity data was 
background corrected, normalized, and summarized to 
be gene expression data through RMA (Robust Multi-
array Average) algorithm [54]. The resulting Microarray 
data have been deposited in the publicly accessible Gene 
Expression Omnibus (GEO) database with accession 
number GSE17951. Purified DNA samples of 55 patients 
were applied to Illumina Human1M-Duov3_B SNP 
array for genotyping. In eQTL analysis, we selected 
49 tissue samples containing more than 50% stroma. 
The tissue composition for each patient sample that has 
been used for array assay (tumor epithelial cells, stroma 
cells, epithelial cells of BPH) was determined by four 
pathologists [23, 55].

In order to identity associations between SNPs and 
transcript levels, we modified the BAYES [34] method 
to perform eQTL analysis. The BAYES method is a 
model-based iterative method that analyzes all expressed 
transcripts and SNPs jointly. The method combines 
multiple linear regression (MLR) with unsupervised 
clustering analysis in order to identify associations 
between transcripts and SNPs. The MLR method is the 
backbone of the model which describes the relationship 
between transcripts and SNPs with the assumption 
that expression level of each transcript is the sum of 
contributions of all possible relevant SNPs (Eqn. 1).

yij = βj + a
Q

k=1
Zikγjk + εij (1)

Where yij is the expression level of transcript j for 
the ith patient, βj is the intercept for transcript j, Zik is 
the genotype of SNP k for the ith patient, γjk is the effect 
of the SNP k on transcript j (i.e., a measure of SNP-
expression association), εij is the residual error. In each 
iteration, the unsupervised clustering analysis is applied 
to cluster the transcripts into SNP-associated clusters and 
non-SNP-associated clusters for each SNP. A positive 
association is observed between a transcript and a SNP 
if the transcript is clustered into the SNP-associated 
group after n iterations with more than 80% of iterations 
supporting the association. The advantage of BAYES 
method is that a transcript may be simultaneously 
associated with multiple SNPs and vice versa. In order 
to reduce the computing time, we modified the BAYES 
method by applying the Stochastic Expectation-
Maximization (SEM) algorithm instead of the Monte 
Carlo Markov Chain (MCMC) algorithm in the model. 
The simulation study showed that the two algorithms 
achieve the same result upon eQTL analysis.
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