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ABSTRACT
Neck lymph node metastasis (LN+) is one of the most significant prognostic factors 

affecting 1-in-2 patients diagnosed with oral squamous cell carcinoma (OSCC). The 
different LN outcomes between clinico-pathologically similar primary tumors suggest 
underlying molecular signatures that could be associated with the risk of nodal disease 
development. MicroRNAs (miRNAs)are short non-coding molecules that regulate 
the expression of their target genes to maintain the balance of cellular processes. A 
plethora of evidence has indicated that aberrantly expressed miRNAs are involved in 
cancers with either an antitumor or oncogenic role. In this study, we characterized 
miRNA expression among OSCC fresh-frozen tumors with known outcomes of nodal 
disease (82 LN+, 76 LN0). We identified 49 differentially expressed miRNAs in tumors 
of the LN+ group. Using penalized lasso Cox regression, we identified a group of 10 
miRNAs of which expression levels were highly associated with nodal-disease free 
survival. We further reported a 4-miRNA panel (miR-21-5p, miR-107, miR-1247-3p, 
and miR-181b-3p) with high accuracy in discriminating LN status, suggesting their 
potential application as prognostic biomarkers for nodal disease.

INTRODUCTION

Worldwide, oral squamous cell carcinoma (OSCC) 
accounts for 274,000 new cases and 145,000 cancer-
related deaths each year [1, 2]. Despite advances in 
treatment, the improvement of five-year survival rates 
(30–60%) is diminutive, mainly due to the proclivity 
of cancer cells to spread through the lymphatics system 
to neck lymph nodes, which reduces survival by half 
[3, 4]. Therefore, neck management has been part of the 
treatment planning for clinically node negative necks 
(LN0). Based on the premise that occult metastasis will 
inevitably progress into clinically manifest disease, a 
commonly practiced preventative strategy is elective neck 

dissection to remove the nodes at the time of surgical 
treatment. For some clinicians, this has started to become a 
part of the standard management plan for early-stage large 
size tumors (T3/4N0) or small tumors (T1/T2N0) with 
the depth of invasion (DOI) greater than 4 millimeters 
(mm). The association of DOI with biological behavior 
and tumor aggressiveness has been acknowledged in the 
latest edition of Cancer Staging Manual to incorporate 
DOI (cut-off of 5 mm) as the new additional staging 
criteria for OSCC [5]. Yet, this pathology is not definitive 
and the limited sensitivity and specificity have often been 
reported with the reminder that, not all large tumors will 
metastasize while a significant portion of small tumors 
does [6–8]. From our population-based retrospective 
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study [9] and the pan-Canadian surgical trial, [10] 1-in-4 
patients with clinically negative cervical nodal disease at 
the time of diagnosis (cLN0) develops LN+, inferring that 
only 25% of early-stage patients would benefit from END 
while others would receive unnecessary ND. Over-treating 
75% of the patients incurs otherwise avoidable healthcare 
costs, potential complications, prolonged hospital stays, 
and morbidities. From a clinical management perspective, 
the decision whether to treat cLN0 patients is still 
controversial; therefore, searching for more sensitive 
and specific biomarkers that can stratify the risk of the 
nodal disease will offer more objective tool in nodal 
management, and consequently, better survival outcome.

The functions of microRNA (miRNAs) in biological 
processes, including cell growth, proliferation, and 
apoptosis, have led to reports of the integral parts in cancer 
progression through post-transcriptional modification of 
gene expression and/or translational repression [11, 12]. 
Alteration of miRNA expression can have a crucial role 
in cancer, and a growing body of evidence has shown that 
dysregulated miRNAs may be clinically meaningful with 
prognostic value [13]. MiRNAs with either oncogenic or 
tumor suppressor functions have also been highlighted in 
OSCC, with apparent differences between normal, pre-
neoplastic lesions, and tumor tissues or cancer cell lines. 
The association of these markers with OSCC has been 
studied not only in primary tumors, but also biopsies, 
serum, and saliva, making them potential candidates for 
screening and diagnosis [14, 15]. To this end, however, 
only a few studies have focused on the prognostic value of 
miRNA in nodal disease [16–18]. In this study, we profiled 
the miRNA expression in primary OSCC tumors and 
generated a miRNA-based panel that could differentiate 
between LN-status groups.

RESULTS

Patient demographics and baseline tumor 
characteristics

The study population is summarized by Discovery 
and Validation cohorts in Table 1. Comparing between 
Discovery and Validation cohorts, there was no difference 
between LN+ and LN0 in age, sex, smoking history, 
primary tumor site, clinical T-stage prior to surgery, or 
tumor morphology except that LN+ had more tumors with 
greater depth of invasion (DOI) (P < 0.01).

miRNA expression clustering

A total of 2075 miRNAs were annotated, of which 
301 expressed at least 10 RPM in at least 10% of samples 
and were used for subsequent analysis. To determine 
the heterogeneity in miRNA expression, we performed 
unsupervised hierarchical clustering on the Discovery 
cohort (n = 91) with 2-group clustering (k = 2) based on 

our focus of comparing profiles between LN0 and LN+ 
status (Figure 1). The clustered groups (Group 1, n = 53; 
Group 2, n = 38) was significantly different in LN status 
(P = 0.0036, χ2), but not with other clinical-pathological 
variables, including 5-mm cut-off of DOI which is used to 
justify prophylactic neck dissection [19].

Differentially expressed miRNAs between LN+ 
and LN0 tumors

In order to focus on differences in miRNA 
expression between LN+ and LN0, we performed DE 
analysis on the Discovery cohort using the Wilcoxon 
ranked-sum test for each miRNA. This revealed 49 (21 
down- and 28 up-regulated) differentially expressed 
miRNAs as demonstrated by the fold change of LN+ 
against LN0 group after correction for multiple testing 
(Figure 2). As expected, several miRNAs that were 
significantly differentially expressed in LN+ were also 
among the miRNAs that contributed the most to the cluster 
separation, including most up-regulated miR-107 and 
down-regulated miR-375 (Table 2).

MiRNAs associated with nodal-disease free 
survival

To investigate the association of these 301 miRNAs 
with time to nodal disease, we performed Cox proportional 
hazards (PH) analysis with patients categorized into low 
or high expression groups for each miRNA by determining 
the cut-point at which the P value of log-rank test is 
minimum (FDR threshold of 0.05). In the Discovery 
cohort (n = 91) (Supplementary Table 1), eight miRNAs 
showed significant difference in NFS between low and 
high groups (FDR < 0.05, hazard ratio (HR), 0.12 to 
0.29/5 to 3.7e8). Subsequent multivariate analysis showed 
that these eight miRNAs were associated with NFS (P < 
0.05; HR, 0.11 to 0.24/4.1 to 8.8e8), independently of cT 
stage (HR, 2.7 to 4.9), tumor grade (HR, 2.4 to 3.7), and 
DOI (HR, 1.0 to 1.1).

miRNA-based prognostic models

The individual miRNAs identified by DE and Cox 
PH regression analyses suggest that multiple miRNAs 
had contributed to LN+. We explored this idea further 
using a penalized regression to generate a miRNA-based 
model as prognostic tool for NFS. For this penalized 
regression analysis, the Discovery cohort was randomly 
partitioned into a training set (n = 68; LN+, 37; LN0, 31) 
to generate the model, and a test set (n = 23; LN+, 14, 
LN0, 9) with no difference in the clinical-pathological 
characteristic (Supplementary Table 2). The Validation 
cohort was used as a second test set (n = 67; LN+, 25; 
LN0, 42). We used penalized lasso Cox PH regression on 
the Discovery (training) set to determine the regression 
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coefficients for each miRNA. The resulting model 
included 10 miRNAs (Figure 3A and 3B), of which seven 
were overexpressed and three underexpressed in patients 
who experienced LN+. Using the coefficients of each of 
the 10 miRNAs generated from the model, we determined 
the cumulative score for each patient. The patients of each 
cohort were then separated into low or high score groups 
(Supplementary Table 2). By performing univariate Cox 
proportion hazard analysis, the high risk group had inferior 
outcomes in the Discovery (training) (HR = 11.3, 95% 
CI, 3.5–37.1; 5-year NFS, 20.9%, P < 0.001), Discovery 
(test) (HR = 2.9; 95% CI, 0.9–9.1.7; 5-year NFS, 20%, P = 
0.046), and Validation cohort (HR = 2.4, 95% CI, 1.5–7.6; 
5-year NFS, 24.5%, P < 0.001) (Figure 3C).

To identify potential miRNAs that can be used 
to indicate binary outcome of LN, we implemented 
random forest classification approach on the entire 
study population (n = 158). We first performed miRNA 
selection based on the variable importance by recursive 
eliminating those with the smallest importance. This 
yielded 146 miRNAs that were used to generate the 
model which correctly separated LN status for 122 out 
of 158 samples, showing strong correlation with NFS 
(P < 0.001) (Figure 4A). To identify the miRNAs that 
could have potential clinical value, we performed a step-
wise approach based on the 146 miRNAs with smallest 
out-of-bag error rate. The fitted model consists of four 
miRNAs (miR-107, miR-21-5p, miR-1247-3p, miR-

Table 1: Patient demographics and baseline clinical-pathological characteristics
Total Discovery Cohort Validation Cohort

Variables N = 158 Total
(n = 91) LN0 (n = 40) LN+ (n = 51) P (LN0 vs LN+) Total

(n = 67)
LN0

(n = 42)
LN+

(n = 25) P (LN0 vs LN+) P (Discovery 
vs Validation)

Age, yrs (mean ± SD) 62.6 ± 13.9 63.7 ± 14.6 62.15 ± 15.5 65 ± 14.0 0.31 61.5 ± 12.8 63.1 ± 12.9 58.7 ± 12.4 0.17 0.31

Sex 0.83 1 0.98

 Male 98 57 26 31 41 26 15

 Female 60 34 14 20 26 16 10

Smoking History 0.57 0.11

 Never 68 35 16 20 32 20 12

 Ever 90 56 24 31 35 21 13

Primary tumor site 1 1 0.94

  Buccal mucosa/Gingiva/
Hard Palate 16 9 3 6 7 7 5

  Soft Palate/Retromolar 
trigone/Soft Palate 
Complex

4 2 1 1 2 1 1

 Tongue/Floor of Mouth 138 80 36 44 58 36 22

Clinical T Stage 0.69 0.14 0.93

 T1/T2 148 85 38 47 63 41 22

 T3/T4 10 6 2 4 4 1 3

Clinical N Stage 0.07 < 0.001 0.45

 N0 138 83 40 43 56 42 13

 N+ 20 9 9 11 11

Tumor Grade < 0.001 0.12 0.17

 I 42 23 15 8 19 15 4

 II 78 42 22 20 36 22 14

 III 38 26 3 23 12 5 7

Tumor DOI (mean ± SD) 7.0 ± 6.0 7.93 ± 6.78 5.7 ± 6.5 9.7 ± 6.5 < 0.01 5.81 ± 4.4 < 0.01 0.02

Tumor DOI (4 mm) 0.06 < 0.002 0.03

 < 4 mm 4 21 13 27 24 3

  ≥ 4 mm 110 70 27 43 40 18 22

Tumor DOI (5 mm) 0.21 0.003 0.01

 < 5 mm 62 29 16 24 33 27 15

  ≥ 5 mm 96 62 13 38 34 6 19

Survival status < 0.001 0.002 0.04

 Alive 105 54 35 18 51 37 14

 DOD 40 29 5 3 11 2 9

 Death (all causes) 13 8 0 29 5 3 2

  Time to death or last 
known date alive, y 
(mean ± SD)

3.2 ± 2.4 3.5 ± 2.4 4.9 ± 2.1 2.4 ± 2.0 2.9 ± 2.4 3.2 ± 2.6 2.6 ± 2.2 0.16 0.17

Abbreviation(s): DOI, depth of invasion; DOD, death of disease; LN0, lymph node negative; LN+, lymph node positive.
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181b-3p), which were consistent with penalized Cox PH 
regression analysis with performance of AUC = 0.88 in 
discriminating LN status (Figure 4B).

DISCUSSION

Metastatic lymph node in the neck is the first 
indication of tumor spread in OSCC patients and one of 
the most significant prognostic factors. For patients with 
occult metastasis, clinically applicable biomarkers may be 
useful in clinical decision making on the management of 
cN0 neck and improve survival. MiRNAs are small non-
coding RNA molecules (each containing ~22 nucleotides) 
known to be preserved in archival formalin-fixed paraffin-
embedded tissues, making them desirable tools to be 
used as potential biomarkers. In the present study, we 

identified dysregulated miRNAs of primary OSCC tumors 
associated with nodal disease.

Several differentially expressed miRNAs in our 
datasets are commonly associated with OSCC progression 
and prognosis, namely miR-21, miR-107. Both of these 
also contributed to both the Cox-PH prognostic model and 
random forest classification model, suggesting that they 
can be used as potential biomarkers to identify patients 
with a high risk of nodal disease. MiR-21 is commonly 
considered as an oncogene in solid tumors, and its up-
regulation has been widely associated with prognostic 
value [20]. Its correlation with the presence, progression, 
or invasiveness of OSCC has been demonstrated in not 
only cell lines and tissue samples, but also blood samples, 
encouraging its prognostic and clinical value [21–23]. For 
example, using in-situ hybridization on archival surgical 

Figure 1: Expression of miRNA in Discovery cohort. Unsupervised hierarchical clustering of 301 miRNAs expression (scaled 
z-score) among the 91 patients, with Pearson correlation and Euclidean as distance measures for clustering the columns and rows, respectively. 
Top colored bars annotate the clustered groups derived from k-means clustering (k = 2) and LN status as either LN0 (black) or LN+ (red).
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Table 2: Significantly differentially expressed miRNAs (FDR ≤ 0.05) in LN+ vs. LN0 primary 
tumors of the Discovery cohort
miRNA name and accession P FDR Log2 FC

Down-regulated

hsa-mir-375. MIMAT0000728 3.05E-03 0.026 –2.06

hsa-mir-203a. MIMAT0000264 3.15E-04 0.008 –1.76

hsa-mir-3065. MIMAT0015378 5.07E-03 0.034 –1.01

hsa-mir-944. MIMAT0004987 2.22E-03 0.025 –0.89

hsa-let-7c. MIMAT0026472 7.66E-03 0.047 –0.73

hsa-mir-125b-2. MIMAT0004603 1.52E-03 0.018 –0.71

hsa-mir-200c. MIMAT0000617 2.97E-04 0.008 –0.70

hsa-mir-200b. MIMAT0000318 3.65E-03 0.030 –0.60

hsa-mir-139. MIMAT0004552 5.77E-04 0.011 –0.59

hsa-mir-23b. MIMAT0000418 9.69E-05 0.005 –0.58

hsa-mir-139. MIMAT0000250 1.22E-03 0.016 –0.58

hsa-mir-200c. MIMAT0004657 6.63E-03 0.042 –0.57

hsa-mir-744. MIMAT0004945 9.18E-04 0.013 –0.51

hsa-mir-378a. MIMAT0000732 2.46E-04 0.008 –0.44

hsa-mir-500a. MIMAT0002871 1.15E-03 0.016 –0.42

hsa-mir-501. MIMAT0004774 2.90E-03 0.026 –0.37

hsa-mir-30d. MIMAT0000245 2.47E-03 0.026 –0.33

hsa-mir-532. MIMAT0002888 7.29E-04 0.012 –0.31

hsa-mir-23a. MIMAT0000078 2.90E-03 0.026 –0.28

hsa-mir-660. MIMAT0003338 4.59E-03 0.032 –0.27

hsa-mir-423. MIMAT0001340 3.75E-03 0.030 –0.15

Up-regulated

hsa-mir-28. MIMAT0000085 2.41E-03 0.026 0.33

hsa-mir-21. MIMAT0004494 2.90E-03 0.026 0.41

hsa-mir-26a. MIMAT0000082 6.32E-03 0.040 0.41

hsa-mir-3607. MIMAT0017985 4.25E-03 0.032 0.45

hsa-mir-106b. MIMAT0000680 2.54E-04 0.008 0.45

hsa-mir-339. MIMAT0000764 2.90E-03 0.026 0.47

hsa-mir-155. MIMAT0000646 3.56E-03 0.030 0.51

hsa-mir-181a-2. MIMAT0004558 3.94E-03 0.030 0.52

hsa-mir-330. MIMAT0004693 5.20E-03 0.034 0.52

hsa-mir-181a-1. MIMAT0000270 6.49E-04 0.011 0.53

hsa-mir-3613. MIMAT0017990 1.91E-04 0.007 0.53

hsa-mir-214. MIMAT0004564 5.20E-03 0.034 0.58

hsa-mir-199a. MIMAT0000232 4.47E-03 0.032 0.62

hsa-let-7i. MIMAT0004585 1.26E-04 0.005 0.62

hsa-mir-199b. MIMAT0004563 4.36E-03 0.032 0.62

hsa-mir-16. MIMAT0000069 1.25E-03 0.016 0.64

hsa-mir-29a. MIMAT0000086 3.05E-03 0.026 0.65

hsa-mir-342. MIMAT0004694 4.41E-04 0.009 0.66

hsa-mir-106a. MIMAT0000103 7.73E-04 0.012 0.70

hsa-mir-146b. MIMAT0002809 3.46E-04 0.008 0.70

hsa-mir-22. MIMAT0004495 2.22E-03 0.025 0.75

hsa-mir-342. MIMAT0000753 7.08E-04 0.012 0.77

hsa-mir-21. MIMAT0000076 3.44E-07 0.000 0.78
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tissues from OSCC patients, Hedback et al. correlated 
miR-21 expression in both tumor stroma and tumor cells 
with disease-specific survival in OSCC patients [24]. More 
recently, Yu et al. reported association of upregulation of 
miR-21 with patient survival independently from clinical-
pathological factors, including tumor size, clinical stage, 
and lymphovascular or perineural invasion [25]. A few 
mechanisms of this miRNA in oncogenic events have been 
proposed, including epithelial-mesenchymal transition 
by targeting phosphatase and tensin homolog (PTEN), 
angiogenesis and metastasis in liver and lung; [26–28] 
or by promoting tumor cell migration through regulating 
metalloproteinase inhibitor 3 (TIMP-3) transcription and 
promoting migration in cervical cancer [29]. In addition, 
increased expression of miR-21 was also associated 
with tumors characterized by p53 mutations and distant 
metastasis [30].

Another significantly up-regulated miRNA observed 
in LN+ tumors is miR-107, a highly conserved miRNA 
that contributes to the regulation of normal and tumor 
biological processes, including cell division, metabolism, 
and angiogenesis [31, 32]. Dysregulation of miR-107 
in human tumors has been significantly associated with 
disease staging, metastasis, and treatment outcomes; [31, 
33] however, the oncogenic or antitumor role of miR-107 
has been debated in studies of head and neck cancer. For 

instance, miR-107 was found to be highly expressed in 
tongue cancer cell lines, while a later study showed that 
it was downregulated in OSCC cell lines and tongue SCC 
tissues [34, 35]. In a study involving head and neck cell 
lines, including tongue SCC, Datta et al. suggested a 
therapeutic role of miR-107 as they observed an inverse 
relationship between expression of miR-107 and PRKCE 
gene, protein kinase C (PKC) epsilon. This gene is often 
reported to be elevated in head and neck cancer involving 
signal transduction pathways of proliferation and migration 
[36]. Another recent study unraveled the tumor-suppressor 
role of miR-107 in esophageal cancer by targeting CDC42 
[37]. From what we can gather, the role of miR-107 is 
still poorly understood, with few investigations on the 
association with lymph node metastasis.

Ideally, a clinically applicable biomarker should 
be able to stratify at-risk patients of progression early 
enough in the course of treatment to consider elective 
neck dissection, namely precision medicine. Here, we 
identified a 4-miRNA-based (miR-21-5p, miR-107, miR-
181b-3p, miR-1247-3p) prognostic model that was able 
to stratify patients by LN status with high accuracy. Of 
these, miR-21-5p and miR-107 were also significantly 
correlated with nodal-disease free survival, where the 
model-based high-risk patients had inferior survival. 
Up-regulation of miR-181 has been reported in OSCC 

hsa-mir-181b-1. MIMAT0022692 5.12E-05 0.003 0.80

hsa-mir-146b. MIMAT0004766 3.15E-05 0.002 0.88

hsa-mir-32. MIMAT0000090 3.20E-06 0.000 1.12

hsa-mir-142. MIMAT0000433 5.77E-04 0.011 1.17

hsa-mir-107. MIMAT0000104 9.70E-07 0.000 2.72

Abbreviation(s): FDR, false discovery rate; FC, fold change.

Figure 2: Differential expression analysis of Discovery cohort. (A) Volcano plot displaying differentially expressed miRNA 
between LN+ and LN0 groups. The 41 differentially up-regulated (yellow) and down-regulated (blue) miRNAs in LN+ group with FDR 
threshold of 0.05 (dashed line). (B) Top panel describes the distribution of expression for the 41 miRNAs in LN+ (red) and LN0 (black) 
group. Bottom panel displays the fold change for each of the 41 miRNAs where the yellow and blue indicates significantly up- and down-
regulated in LN+, respectively.
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transformation from leukoplakia, dysplasia to invasive 
tumor. In a study surveying expression of miR-181 family 
in OSCC tissue samples and blood plasma, Yang et al. 
reported the association of miR-181b up-regulation with 
lymph node metastasis and vascular invasion, which 
was supported by the observed enhanced cell migration 
in miR-181 transfected cell lines in the same study [38]. 
Although the role of miR-181 in metastasis is still not well 
understood, the discriminative performance observed in 
our study warrants further investigation studies to validate 
the clinical significance of the up-regulation of miR-181 in 
nodal disease. Although the expression of miR-1247 was 
not significantly different between clinical subgroups, it 
was retained as one of the predictors powering separation 
of our dataset into LN0 and LN+ groups. Although there 
is little research on the role of miR-1247 in OSCC, Fang et 
al. reported that miR-1247 is highly elevated in metastatic 
liver cancer cells and cancer-cells-derived exosomes that 
act as a mediator in the activation of cancer-associated 
fibroblasts, leading to tumor progression and metastasis 

[39]. In the same study, the expression of miR-1247 was 
also observed with increased pro-inflammatory gene 
expression, such as IL6 and IL8. Given that OSCC is often 
characterized by heavily infiltrated inflammatory cells, 
perhaps future in-depth studies on the association between 
miR-1247 and tumor microenvironment may explain the 
observed association with nodal disease in this study.

To assess the possible combinatorial effect of the four 
miRNAs, the Kyto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis was performed by using mirPath 
tool (v3.40) [40]. Significantly enriched pathways (Fisher’s 
exact test P values < 0.05) in the LN+ group involving the 
four miRNAs include the Hippo signaling pathway and 
signaling pathways regulating the pluripotency of stem 
cells. Given the metastatic nature of these cells, it is not 
surprising the inhibition of these pathways in order to 
maintain the initiation and maintenance of tumorigenicity 
[41]. In addition, these miRNAs are known to be involved 
in tumor growth and progression in many cancer types, 
[13] which is reflected with colorectal cancer and pathways 

Figure 3: miRNA-based nodal-disease free (NFS) survival prognostic model. (A) Cox regression coefficients of the 10 
miRNAs was generated from Discovery (training) cohort. (B) Heatmap of scaled expression of the 10 miRNAs in the Discovery (training) 
set which is annotated by the LN-status and other clinical-pathological attributes (C). Kaplan-Meier plots displaying NFS differences 
between patients in low and high groups within the Discovery (training) (n = 68), the Discovery (test) (n = 23), and the Validation cohort 
(n = 67). For each cohort, stratification of patients into low (black) and high (red) groups was determined by a cut-point of cox-model score 
based on the 10-miRNA coefficients (A) carried over from the Discovery (training).
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in cancer among the most regulated pathways. The most 
regulated pathway is fatty acid (FA) biosynthesis and 
metabolism involving miR-107 targeting fatty acid synthase 
(FASN). Hyperproliferating cancer cells require FA for 
energy metabolism and storage, membrane building block 
synthesis, and singling molecules synthesis. Therefore, 
disrupting FA metabolism neglects the high metabolic 
demands of cancer cells which could suppress tumor growth 
and metastatic dissemination. On the contrary, we observed 
an overexpression of miR-107 in the LN+ group which 
suggested that nodal metastasis may be promoted with 
decreased activity of lipogenesis. We speculate that with 
high metabolic demands and under hypoxic environment, 
aggressively metastatic cancer cells excessively upregulate 
their FA synthesis and uptake that can lead to FA 
accumulation and lipotoxicity, and ultimately,  cell death 
[42]. miR-181b is involved in a few cellular processes 
together with miR-107. One of them is lysine degradation. 
Given that amino acid metabolism is a major source of 
energy and carbon for tumor cell growth and survival, the 
dysregulation of lysine degradation pathway may result 
from changes in the energy metabolism of tumor cells. 

We observed several miRNAs that are significantly 
differentially expressed between the LN status groups, 
yet they do not effectively contribute to the Cox-PH or 
RF classification models. This leads to speculation that 
there are other clinical-pathological factors or the tumor 
microenvironment driving the differences. One of these is 
miR-375 which was the most down-regulated miRNA in 
LN+ tumors in this study. The down-regulation of miR-
375 has been reported elsewhere in OSCC comparing 

tumor to adjacent normal tissues, and in metastatic cancer 
cell lines [43–45].

This study has limitations. First, validation of 
miRNA biomarkers on RT-PCR was not performed. 
This study, as the first step, was to explore and identify 
significantly dysregulated miRNAs in LN+ for which we 
used an independent set of samples to verify the observed 
miRNA expression in the Discovery cohort. Second, as 
this is not a biological or functional study, mRNA-miRNA 
interaction and target gene analyses were not performed. 
However, this study indicates future directions, including 
validation of the observed expression and prognostic 
power on RT-PCR, NanoString, or RNAScope in situ 
hybridization. Target gene analysis and investigation on 
the biological functions of these miRNAs may help us 
to understand the underlying mechanism of lymph node 
metastasis. The goal is the clinical applications of these 
biomarkers on small biopsied FFPE samples to decide 
the need for neck treatment before surgery. Hence, 
the prognostic power will need to be verified on FFPE 
surgical samples and small biopsy samples for pre-surgery 
planning.  Alternatively, a fresh-frozen re-biopsy at tertiary 
center prior of surgery can also be considered.

OSCC is a heterogeneous disease, and metastasis is 
most likely to be attributed to many factors. In this study, we 
performed miRNA profiling on tumor samples and identified 
dysregulated miRNAs, among of which four miRNAs 
were observed with high performance to discriminate 
LN status. These biomarkers may provide additional 
information and may be able to identify patients with a 
low chance of nodal disease. However, sequencing miRNA 

Figure 4: miRNA-based random forest (RF) classification of nodal disease status. (A) Kaplan-Meier plot illustrating the 
NFS of 158 patients in RF predicted groups of LN0 (black) or LN+ (red). (B) Receiver Operator Characteristic (ROC) curve generated 
by plotting the 4-miRNA classifier true positive rate (sensitivity) as function of the false positive rate (1-specificity). The RF prediction 
probabilities were used for the generation of ROC prediction objects. The area under the curve (AUC) is reported as a performance measure.
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expression from surgically removed tumors may limit 
these miRNAs’ clinical relevancy as studying bulk tumors 
neglects the reality that diagnostic biopsy examination is 
used for treatment planning. This concern warrants future 
investigations to verify the observed prognostic power in 
not only matched archival FFPE surgery samples but also in 
diagnostic biopsy material on clinically adaptable platforms 
to support their clinical relevance in neck management for 
early-stage OSCC.

MATERIALS AND METHODS

Patient and tissue collection

Patients diagnosed with OSCC who received 
primary surgical excision between 2005 and 2016 were 
identified through a longitudinal surgical trial. Of the 
487 patients enrolled, we were able to retrieve 158 
primary tumors collected at time of surgery that were 
embedded in OCT compound and frozen immediately 
after excision in –80°C until use. Table 1 summarizes 
baseline demographics and clinical-pathological data. 
Outcome data included binary status of LN0 or LN+, and 
nodal-disease free survival (NFS), which was measured 
from date of surgery to date of metastatic OSCC in the 
cervical lymph nodes. Patients who were last known to 
be alive and nodal-disease free were censored at the date 
of last contact. Samples were randomly submitted into 
two batches for sequencing as Discovery and Validation 
cohorts. HPV status was determined on 89 samples with 
enough DNA material by using multiplex PCR with high-
risk HPV-16 and HPV-18 primers. Of these, only one 
patient was positive for HPV-16; therefore, we did not 
perform comparative analysis between groups on HPV.

The study was conducted in accordance with the 
recommendation of University of British Columbia 
Clinical Research Ethics and the BC Cancer Research 
Ethics General Guidance Notes, BC Cancer Research 
Ethics Board. This study utilized the clinical information 
and samples collected from existing studies approved by 
the BC Cancer Research and Ethics Board (REB# H09-
03090 and REB#17-02031).

RNA extraction and miRNA library preparation

Total RNA was harvested from the fresh-frozen 
samples, which were collected in the operating room 
at the time of surgery, by either taking tissue cores or 
microdissection from areas containing at least 70% 
tumor content after being reviewed by an oral pathologist 
(CFP). Nucleic acid extraction was performed using 
AllPrep DNA/ RNA/miRNA Universal kits (QIAGEN, 
CA, USA) as per the manufacturer’s protocol. The RNA 
concentration was determined by NanoDrop (Thermo 
Scientific, CA, USA). The RNA submitted for sequencing 
had a concentration of 100 ng/µL and RNA integrity 

number (RIN) ≥8 as determined by the Bioanalyzer 2100 
RNA 6000 Nano Kit (Agilent Technologies, CA, USA).

Small RNAs 20–30 nucleotides in length, including 
microRNAs (miRNAs), were captured from total RNA or 
total nucleic acids extracted from tissues using a protocol 
implemented at Canada’s Michael Smith Genome Sciences 
Centre on Microlab NIMBUS (Hamilton) liquid handlers. 
Briefly, 500 ng of total RNA in 8 µL diethyl pyrocarbonate 
(DEPC)-treated water was first ligated to 2 µL of a 2.5 µM 
3′ DNA adapter in a 96-well microtitre plate followed by 
incubation (70°C for 2 min), snap chilled, and transferred 
to 10 µL ligation brew containing truncated T4 RNA 
ligase 2 (200 U/µL, New England Biolabs). Excess 
adapter was removed by incubation (1 hour at 22°C) 
and purification twice using RNA MagClean DX beads 
(Aline Biosciences). The 3′ adapter-ligated RNAs were 
next ligated to heat denatured 5′ miRNA adapter using T4 
RNA ligase (5 U/µL, Ambion) followed by incubation (1 
hour at 37°C) and reverse transcription with Maxima H 
minus reverse transcriptase (RT) primer (200 U/µL) by 
incubation (10 minutes at 65°C) and snap chilled on ice. 
First strand cDNA was purified using an upper and lower 
bead clean-up (PCRClean DX beads, Aline Biosciences) to 
remove excess RT primer and reduce non-target products 
prior to PCR enrichment. PCR (15 cycles) was performed 
using a paired-end primer and miRNA indexed primers 
in a 50 µL reaction volume incorporating Phusion Hot 
Start high fidelity DNA polymerase (NEB). The amplified 
library was loaded onto a 12% PAGE gel and the region 
containing the miRNA library (~150 bp) was manually 
excised from the gel (size-selected). The size-selected 
library was ethanol precipitated and purified. Quality 
control of the final library was performed using Qubit and 
Agilent DNA 1000 Series II assays prior to sequencing 
on an Illumina NextSeq500 instrument generating single-
end 75 base reads. The sequenced miRNA data from 
158 samples were aligned to NCBI GRCh37/hg19 and 
annotated based on mirBase (version 20) 5p or 3p mature 
strands, a repository of previously annotated miRNAs.

Statistical analysis

Patient baseline demographics and clinical-
pathological characteristics were described as continuous 
variable (mean ± SD) or categorical variables in frequency 
(n) and proportion (%). Chi-square test was used for 
proportion comparison while Student’s t-test for difference 
in distribution. All statistical tests at P ≤ 0.05 were 
considered significant. Statistical analysis was performed 
using the software R (3.4.4) packages.

Analysis of expression profiles was performed 
on annotated miRNAs with largest variances (top 90%, 
n = 301) across the Discovery cohort after normalization 
and removal of miRNAs with low number of reads 
(<10 reads-per-million (RPM) in less than 10% of the 
samples). To identify subtypes within the cohort we used 
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hierarchical clustering with input of log10 transformed 
data matrix. We used ward. D2 for the clustering method 
with Pearson correlation and Euclidean as the distance 
measures for the clustering of the columns and rows, 
respectively. Evaluation of the differential expression 
(DE) miRNA between subgroups was performed using the 
Wilcoxon ranked-sum test for each miRNA. Significantly 
differentially expressed miRNA had Benjamini-Hchoberg 
(BH) multiple test corrected P values (FDR) ≤ 0.05.

Association between miRNA expression and nodal-
disease free survival (NFS) was first investigated on the 
Discovery cohort by using Cox proportional hazards (PH) 
regression analysis. We first determined the cut-point for each 
miRNA (log10 RPM) at which could separate the patients 
into low/high groups with minimum P value of log-rank test. 
miRNAs that were significant after correction for multiple 
testing (FDR ≤ 0.05 at determining cut-point and across all 
miRNAs) were subjected to univariate and multivariate Cox-
PH analysis with clinical T stage, tumor grade, and tumor DOI.

To generate miRNA-based prognostic model, we 
performed penalized Cox regression (glmnet v2.0-16) 
on a randomly partitioned subset of Discovery (training) 
cohort. The Cox regression derived regression coefficients 
from Discovery (training) were carried over to Discovery 
(test) and the Validation cohort to establish a score for 
prognosis risk of NFS based on linear combination of 
miRNA expression multiplied by the miRNA coefficient. 
Based on the risk score, we then determined the cut-point 
that stratified patients into low/high risk groups based on 
5-year NFS with smallest Kaplan-Meier log-rank P value 
(maxstat v0.7-25). Finally, random forest classification 
analysis (randomForest v4.6) was performed on the entire 
study population to build predictive model (1000 trees, 
each using 9 miRNAs as predictors) for LN status with 
variable selection based on out-of-bag (OOB) error rate 
(VSURF 1.1.0). We further select the number of variables 
for prediction by sequentially introducing variables until the 
decrease in error rate is negligible. The final miRNA panel 
was analyzed with receiver operating curve (ROC) analysis 
to test the performance of discriminating LN status [40].
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